рд╕рд╛рдордЧреНрд░реА рдкрд░ рдЬрд╛рдПрдВ

рдХреЗ рд▓рд┐рдП рд╕рдВрджрд░реНрдн ultralytics/nn/modules/head.py

рдиреЛрдЯ

рдпрд╣ рдлрд╝рд╛рдЗрд▓ рдпрд╣рд╛рдБ рдЙрдкрд▓рдмреНрдз рд╣реИ https://github.com/ultralytics/ultralytics/рдмреВрдБрдж/рдореБрдЦреНрдп/ultralytics/nn/modules/head.py. рдпрджрд┐ рдЖрдк рдХреЛрдИ рд╕рдорд╕реНрдпрд╛ рджреЗрдЦрддреЗ рд╣реИрдВ рддреЛ рдХреГрдкрдпрд╛ рдкреБрд▓ рдЕрдиреБрд░реЛрдз рдХрд╛ рдпреЛрдЧрджрд╛рди рдХрд░рдХреЗ рдЗрд╕реЗ рдареАрдХ рдХрд░рдиреЗ рдореЗрдВ рдорджрдж рдХрд░реЗрдВ ЁЯЫая╕Пред ЁЯЩП рдзрдиреНрдпрд╡рд╛рдж !



ultralytics.nn.modules.head.Detect

рдХрд╛ рд░реВрдк: Module

YOLOv8 рдкрд╣рдЪрд╛рди рдореЙрдбрд▓ рдХреЗ рд▓рд┐рдП рд╕рд┐рд░ рдХрд╛ рдкрддрд╛ рд▓рдЧрд╛рдПрдВред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
class Detect(nn.Module):
    """YOLOv8 Detect head for detection models."""

    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, ch=()):
        """Initializes the YOLOv8 detection layer with specified number of classes and channels."""
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch)  # number of detection layers
        self.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.stride = torch.zeros(self.nl)  # strides computed during build
        c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
        )
        self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()

    def forward(self, x):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:  # Training path
            return x

        # Inference path
        shape = x[0].shape  # BCHW
        x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
        if self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape

        if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}:  # avoid TF FlexSplitV ops
            box = x_cat[:, : self.reg_max * 4]
            cls = x_cat[:, self.reg_max * 4 :]
        else:
            box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)

        if self.export and self.format in {"tflite", "edgetpu"}:
            # Precompute normalization factor to increase numerical stability
            # See https://github.com/ultralytics/ultralytics/issues/7371
            grid_h = shape[2]
            grid_w = shape[3]
            grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
            norm = self.strides / (self.stride[0] * grid_size)
            dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
        else:
            dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides

        y = torch.cat((dbox, cls.sigmoid()), 1)
        return y if self.export else (y, x)

    def bias_init(self):
        """Initialize Detect() biases, WARNING: requires stride availability."""
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)

    def decode_bboxes(self, bboxes, anchors):
        """Decode bounding boxes."""
        return dist2bbox(bboxes, anchors, xywh=True, dim=1)

__init__(nc=80, ch=())

рдЗрдирдХреНрд╡рд┐рдпрд▓рд╛рдЗрдЬрд╝ рдХрд░рддрд╛ рд╣реИ YOLOv8 рдХрдХреНрд╖рд╛рдУрдВ рдФрд░ рдЪреИрдирд▓реЛрдВ рдХреА рдирд┐рд░реНрджрд┐рд╖реНрдЯ рд╕рдВрдЦреНрдпрд╛ рдХреЗ рд╕рд╛рде рдбрд┐рдЯреЗрдХреНрд╢рди рдкрд░рддред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def __init__(self, nc=80, ch=()):
    """Initializes the YOLOv8 detection layer with specified number of classes and channels."""
    super().__init__()
    self.nc = nc  # number of classes
    self.nl = len(ch)  # number of detection layers
    self.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
    self.no = nc + self.reg_max * 4  # number of outputs per anchor
    self.stride = torch.zeros(self.nl)  # strides computed during build
    c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # channels
    self.cv2 = nn.ModuleList(
        nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
    )
    self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
    self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()

bias_init()

рдбрд┐рдЯреЗрдХреНрдЯ() рдкреВрд░реНрд╡рд╛рдЧреНрд░рд╣реЛрдВ рдХреЛ рдкреНрд░рд╛рд░рдВрдн рдХрд░реЗрдВ, рдЪреЗрддрд╛рд╡рдиреА: рд╕реНрдЯреНрд░рд╛рдЗрдб рдЙрдкрд▓рдмреНрдзрддрд╛ рдХреА рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реИред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def bias_init(self):
    """Initialize Detect() biases, WARNING: requires stride availability."""
    m = self  # self.model[-1]  # Detect() module
    # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
    # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
    for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
        a[-1].bias.data[:] = 1.0  # box
        b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)

decode_bboxes(bboxes, anchors)

рдмрд╛рдЙрдВрдбрд┐рдВрдЧ рдмреЙрдХреНрд╕ рдХреЛ рдбрд┐рдХреЛрдб рдХрд░реЗрдВред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def decode_bboxes(self, bboxes, anchors):
    """Decode bounding boxes."""
    return dist2bbox(bboxes, anchors, xywh=True, dim=1)

forward(x)

рдЕрдиреБрдорд╛рдирд┐рдд рдмрд╛рдЙрдВрдбрд┐рдВрдЧ рдмреЙрдХреНрд╕ рдФрд░ рд╡рд░реНрдЧ рд╕рдВрднрд╛рд╡рдирд╛рдУрдВ рдХреЛ рдЬреЛрдбрд╝рддрд╛ рд╣реИ рдФрд░ рд▓реМрдЯрд╛рддрд╛ рд╣реИред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def forward(self, x):
    """Concatenates and returns predicted bounding boxes and class probabilities."""
    for i in range(self.nl):
        x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
    if self.training:  # Training path
        return x

