सामग्री पर जाएं

के लिए संदर्भ ultralytics/models/nas/predict.py

नोट

यह फ़ाइल यहाँ उपलब्ध है https://github.com/ultralytics/ultralytics/बूँद/मुख्य/ultralytics/मॉडल/NAS/predict.py. यदि आप कोई समस्या देखते हैं तो कृपया पुल अनुरोध का योगदान करके इसे ठीक करने में मदद करें 🛠️। 🙏 धन्यवाद !



ultralytics.models.nas.predict.NASPredictor

का रूप: BasePredictor

Ultralytics YOLO ऑब्जेक्ट डिटेक्शन के लिए NAS प्रेडिक्टर।

यह वर्ग BasePredictor से Ultralytics इंजन और पोस्ट-प्रोसेसिंग के लिए जिम्मेदार है द्वारा उत्पन्न कच्ची भविष्यवाणियां YOLO NAS मॉडल। यह गैर-अधिकतम दमन जैसे संचालन को लागू करता है और मूल छवि आयामों को फिट करने के लिए बाउंडिंग बॉक्स को स्केल करना।

विशेषताएँ:

नाम प्रकार या क़िस्‍म
args Namespace

पोस्ट-प्रोसेसिंग के लिए विभिन्न कॉन्फ़िगरेशन युक्त नामस्थान।

उदाहरण
from ultralytics import NAS

model = NAS('yolo_nas_s')
predictor = model.predictor
# Assumes that raw_preds, img, orig_imgs are available
results = predictor.postprocess(raw_preds, img, orig_imgs)
नोट

आमतौर पर, यह वर्ग सीधे तत्काल नहीं होता है। इसका उपयोग आंतरिक रूप से NAS कक्षा।

में स्रोत कोड ultralytics/models/nas/predict.py
class NASPredictor(BasePredictor):
    """
    Ultralytics YOLO NAS Predictor for object detection.

    This class extends the `BasePredictor` from Ultralytics engine and is responsible for post-processing the
    raw predictions generated by the YOLO NAS models. It applies operations like non-maximum suppression and
    scaling the bounding boxes to fit the original image dimensions.

    Attributes:
        args (Namespace): Namespace containing various configurations for post-processing.

    Example:
        ```python
        from ultralytics import NAS

        model = NAS('yolo_nas_s')
        predictor = model.predictor
        # Assumes that raw_preds, img, orig_imgs are available
        results = predictor.postprocess(raw_preds, img, orig_imgs)
        ```

    Note:
        Typically, this class is not instantiated directly. It is used internally within the `NAS` class.
    """

    def postprocess(self, preds_in, img, orig_imgs):
        """Postprocess predictions and returns a list of Results objects."""

        # Cat boxes and class scores
        boxes = ops.xyxy2xywh(preds_in[0][0])
        preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)

        preds = ops.non_max_suppression(
            preds,
            self.args.conf,
            self.args.iou,
            agnostic=self.args.agnostic_nms,
            max_det=self.args.max_det,
            classes=self.args.classes,
        )

        if not isinstance(orig_imgs, list):  # input images are a torch.Tensor, not a list
            orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)

        results = []
        for i, pred in enumerate(preds):
            orig_img = orig_imgs[i]
            pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
            img_path = self.batch[0][i]
            results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
        return results

postprocess(preds_in, img, orig_imgs)

पोस्टप्रोसेस भविष्यवाणियां और परिणाम ऑब्जेक्ट्स की एक सूची देता है।

में स्रोत कोड ultralytics/models/nas/predict.py
def postprocess(self, preds_in, img, orig_imgs):
    """Postprocess predictions and returns a list of Results objects."""

    # Cat boxes and class scores
    boxes = ops.xyxy2xywh(preds_in[0][0])
    preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)

    preds = ops.non_max_suppression(
        preds,
        self.args.conf,
        self.args.iou,
        agnostic=self.args.agnostic_nms,
        max_det=self.args.max_det,
        classes=self.args.classes,
    )

    if not isinstance(orig_imgs, list):  # input images are a torch.Tensor, not a list
        orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)

    results = []
    for i, pred in enumerate(preds):
        orig_img = orig_imgs[i]
        pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
        img_path = self.batch[0][i]
        results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
    return results





Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (5), Burhan-Q (1)