Vai al contenuto

YOLOv5 🚀 su AWS Deep Learning Instance: La tua guida completa

La configurazione di un ambiente di deep learning ad alte prestazioni può essere scoraggiante per i neofiti, ma non temere! 🛠️ In questa guida ti guideremo attraverso il processo di avviamento di YOLOv5 su un'istanza AWS Deep Learning. Sfruttando la potenza di Amazon Web Services (AWS), anche chi è alle prime armi con l'apprendimento automatico può iniziare a lavorare in modo rapido e conveniente. La scalabilità della piattaforma AWS è perfetta sia per la sperimentazione che per la produzione.

Altre opzioni di avvio rapido per YOLOv5 sono le nostre Taccuino Colab Apri in Colab Apri in Kaggle, GCP Deep Learning VMe la nostra immagine Docker all'indirizzo Docker Hub Docker tira.

Passo 1: Accesso alla console AWS

Inizia creando un account o accedendo alla console AWS all'indirizzo https://aws.amazon.com/console/. Una volta effettuato l'accesso, seleziona il servizio EC2 da gestire e configura le tue istanze.

Console

Passo 2: Avviare l'istanza

Nella dashboard di EC2 troverai il pulsante Avvia Istanza, che ti permetterĂ  di creare un nuovo server virtuale.

Lancio

Selezionare la giusta immagine della macchina Amazon (AMI)

Qui devi scegliere il sistema operativo e lo stack software per la tua istanza. Digita "Deep Learning" nel campo di ricerca e seleziona l'ultima AMI Deep Learning basata su Ubuntu, a meno che le tue esigenze non impongano diversamente. Le AMI Deep Learning di Amazon sono preinstallate con i framework piĂš diffusi e i driver delle GPU per semplificare il processo di configurazione.

Scegli AMI

Scegliere un tipo di istanza

Per le attività di deep learning, la scelta di un'istanza di tipo GPU è generalmente consigliata in quanto può accelerare notevolmente la formazione del modello. Per quanto riguarda le dimensioni dell'istanza, ricorda che i requisiti di memoria del modello non devono mai superare la capacità dell'istanza.

Nota: le dimensioni del tuo modello dovrebbero essere un fattore determinante nella scelta dell'istanza. Se il tuo modello supera la RAM disponibile di un'istanza, seleziona un altro tipo di istanza con una memoria sufficiente per la tua applicazione.

Per un elenco dei tipi di istanza GPU disponibili, visita il sito EC2 Instance Types, in particolare alla voce Accelerated Computing.

Scegli il tipo

Per maggiori informazioni sul monitoraggio e l'ottimizzazione delle GPU, consulta Monitoraggio e ottimizzazione delle GPU. Per i prezzi, vedi Prezzi su richiesta e Prezzi spot.

Configurare l'istanza

Le Istanze Spot di Amazon EC2 offrono un modo economico per eseguire le applicazioni, in quanto ti permettono di fare offerte per la capacitĂ  inutilizzata a una frazione del costo standard. Per un'esperienza persistente che conserva i dati anche quando l'istanza Spot si spegne, opta per una richiesta persistente.

Richiesta di spot

Ricordati di regolare le altre impostazioni dell'istanza e le configurazioni di sicurezza come necessario nei passi 4-7 prima di lanciarla.

Passo 3: Connettersi alla propria istanza

Una volta che la tua istanza è in esecuzione, seleziona la sua casella di controllo e clicca su Connetti per accedere alle informazioni SSH. Usa il comando SSH visualizzato nel tuo terminale preferito per stabilire una connessione alla tua istanza.

Collegati

Passo 4: Esecuzione YOLOv5

Effettuato l'accesso alla tua istanza, sei ora pronto a clonare il repository YOLOv5 e a installare le dipendenze in un ambiente Python 3.8 o successivo. YOLOv5 I modelli e i dataset verranno scaricati automaticamente dall'ultima versione.

git clone https://github.com/ultralytics/yolov5  # clone repository
cd yolov5
pip install -r requirements.txt  # install dependencies

Una volta configurato l'ambiente, puoi iniziare ad addestrare, convalidare, eseguire l'inferenza ed esportare i tuoi modelli YOLOv5 :

# Train a model on your data
python train.py

# Validate the trained model for Precision, Recall, and mAP
python val.py --weights yolov5s.pt

# Run inference using the trained model on your images or videos
python detect.py --weights yolov5s.pt --source path/to/images

# Export the trained model to other formats for deployment
python export.py --weights yolov5s.pt --include onnx coreml tflite

Extra opzionali

Per aggiungere piÚ memoria di swap, che può essere una salvezza per i dataset di grandi dimensioni, esegui:

sudo fallocate -l 64G /swapfile  # allocate 64GB swap file
sudo chmod 600 /swapfile  # modify permissions
sudo mkswap /swapfile  # set up a Linux swap area
sudo swapon /swapfile  # activate swap file
free -h  # verify swap memory

E il gioco è fatto! Hai creato con successo un'istanza AWS Deep Learning ed eseguito YOLOv5. Sia che tu stia iniziando con il rilevamento di oggetti o che tu stia scalando verso la produzione, questa configurazione può aiutarti a raggiungere i tuoi obiettivi di apprendimento automatico. Buona formazione, validazione e distribuzione! Se dovessi incontrare qualche intoppo lungo il percorso, la solida documentazione di AWS e l'attiva comunità di Ultralytics sono qui per supportarti.



Creato 2023-11-12, Aggiornato 2023-12-03
Autori: glenn-jocher (2)

Commenti