    # Inference path
    shape = x[0].shape  # BCHW
    x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
    if self.dynamic or self.shape != shape:
        self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
        self.shape = shape

    if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}:  # avoid TF FlexSplitV ops
        box = x_cat[:, : self.reg_max * 4]
        cls = x_cat[:, self.reg_max * 4 :]
    else:
        box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)

    if self.export and self.format in {"tflite", "edgetpu"}:
        # Precompute normalization factor to increase numerical stability
        # See https://github.com/ultralytics/ultralytics/issues/7371
        grid_h = shape[2]
        grid_w = shape[3]
        grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
        norm = self.strides / (self.stride[0] * grid_size)
        dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
    else:
        dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides

    y = torch.cat((dbox, cls.sigmoid()), 1)
    return y if self.export else (y, x)



ultralytics.nn.modules.head.Segment

рдХрд╛ рд░реВрдк: Detect

YOLOv8 рд╡рд┐рднрд╛рдЬрди рдореЙрдбрд▓ рдХреЗ рд▓рд┐рдП рд╕реЗрдЧрдореЗрдВрдЯ рд╣реЗрдбред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
class Segment(Detect):
    """YOLOv8 Segment head for segmentation models."""

    def __init__(self, nc=80, nm=32, npr=256, ch=()):
        """Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers."""
        super().__init__(nc, ch)
        self.nm = nm  # number of masks
        self.npr = npr  # number of protos
        self.proto = Proto(ch[0], self.npr, self.nm)  # protos

        c4 = max(ch[0] // 4, self.nm)
        self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)

    def forward(self, x):
        """Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
        p = self.proto(x[0])  # mask protos
        bs = p.shape[0]  # batch size

        mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
        x = Detect.forward(self, x)
        if self.training:
            return x, mc, p
        return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))

__init__(nc=80, nm=32, npr=256, ch=())

рдЗрдирд░рд┐рдЬрд┐рдирд┐рдпрд▓рд╛рдЗрдЬрд╝ рдХрд░реЗрдВ YOLO рдореЙрдбрд▓ рд╡рд┐рд╢реЗрд╖рддрд╛рдПрдБ рдЬреИрд╕реЗ рдорд╛рд╕реНрдХ рдХреА рд╕рдВрдЦреНрдпрд╛, рдкреНрд░реЛрдЯреЛрдЯрд╛рдЗрдк рдФрд░ рдХрдирд╡рд▓реНрд╢рди рдкрд░рддреЗрдВред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def __init__(self, nc=80, nm=32, npr=256, ch=()):
    """Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers."""
    super().__init__(nc, ch)
    self.nm = nm  # number of masks
    self.npr = npr  # number of protos
    self.proto = Proto(ch[0], self.npr, self.nm)  # protos

    c4 = max(ch[0] // 4, self.nm)
    self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)

forward(x)

рдпрджрд┐ рдкреНрд░рд╢рд┐рдХреНрд╖рдг рд╣реИ рддреЛ рдореЙрдбрд▓ рдЖрдЙрдЯрдкреБрдЯ рдФрд░ рдорд╛рд╕реНрдХ рдЧреБрдгрд╛рдВрдХ рд▓реМрдЯрд╛рдПрдВ, рдЕрдиреНрдпрдерд╛ рдЖрдЙрдЯрдкреБрдЯ рдФрд░ рдорд╛рд╕реНрдХ рдЧреБрдгрд╛рдВрдХ рд▓реМрдЯрд╛рдПрдВред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def forward(self, x):
    """Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
    p = self.proto(x[0])  # mask protos
    bs = p.shape[0]  # batch size

    mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
    x = Detect.forward(self, x)
    if self.training:
        return x, mc, p
    return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))



ultralytics.nn.modules.head.OBB

рдХрд╛ рд░реВрдк: Detect

YOLOv8 рд░реЛрдЯреЗрд╢рди рдореЙрдбрд▓ рдХреЗ рд╕рд╛рде рдкрддрд╛ рд▓рдЧрд╛рдиреЗ рдХреЗ рд▓рд┐рдП OBB рдбрд┐рдЯреЗрдХреНрд╢рди рд╣реЗрдбред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
class OBB(Detect):
    """YOLOv8 OBB detection head for detection with rotation models."""

    def __init__(self, nc=80, ne=1, ch=()):
        """Initialize OBB with number of classes `nc` and layer channels `ch`."""
        super().__init__(nc, ch)
        self.ne = ne  # number of extra parameters

        c4 = max(ch[0] // 4, self.ne)
        self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.ne, 1)) for x in ch)

    def forward(self, x):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        bs = x[0].shape[0]  # batch size
        angle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2)  # OBB theta logits
        # NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.
        angle = (angle.sigmoid() - 0.25) * math.pi  # [-pi/4, 3pi/4]
        # angle = angle.sigmoid() * math.pi / 2  # [0, pi/2]
        if not self.training:
            self.angle = angle
        x = Detect.forward(self, x)
        if self.training:
            return x, angle
        return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))

    def decode_bboxes(self, bboxes, anchors):
        """Decode rotated bounding boxes."""
        return dist2rbox(bboxes, self.angle, anchors, dim=1)

__init__(nc=80, ne=1, ch=())

рдХрдХреНрд╖рд╛рдУрдВ рдХреА рд╕рдВрдЦреНрдпрд╛ рдХреЗ рд╕рд╛рде OBB рдкреНрд░рд╛рд░рдВрдн рдХрд░реЗрдВ nc рдФрд░ рдкрд░рдд рдЪреИрдирд▓ ch.

