コンテンツへスキップ

CondaクイックスタートガイドUltralytics

Ultralytics コンダパッケージビジュアル

このガイドでは、Ultralytics プロジェクトのために Conda 環境をセットアップするための包括的な紹介をします。Condaはオープンソースのパッケージと環境管理システムで、パッケージと依存関係をインストールするためのpipの優れた代替手段を提供します。その分離された環境は、データサイエンスや機械学習の取り組みに特に適しています。詳細については、AnacondaのUltralytics Conda パッケージを参照し、GitHub のパッケージ更新のためのUltralytics feedstock リポジトリをチェックしてください。

コンダのレシピ ダウンロード コンダバージョン コンダ・プラットフォーム

何を学ぶか

  • Conda環境のセットアップ
  • Conda 経由でUltralytics をインストールする
  • お使いの環境でUltralytics を初期化する
  • Ultralytics DockerイメージをCondaで使う

前提条件

  • お使いのシステムに Anaconda または Miniconda がインストールされているはずです。インストールされていない場合は、AnacondaまたはMiniconda からダウンロードしてインストールしてください。

Conda環境のセットアップ

まず、新しいConda環境を作りましょう。ターミナルを開き、以下のコマンドを実行する:

conda create --name ultralytics-env python=3.8 -y

新しい環境をアクティブにする:

conda activate ultralytics-env

インストールUltralytics

conda-forgeチャンネルからUltralytics パッケージをインストールできます。以下のコマンドを実行してください:

conda install -c conda-forge ultralytics

CUDA環境について

CUDA対応環境で作業する場合は、次のものをインストールするのが良い方法だ。 ultralytics, pytorchそして pytorch-cuda あらゆる対立を解決するために協力する:

conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8 ultralytics

使用Ultralytics

Ultralytics をインストールすれば、オブジェクト検出やインスタンスのセグメンテーションなど、そのロバストな機能を使い始めることができる。例えば、画像を予測するには、次のように実行します:

from ultralytics import YOLO

model = YOLO('yolov8n.pt')  # initialize model
results = model('path/to/image.jpg')  # perform inference
results.show()  # display results

Ultralytics Conda Dockerイメージ

Dockerを使いたい場合は、Ultralytics 、Conda環境が含まれたDockerイメージを提供している。これらのイメージはDockerHubから引き出すことができる。

最新のUltralytics :

# Set image name as a variable
t=ultralytics/ultralytics:latest-conda

# Pull the latest Ultralytics image from Docker Hub
sudo docker pull $t

イメージを実行する:

# Run the Ultralytics image in a container with GPU support
sudo docker run -it --ipc=host --gpus all $t  # all GPUs
sudo docker run -it --ipc=host --gpus '"device=2,3"' $t  # specify GPUs

確かに、以下のセクションをCondaガイドに含めることで、以下を使用したインストールの高速化についてユーザーに知らせることができます。 libmamba:


Libmambaによるインストールの高速化

もしあなたが パッケージインストールのスピードアップ を使うことができます。 libmamba高速で、クロスプラットフォームで、依存関係を意識したパッケージマネージャーであり、Condaのデフォルトの代替ソルバーとして機能する。

Libmamba を有効にする方法

有効にする libmamba をCondaのソルバーとして使用するには、以下の手順を実行します:

  1. まず conda-libmamba-solver パッケージを使用します。Condaのバージョンが4.11以上であれば、これはスキップできます。 libmamba がデフォルトで含まれている。

    conda install conda-libmamba-solver
    
  2. 次に、Conda が libmamba をソルバーとして使用する:

    conda config --set solver libmamba
    

これで終わりです!これでCondaのインストールは libmamba をソルバーとして使用することで、パッケージのインストール処理が速くなるはずだ。


おめでとうございます!あなたはConda環境のセットアップに成功し、Ultralytics パッケージをインストールしました。より高度なチュートリアルや例については、Ultralytics のドキュメントを参照してください。



作成日:2023-11-12 更新日:2023-11-16
作成者:glenn-jocher(2)

コメント