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def __init__(self, nc=80, ne=1, ch=()):
    """Initialize OBB with number of classes `nc` and layer channels `ch`."""
    super().__init__(nc, ch)
    self.ne = ne  # number of extra parameters

    c4 = max(ch[0] // 4, self.ne)
    self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.ne, 1)) for x in ch)

decode_bboxes(bboxes, anchors)

рдШреБрдорд╛рдП рдЧрдП рдмрд╛рдЙрдВрдбрд┐рдВрдЧ рдмреЙрдХреНрд╕ рдХреЛ рдбреАрдХреЛрдб рдХрд░реЗрдВред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def decode_bboxes(self, bboxes, anchors):
    """Decode rotated bounding boxes."""
    return dist2rbox(bboxes, self.angle, anchors, dim=1)

forward(x)

рдЕрдиреБрдорд╛рдирд┐рдд рдмрд╛рдЙрдВрдбрд┐рдВрдЧ рдмреЙрдХреНрд╕ рдФрд░ рд╡рд░реНрдЧ рд╕рдВрднрд╛рд╡рдирд╛рдУрдВ рдХреЛ рдЬреЛрдбрд╝рддрд╛ рд╣реИ рдФрд░ рд▓реМрдЯрд╛рддрд╛ рд╣реИред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def forward(self, x):
    """Concatenates and returns predicted bounding boxes and class probabilities."""
    bs = x[0].shape[0]  # batch size
    angle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2)  # OBB theta logits
    # NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.
    angle = (angle.sigmoid() - 0.25) * math.pi  # [-pi/4, 3pi/4]
    # angle = angle.sigmoid() * math.pi / 2  # [0, pi/2]
    if not self.training:
        self.angle = angle
    x = Detect.forward(self, x)
    if self.training:
        return x, angle
    return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))



ultralytics.nn.modules.head.Pose

рдХрд╛ рд░реВрдк: Detect

YOLOv8 рдХреАрдкреЙрдЗрдВрдЯ рдореЙрдбрд▓ рдХреЗ рд▓рд┐рдП рдкреЛрдЬрд╝ рд╣реЗрдбред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
class Pose(Detect):
    """YOLOv8 Pose head for keypoints models."""

    def __init__(self, nc=80, kpt_shape=(17, 3), ch=()):
        """Initialize YOLO network with default parameters and Convolutional Layers."""
        super().__init__(nc, ch)
        self.kpt_shape = kpt_shape  # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
        self.nk = kpt_shape[0] * kpt_shape[1]  # number of keypoints total

        c4 = max(ch[0] // 4, self.nk)
        self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)

    def forward(self, x):
        """Perform forward pass through YOLO model and return predictions."""
        bs = x[0].shape[0]  # batch size
        kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1)  # (bs, 17*3, h*w)
        x = Detect.forward(self, x)
        if self.training:
            return x, kpt
        pred_kpt = self.kpts_decode(bs, kpt)
        return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))

    def kpts_decode(self, bs, kpts):
        """Decodes keypoints."""
        ndim = self.kpt_shape[1]
        if self.export:  # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
            y = kpts.view(bs, *self.kpt_shape, -1)
            a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
            if ndim == 3:
                a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
            return a.view(bs, self.nk, -1)
        else:
            y = kpts.clone()
            if ndim == 3:
                y[:, 2::3] = y[:, 2::3].sigmoid()  # sigmoid (WARNING: inplace .sigmoid_() Apple MPS bug)
            y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
            y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
            return y

__init__(nc=80, kpt_shape=(17, 3), ch=())

рдкреНрд░рд╛рд░рдВрдн YOLO рдбрд┐рдлрд╝реЙрд▓реНрдЯ рдорд╛рдкрджрдВрдбреЛрдВ рдФрд░ рджреГрдврд╝ рдкрд░рддреЛрдВ рдХреЗ рд╕рд╛рде рдиреЗрдЯрд╡рд░реНрдХред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def __init__(self, nc=80, kpt_shape=(17, 3), ch=()):
    """Initialize YOLO network with default parameters and Convolutional Layers."""
    super().__init__(nc, ch)
    self.kpt_shape = kpt_shape  # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
    self.nk = kpt_shape[0] * kpt_shape[1]  # number of keypoints total

    c4 = max(ch[0] // 4, self.nk)
    self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)

forward(x)

рдлреЙрд░рд╡рд░реНрдб рдкрд╛рд╕ рдереНрд░реВ рдХрд░реЗрдВ YOLO рдореЙрдбрд▓ рдФрд░ рд╡рд╛рдкрд╕реА рднрд╡рд┐рд╖реНрдпрд╡рд╛рдгрд┐рдпрд╛рдВред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def forward(self, x):
    """Perform forward pass through YOLO model and return predictions."""
    bs = x[0].shape[0]  # batch size
    kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1)  # (bs, 17*3, h*w)
    x = Detect.forward(self, x)
    if self.training:
        return x, kpt
    pred_kpt = self.kpts_decode(bs, kpt)
    return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))

kpts_decode(bs, kpts)

рдХреАрдкреЙрдЗрдВрдЯреНрд╕ рдХреЛ рдбреАрдХреЛрдб рдХрд░рддрд╛ рд╣реИред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def kpts_decode(self, bs, kpts):
    """Decodes keypoints."""
    ndim = self.kpt_shape[1]
    if self.export:  # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
        y = kpts.view(bs, *self.kpt_shape, -1)
        a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
        if ndim == 3:
            a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
        return a.view(bs, self.nk, -1)
    else:
        y = kpts.clone()
        if ndim == 3:
            y[:, 2::3] = y[:, 2::3].sigmoid()  # sigmoid (WARNING: inplace .sigmoid_() Apple MPS bug)
        y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
        y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
        return y



ultralytics.nn.modules.head.Classify

рдХрд╛ рд░реВрдк: Module

YOLOv8 рд╡рд░реНрдЧреАрдХрд░рдг рд╢реАрд░реНрд╖, рдпрд╛рдиреА рдПрдХреНрд╕ (рдмреА, рд╕реА 1,20,20) рд╕реЗ рдПрдХреНрд╕ (рдмреА, рд╕реА 2)ред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
class Classify(nn.Module):
    """YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2)."""

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
        """Initializes YOLOv8 classification head with specified input and output channels, kernel size, stride,
        padding, and groups.
        """
        super().__init__()
        c_ = 1280  # efficientnet_b0 size
        self.conv = Conv(c1, c_, k, s, p, g)
        self.pool = nn.AdaptiveAvgPool2d(1)  # to x(b,c_,1,1)
        self.drop = nn.Dropout(p=0.0, inplace=True)
        self.linear = nn.Linear(c_, c2)  # to x(b,c2)

    def forward(self, x):
        """Performs a forward pass of the YOLO model on input image data."""
        if isinstance(x, list):
            x = torch.cat(x, 1)
        x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
        return x if self.training else x.softmax(1)

__init__(c1, c2, k=1, s=1, p=None, g=1)

рдкреНрд░рд╛рд░рдВрдн рдХрд░рддрд╛ рд╣реИ YOLOv8 рдирд┐рд░реНрджрд┐рд╖реНрдЯ рдЗрдирдкреБрдЯ рдФрд░ рдЖрдЙрдЯрдкреБрдЯ рдЪреИрдирд▓реЛрдВ рдХреЗ рд╕рд╛рде рд╡рд░реНрдЧреАрдХрд░рдг рд╕рд┐рд░, рдХрд░реНрдиреЗрд▓ рдЖрдХрд╛рд░, рд╕реНрдЯреНрд░рд╛рдЗрдб, рдкреИрдбрд┐рдВрдЧ, рдФрд░ рд╕рдореВрд╣ред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
    """Initializes YOLOv8 classification head with specified input and output channels, kernel size, stride,
    padding, and groups.
    """
    super().__init__()
    c_ = 1280  # efficientnet_b0 size
    self.conv = Conv(c1, c_, k, s, p, g)
    self.pool = nn.AdaptiveAvgPool2d(1)  # to x(b,c_,1,1)
    self.drop = nn.Dropout(p=0.0, inplace=True)
    self.linear = nn.Linear(c_, c2)  # to x(b,c2)

forward(x)

рдХрд╛ рдлреЙрд░рд╡рд░реНрдб рдкрд╛рд╕ рдХрд░рддрд╛ рд╣реИ YOLO рдЗрдирдкреБрдЯ рдЫрд╡рд┐ рдбреЗрдЯрд╛ рдкрд░ рдореЙрдбрд▓ред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def forward(self, x):
    """Performs a forward pass of the YOLO model on input image data."""
    if isinstance(x, list):
        x = torch.cat(x, 1)
    x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
    return x if self.training else x.softmax(1)



ultralytics.nn.modules.head.WorldDetect

рдХрд╛ рд░реВрдк: Detect

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
class WorldDetect(Detect):
    def __init__(self, nc=80, embed=512, with_bn=False, ch=()):
        """Initialize YOLOv8 detection layer with nc classes and layer channels ch."""
        super().__init__(nc, ch)
        c3 = max(ch[0], min(self.nc, 100))
        self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
        self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)

    def forward(self, x, text):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1)
        if self.training:
            return x

        # Inference path
        shape = x[0].shape  # BCHW
        x_cat = torch.cat([xi.view(shape[0], self.nc + self.reg_max * 4, -1) for xi in x], 2)
        if self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape

        if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}:  # avoid TF FlexSplitV ops
            box = x_cat[:, : self.reg_max * 4]
            cls = x_cat[:, self.reg_max * 4 :]
        else:
            box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)

        if self.export and self.format in {"tflite", "edgetpu"}:
            # Precompute normalization factor to increase numerical stability
            # See https://github.com/ultralytics/ultralytics/issues/7371
            grid_h = shape[2]
            grid_w = shape[3]
            grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
            norm = self.strides / (self.stride[0] * grid_size)
            dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
        else:
            dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides

        y = torch.cat((dbox, cls.sigmoid()), 1)
        return y if self.export else (y, x)

    def bias_init(self):
        """Initialize Detect() biases, WARNING: requires stride availability."""
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box

__init__(nc=80, embed=512, with_bn=False, ch=())

рдкреНрд░рд╛рд░рдВрдн YOLOv8 рдПрдирд╕реА рдХрдХреНрд╖рд╛рдУрдВ рдФрд░ рдкрд░рдд рдЪреИрдирд▓реЛрдВ рд╕реАрдПрдЪ рдХреЗ рд╕рд╛рде рдбрд┐рдЯреЗрдХреНрд╢рди рдкрд░рддред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def __init__(self, nc=80, embed=512, with_bn=False, ch=()):
    """Initialize YOLOv8 detection layer with nc classes and layer channels ch."""
    super().__init__(nc, ch)
    c3 = max(ch[0], min(self.nc, 100))
    self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
    self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)

bias_init()

рдбрд┐рдЯреЗрдХреНрдЯ() рдкреВрд░реНрд╡рд╛рдЧреНрд░рд╣реЛрдВ рдХреЛ рдкреНрд░рд╛рд░рдВрдн рдХрд░реЗрдВ, рдЪреЗрддрд╛рд╡рдиреА: рд╕реНрдЯреНрд░рд╛рдЗрдб рдЙрдкрд▓рдмреНрдзрддрд╛ рдХреА рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реИред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def bias_init(self):
    """Initialize Detect() biases, WARNING: requires stride availability."""
    m = self  # self.model[-1]  # Detect() module
    # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
    # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
    for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
        a[-1].bias.data[:] = 1.0  # box

forward(x, text)

рдЕрдиреБрдорд╛рдирд┐рдд рдмрд╛рдЙрдВрдбрд┐рдВрдЧ рдмреЙрдХреНрд╕ рдФрд░ рд╡рд░реНрдЧ рд╕рдВрднрд╛рд╡рдирд╛рдУрдВ рдХреЛ рдЬреЛрдбрд╝рддрд╛ рд╣реИ рдФрд░ рд▓реМрдЯрд╛рддрд╛ рд╣реИред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def forward(self, x, text):
    """Concatenates and returns predicted bounding boxes and class probabilities."""
    for i in range(self.nl):
        x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1)
    if self.training:
        return x

    # Inference path
    shape = x[0].shape  # BCHW
    x_cat = torch.cat([xi.view(shape[0], self.nc + self.reg_max * 4, -1) for xi in x], 2)
    if self.dynamic or self.shape != shape:
        self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
        self.shape = shape

    if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}:  # avoid TF FlexSplitV ops
        box = x_cat[:, : self.reg_max * 4]
        cls = x_cat[:, self.reg_max * 4 :]
    else:
        box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)

    if self.export and self.format in {"tflite", "edgetpu"}:
        # Precompute normalization factor to increase numerical stability
        # See https://github.com/ultralytics/ultralytics/issues/7371
        grid_h = shape[2]
        grid_w = shape[3]
        grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
        norm = self.strides / (self.stride[0] * grid_size)
        dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
    else:
        dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides

    y = torch.cat((dbox, cls.sigmoid()), 1)
    return y if self.export else (y, x)



ultralytics.nn.modules.head.RTDETRDecoder

рдХрд╛ рд░реВрдк: Module

рдСрдмреНрдЬреЗрдХреНрдЯ рдбрд┐рдЯреЗрдХреНрд╢рди рдХреЗ рд▓рд┐рдП рд░реАрдпрд▓-рдЯрд╛рдЗрдо рдбрд┐рдлреЙрд░реНрдореЗрдмрд▓ рдЯреНрд░рд╛рдВрд╕рдлрд╛рд░реНрдорд░ рдбрд┐рдХреЛрдбрд░ (RTDETRDecoder) рдореЙрдбреНрдпреВрд▓ред

рдпрд╣ рдбрд┐рдХреЛрдбрд░ рдореЙрдбреНрдпреВрд▓ рдмрд╛рдЙрдВрдбрд┐рдВрдЧ рдмреЙрдХреНрд╕ рдХреА рднрд╡рд┐рд╖реНрдпрд╡рд╛рдгреА рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдП рд╡рд┐рдХреГрдд convolutions рдХреЗ рд╕рд╛рде рдЯреНрд░рд╛рдВрд╕рдлрд╛рд░реНрдорд░ рдЖрд░реНрдХрд┐рдЯреЗрдХреНрдЪрд░ рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рддрд╛ рд╣реИ рдФрд░ рдПрдХ рдЫрд╡рд┐ рдореЗрдВ рд╡рд╕реНрддреБрдУрдВ рдХреЗ рд▓рд┐рдП рд╡рд░реНрдЧ рд▓реЗрдмрд▓ред рдпрд╣ рдХрдИ рдкрд░рддреЛрдВ рд╕реЗ рд╕реБрд╡рд┐рдзрд╛рдУрдВ рдХреЛ рдПрдХреАрдХреГрдд рдХрд░рддрд╛ рд╣реИ рдФрд░ рдХреА рдПрдХ рд╢реНрд░реГрдВрдЦрд▓рд╛ рдХреЗ рдорд╛рдзреНрдпрдо рд╕реЗ рдЪрд▓рддрд╛ рд╣реИ рдЕрдВрддрд┐рдо рднрд╡рд┐рд╖реНрдпрд╡рд╛рдгрд┐рдпреЛрдВ рдХреЛ рдЖрдЙрдЯрдкреБрдЯ рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдП рдЯреНрд░рд╛рдВрд╕рдлрд╛рд░реНрдорд░ рдбрд┐рдХреЛрдбрд░ рдкрд░рддреЗрдВред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
class RTDETRDecoder(nn.Module):
    """
    Real-Time Deformable Transformer Decoder (RTDETRDecoder) module for object detection.

    This decoder module utilizes Transformer architecture along with deformable convolutions to predict bounding boxes
    and class labels for objects in an image. It integrates features from multiple layers and runs through a series of
    Transformer decoder layers to output the final predictions.
    """

    export = False  # export mode

    def __init__(
        self,
        nc=80,
        ch=(512, 1024, 2048),
        hd=256,  # hidden dim
        nq=300,  # num queries
        ndp=4,  # num decoder points
        nh=8,  # num head
        ndl=6,  # num decoder layers
        d_ffn=1024,  # dim of feedforward
        dropout=0.0,
        act=nn.ReLU(),
        eval_idx=-1,
        # Training args
        nd=100,  # num denoising
        label_noise_ratio=0.5,
        box_noise_scale=1.0,
        learnt_init_query=False,
    ):
        """
        Initializes the RTDETRDecoder module with the given parameters.

        Args:
            nc (int): Number of classes. Default is 80.
            ch (tuple): Channels in the backbone feature maps. Default is (512, 1024, 2048).
            hd (int): Dimension of hidden layers. Default is 256.
            nq (int): Number of query points. Default is 300.
            ndp (int): Number of decoder points. Default is 4.
            nh (int): Number of heads in multi-head attention. Default is 8.
            ndl (int): Number of decoder layers. Default is 6.
            d_ffn (int): Dimension of the feed-forward networks. Default is 1024.
            dropout (float): Dropout rate. Default is 0.
            act (nn.Module): Activation function. Default is nn.ReLU.
            eval_idx (int): Evaluation index. Default is -1.
            nd (int): Number of denoising. Default is 100.
            label_noise_ratio (float): Label noise ratio. Default is 0.5.
            box_noise_scale (float): Box noise scale. Default is 1.0.
            learnt_init_query (bool): Whether to learn initial query embeddings. Default is False.
        """
        super().__init__()
        self.hidden_dim = hd
        self.nhead = nh
        self.nl = len(ch)  # num level
        self.nc = nc
        self.num_queries = nq
        self.num_decoder_layers = ndl

        # Backbone feature projection
        self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
        # NOTE: simplified version but it's not consistent with .pt weights.
        # self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch)

        # Transformer module
        decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
        self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)

        # Denoising part
        self.denoising_class_embed = nn.Embedding(nc, hd)
        self.num_denoising = nd
        self.label_noise_ratio = label_noise_ratio
        self.box_noise_scale = box_noise_scale

        # Decoder embedding
        self.learnt_init_query = learnt_init_query
        if learnt_init_query:
            self.tgt_embed = nn.Embedding(nq, hd)
        self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)

        # Encoder head
        self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
        self.enc_score_head = nn.Linear(hd, nc)
        self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)

        # Decoder head
        self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
        self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])

        self._reset_parameters()

    def forward(self, x, batch=None):
        """Runs the forward pass of the module, returning bounding box and classification scores for the input."""
        from ultralytics.models.utils.ops import get_cdn_group

        # Input projection and embedding
        feats, shapes = self._get_encoder_input(x)

        # Prepare denoising training
        dn_embed, dn_bbox, attn_mask, dn_meta = get_cdn_group(
            batch,
            self.nc,
            self.num_queries,
            self.denoising_class_embed.weight,
            self.num_denoising,
            self.label_noise_ratio,
            self.box_noise_scale,
            self.training,
        )

        embed, refer_bbox, enc_bboxes, enc_scores = self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)

        # Decoder
        dec_bboxes, dec_scores = self.decoder(
            embed,
            refer_bbox,
            feats,
            shapes,
            self.dec_bbox_head,
            self.dec_score_head,
            self.query_pos_head,
            attn_mask=attn_mask,
        )
        x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
        if self.training:
            return x
        # (bs, 300, 4+nc)
        y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
        return y if self.export else (y, x)

    def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device="cpu", eps=1e-2):
        """Generates anchor bounding boxes for given shapes with specific grid size and validates them."""
        anchors = []
        for i, (h, w) in enumerate(shapes):
            sy = torch.arange(end=h, dtype=dtype, device=device)
            sx = torch.arange(end=w, dtype=dtype, device=device)
            grid_y, grid_x = torch.meshgrid(sy, sx, indexing="ij") if TORCH_1_10 else torch.meshgrid(sy, sx)
            grid_xy = torch.stack([grid_x, grid_y], -1)  # (h, w, 2)

            valid_WH = torch.tensor([w, h], dtype=dtype, device=device)
            grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH  # (1, h, w, 2)
            wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0**i)
            anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4))  # (1, h*w, 4)

        anchors = torch.cat(anchors, 1)  # (1, h*w*nl, 4)
        valid_mask = ((anchors > eps) & (anchors < 1 - eps)).all(-1, keepdim=True)  # 1, h*w*nl, 1
        anchors = torch.log(anchors / (1 - anchors))
        anchors = anchors.masked_fill(~valid_mask, float("inf"))
        return anchors, valid_mask

    def _get_encoder_input(self, x):
        """Processes and returns encoder inputs by getting projection features from input and concatenating them."""
        # Get projection features
        x = [self.input_proj[i](feat) for i, feat in enumerate(x)]
        # Get encoder inputs
        feats = []
        shapes = []
        for feat in x:
            h, w = feat.shape[2:]
            # [b, c, h, w] -> [b, h*w, c]
            feats.append(feat.flatten(2).permute(0, 2, 1))
            # [nl, 2]
            shapes.append([h, w])

        # [b, h*w, c]
        feats = torch.cat(feats, 1)
        return feats, shapes

    def _get_decoder_input(self, feats, shapes, dn_embed=None, dn_bbox=None):
        """Generates and prepares the input required for the decoder from the provided features and shapes."""
        bs = feats.shape[0]
        # Prepare input for decoder
        anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device)
        features = self.enc_output(valid_mask * feats)  # bs, h*w, 256

        enc_outputs_scores = self.enc_score_head(features)  # (bs, h*w, nc)

        # Query selection
        # (bs, num_queries)
        topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1)
        # (bs, num_queries)
        batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1)

        # (bs, num_queries, 256)
        top_k_features = features[batch_ind, topk_ind].view(bs, self.num_queries, -1)
        # (bs, num_queries, 4)
        top_k_anchors = anchors[:, topk_ind].view(bs, self.num_queries, -1)

        # Dynamic anchors + static content
        refer_bbox = self.enc_bbox_head(top_k_features) + top_k_anchors

        enc_bboxes = refer_bbox.sigmoid()
        if dn_bbox is not None:
            refer_bbox = torch.cat([dn_bbox, refer_bbox], 1)
        enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1)

        embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) if self.learnt_init_query else top_k_features
        if self.training:
            refer_bbox = refer_bbox.detach()
            if not self.learnt_init_query:
                embeddings = embeddings.detach()
        if dn_embed is not None:
            embeddings = torch.cat([dn_embed, embeddings], 1)

        return embeddings, refer_bbox, enc_bboxes, enc_scores

    # TODO
    def _reset_parameters(self):
        """Initializes or resets the parameters of the model's various components with predefined weights and biases."""
        # Class and bbox head init
        bias_cls = bias_init_with_prob(0.01) / 80 * self.nc
        # NOTE: the weight initialization in `linear_init` would cause NaN when training with custom datasets.
        # linear_init(self.enc_score_head)
        constant_(self.enc_score_head.bias, bias_cls)
        constant_(self.enc_bbox_head.layers[-1].weight, 0.0)
        constant_(self.enc_bbox_head.layers[-1].bias, 0.0)
        for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
            # linear_init(cls_)
            constant_(cls_.bias, bias_cls)
            constant_(reg_.layers[-1].weight, 0.0)
            constant_(reg_.layers[-1].bias, 0.0)

        linear_init(self.enc_output[0])
        xavier_uniform_(self.enc_output[0].weight)
        if self.learnt_init_query:
            xavier_uniform_(self.tgt_embed.weight)
        xavier_uniform_(self.query_pos_head.layers[0].weight)
        xavier_uniform_(self.query_pos_head.layers[1].weight)
        for layer in self.input_proj:
            xavier_uniform_(layer[0].weight)

__init__(nc=80, ch=(512, 1024, 2048), hd=256, nq=300, ndp=4, nh=8, ndl=6, d_ffn=1024, dropout=0.0, act=nn.ReLU(), eval_idx=-1, nd=100, label_noise_ratio=0.5, box_noise_scale=1.0, learnt_init_query=False)

рджрд┐рдП рдЧрдП рдорд╛рдкрджрдВрдбреЛрдВ рдХреЗ рд╕рд╛рде RTDETRDecoder рдореЙрдбреНрдпреВрд▓ рдХреЛ рдЗрдирд┐рд╢рд┐рдпрд▓рд╛рдЗрдЬрд╝ рдХрд░рддрд╛ рд╣реИред

рдкреИрд░рд╛рдореАрдЯрд░:

рдирд╛рдо рдкреНрд░рдХрд╛рд░ рдпрд╛ рдХрд╝рд┐рд╕реНтАНрдо рдЪреВрдХ
nc int

рдХрдХреНрд╖рд╛рдУрдВ рдХреА рд╕рдВрдЦреНрдпрд╛ред рдбрд┐рдлрд╝реЙрд▓реНрдЯ 80 рд╣реИред

80
ch tuple

рдмреИрдХрдмреЛрди рдореЗрдВ рдЪреИрдирд▓ рдирдХреНрд╢реЗ рдкреЗрд╢ рдХрд░рддреЗ рд╣реИрдВред рдбрд┐рдлрд╝реЙрд▓реНрдЯ (512, 1024, 2048) рд╣реИред

(512, 1024, 2048)
hd int

рдЫрд┐рдкреА рд╣реБрдИ рдкрд░рддреЛрдВ рдХрд╛ рдЖрдпрд╛рдоред рдбрд┐рдлрд╝реЙрд▓реНрдЯ 256 рд╣реИред

256
nq int

рдХреНрд╡реЗрд░реА рдмрд┐рдВрджреБрдУрдВ рдХреА рд╕рдВрдЦреНрдпрд╛. рдбрд┐рдлрд╝реЙрд▓реНрдЯ 300 рд╣реИред

300
ndp int

рдбрд┐рдХреЛрдбрд░ рдмрд┐рдВрджреБрдУрдВ рдХреА рд╕рдВрдЦреНрдпрд╛ред рдбрд┐рдлрд╝реЙрд▓реНрдЯ 4 рд╣реИред

4
nh int

рдмрд╣реБ-рд╕рд┐рд░ рдзреНрдпрд╛рди рдореЗрдВ рд╕рд┐рд░ рдХреА рд╕рдВрдЦреНрдпрд╛ред рдбрд┐рдлрд╝реЙрд▓реНрдЯ 8 рд╣реИред

8
ndl int

рдбрд┐рдХреЛрдбрд░ рдкрд░рддреЛрдВ рдХреА рд╕рдВрдЦреНрдпрд╛ред рдбрд┐рдлрд╝реЙрд▓реНрдЯ 6 рд╣реИред

6
d_ffn int

рдлрд╝реАрдб-рдлрд╝реЙрд░рд╡рд░реНрдб рдиреЗрдЯрд╡рд░реНрдХ рдХрд╛ рдЖрдпрд╛рдо. рдбрд┐рдлрд╝реЙрд▓реНрдЯ 1024 рд╣реИред

1024
dropout float

рдбреНрд░реЙрдкрдЖрдЙрдЯ рджрд░ред рдбрд┐рдлрд╝реЙрд▓реНрдЯ 0 рд╣реИред

0.0
act Module

рд╕рдХреНрд░рд┐рдпрдг рд╕рдорд╛рд░реЛрд╣ред рдбрд┐рдлрд╝реЙрд▓реНрдЯ nn рд╣реИ. рд░реЗрд▓реВред

ReLU()
eval_idx int

рдореВрд▓реНрдпрд╛рдВрдХрди рд╕реВрдЪрдХрд╛рдВрдХред рдбрд┐рдлрд╝реЙрд▓реНрдЯ -1 рд╣реИред

-1
nd int

рдЗрдирдХрд╛рд░ рдХреА рд╕рдВрдЦреНрдпрд╛ред рдбрд┐рдлрд╝реЙрд▓реНрдЯ 100 рд╣реИред

100
label_noise_ratio float

рд▓реЗрдмрд▓ рд╢реЛрд░ рдЕрдиреБрдкрд╛рддред рдбрд┐рдлрд╝реЙрд▓реНрдЯ 0.5 рд╣реИред

0.5
box_noise_scale float

рдмреЙрдХреНрд╕ рд╢реЛрд░ рдкреИрдорд╛рдиреЗред рдбрд┐рдлрд╝реЙрд▓реНрдЯ 1.0 рд╣реИред

1.0
learnt_init_query bool

рдкреНрд░рд╛рд░рдВрднрд┐рдХ рдХреНрд╡реЗрд░реА рдПрдореНрдмреЗрдбрд┐рдВрдЧ рд╕реАрдЦрдирд╛ рд╣реИ рдпрд╛ рдирд╣реАрдВред рдбрд┐рдлрд╝реЙрд▓реНрдЯ рдЧрд╝рд▓рдд рд╣реИ.

False
рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def __init__(
    self,
    nc=80,
    ch=(512, 1024, 2048),
    hd=256,  # hidden dim
    nq=300,  # num queries
    ndp=4,  # num decoder points
    nh=8,  # num head
    ndl=6,  # num decoder layers
    d_ffn=1024,  # dim of feedforward
    dropout=0.0,
    act=nn.ReLU(),
    eval_idx=-1,
    # Training args
    nd=100,  # num denoising
    label_noise_ratio=0.5,
    box_noise_scale=1.0,
    learnt_init_query=False,
):
    """
    Initializes the RTDETRDecoder module with the given parameters.

    Args:
        nc (int): Number of classes. Default is 80.
        ch (tuple): Channels in the backbone feature maps. Default is (512, 1024, 2048).
        hd (int): Dimension of hidden layers. Default is 256.
        nq (int): Number of query points. Default is 300.
        ndp (int): Number of decoder points. Default is 4.
        nh (int): Number of heads in multi-head attention. Default is 8.
        ndl (int): Number of decoder layers. Default is 6.
        d_ffn (int): Dimension of the feed-forward networks. Default is 1024.
        dropout (float): Dropout rate. Default is 0.
        act (nn.Module): Activation function. Default is nn.ReLU.
        eval_idx (int): Evaluation index. Default is -1.
        nd (int): Number of denoising. Default is 100.
        label_noise_ratio (float): Label noise ratio. Default is 0.5.
        box_noise_scale (float): Box noise scale. Default is 1.0.
        learnt_init_query (bool): Whether to learn initial query embeddings. Default is False.
    """
    super().__init__()
    self.hidden_dim = hd
    self.nhead = nh
    self.nl = len(ch)  # num level
    self.nc = nc
    self.num_queries = nq
    self.num_decoder_layers = ndl

    # Backbone feature projection
    self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
    # NOTE: simplified version but it's not consistent with .pt weights.
    # self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch)

    # Transformer module
    decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
    self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)

    # Denoising part
    self.denoising_class_embed = nn.Embedding(nc, hd)
    self.num_denoising = nd
    self.label_noise_ratio = label_noise_ratio
    self.box_noise_scale = box_noise_scale

    # Decoder embedding
    self.learnt_init_query = learnt_init_query
    if learnt_init_query:
        self.tgt_embed = nn.Embedding(nq, hd)
    self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)

    # Encoder head
    self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
    self.enc_score_head = nn.Linear(hd, nc)
    self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)

    # Decoder head
    self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
    self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])

    self._reset_parameters()

forward(x, batch=None)

рдореЙрдбреНрдпреВрд▓ рдХреЗ рдЖрдЧреЗ рдкрд╛рд╕ рдЪрд▓рд╛рддрд╛ рд╣реИ, рдЗрдирдкреБрдЯ рдХреЗ рд▓рд┐рдП рдмрд╛рдЙрдВрдбрд┐рдВрдЧ рдмреЙрдХреНрд╕ рдФрд░ рд╡рд░реНрдЧреАрдХрд░рдг рд╕реНрдХреЛрд░ рд▓реМрдЯрд╛рддрд╛ рд╣реИред

рдореЗрдВ рд╕реНрд░реЛрдд рдХреЛрдб ultralytics/nn/modules/head.py
def forward(self, x, batch=None):
    """Runs the forward pass of the module, returning bounding box and classification scores for the input."""
    from ultralytics.models.utils.ops import get_cdn_group

    # Input projection and embedding
    feats, shapes = self._get_encoder_input(x)

    # Prepare denoising training
    dn_embed, dn_bbox, attn_mask, dn_meta = get_cdn_group(
        batch,
        self.nc,
        self.num_queries,
        self.denoising_class_embed.weight,
        self.num_denoising,
        self.label_noise_ratio,
        self.box_noise_scale,
        self.training,
    )

    embed, refer_bbox, enc_bboxes, enc_scores = self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)

    # Decoder
    dec_bboxes, dec_scores = self.decoder(
        embed,
        refer_bbox,
        feats,
        shapes,
        self.dec_bbox_head,
        self.dec_score_head,
        self.query_pos_head,
        attn_mask=attn_mask,
    )
    x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
    if self.training:
        return x
    # (bs, 300, 4+nc)
    y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
    return y if self.export else (y, x)





2023-11-12 рдмрдирд╛рдпрд╛ рдЧрдпрд╛, рдЕрдкрдбреЗрдЯ рдХрд┐рдпрд╛ рдЧрдпрд╛ 2024-03-03
рд▓реЗрдЦрдХ: рдЧреНрд▓реЗрди-рдЬреЛрдЪрд░ (5)