A Practical Guide for Defining Your Computer Vision Project
ã¯ããã«
ã³ã³ãã¥ãŒã¿ããžã§ã³ãããžã§ã¯ãã®æåã®ã¹ãããã¯ãäœãéæãããããå®çŸ©ããããšã§ããããŒã¿åéããã¢ãã«ã®å±éãŸã§ãæåããæ確ãªããŒãããããæã€ããšãéèŠã§ãã
ã³ã³ãã¥ãŒã¿ããžã§ã³ãããžã§ã¯ãã®åºæ¬ãç°¡åã«åŸ©ç¿ãããå Žåã¯ãã³ã³ãã¥ãŒã¿ããžã§ã³ãããžã§ã¯ãã®äž»èŠã¹ãããã«é¢ããã¬ã€ãããèªã¿ãã ãããããã»ã¹å šäœã®æŠèŠãããããããŸãããããŠããããžã§ã¯ãã®ç®æšãå ·äœçã«ã©ã®ããã«å®çŸ©ããçµã蟌ãããšãã§ããã®ããããã«æ»ã£ãŠããŠãã ããã
ã§ã¯ããããžã§ã¯ãã®åé¡æèµ·ãæ確ã«å®çŸ©ãããã®éçšã§äžãå¿ èŠã®ããéèŠãªæ±ºå®äºé ãæ¢ã£ãŠã¿ãŸãããã
æ確ãªåé¡æèµ·ã®å®çŸ©
ãããžã§ã¯ãã®æ確ãªç®æšãšç®çãèšå®ããããšã¯ãæãå¹æçãªãœãªã¥ãŒã·ã§ã³ãèŠã€ããããã®æåã®å€§ããªã¹ãããã§ãããããžã§ã¯ãã®åé¡ã¹ããŒãã¡ã³ããæ確ã«å®çŸ©ããæ¹æ³ãç解ããŸãããã
- æ žãšãªã課é¡ãç¹å®ããïŒã³ã³ãã¥ãŒã¿ã»ããžã§ã³ã»ãããžã§ã¯ãã解決ããããšããå ·äœçãªèª²é¡ãç¹å®ããã
- ç¯å²ã決ããïŒåé¡ã®å¢çãæ確ã«ããã
- ãšã³ããŠãŒã¶ãŒãšå©å®³é¢ä¿è ãèæ ®ããïŒãœãªã¥ãŒã·ã§ã³ã®åœ±é¿ãåãã人ç©ãç¹å®ããã
- ãããžã§ã¯ãã®èŠä»¶ãšå¶çŽãåæããïŒå©çšå¯èœãªãªãœãŒã¹ïŒæéãäºç®ã人å¡ïŒãè©äŸ¡ããæè¡çãŸãã¯èŠå¶äžã®å¶çŽãç¹å®ããã
ããžãã¹ã»ãããã¬ã ã»ã¹ããŒãã¡ã³ãã®äŸ
äŸãèŠãŠã¿ãŸãããã
é«ééè·¯ãèµ°ãè»ã®é床ãæšå®ããã³ã³ãã¥ãŒã¿ã»ããžã§ã³ã»ãããžã§ã¯ããèããŠã¿ãããæ žãšãªãåé¡ã¯ãçŸåšã®é床ç£èŠæ¹æ³ããæ代é ãã®ã¬ãŒããŒã·ã¹ãã ãšæäœæ¥ã«ããããã»ã¹ã®ããã«éå¹ççã§ããããšã©ãŒãçºçããããããšã§ããããã®ãããžã§ã¯ãã§ã¯ãåŸæ¥ã®é床æšå®ã·ã¹ãã ã«ä»£ãããªã¢ã«ã¿ã€ã ã³ã³ãã¥ãŒã¿ããžã§ã³ã·ã¹ãã ã®éçºãç®æããŸãã
Primary users include traffic management authorities and law enforcement, while secondary stakeholders are highway planners and the public benefiting from safer roads. Key requirements involve evaluating budget, time, and personnel, as well as addressing technical needs like high-resolution cameras and real-time data processing. Additionally, regulatory constraints on privacy and data security must be considered.
枬å®å¯èœãªç®æšã®èšå®
枬å®å¯èœãªç®æšãèšå®ããããšã¯ãã³ã³ãã¥ãŒã¿ããžã§ã³ãããžã§ã¯ããæåãããéµã§ããããããã®ç®æšã¯æ確ã§ãéæå¯èœã§ãæéä»ãã®ãã®ã§ãªããã°ãªããŸããã
äŸãã°ãé«ééè·¯ã§ã®è»éãæšå®ããã·ã¹ãã ãéçºããå Žåã次ã®ãããªæž¬å®å¯èœãªç®æšãèããããŸãïŒ
- To achieve at least 95% accuracy in speed detection within six months, using a dataset of 10,000 vehicle images.
- ã·ã¹ãã ã¯ã30ãã¬ãŒã /ç§ã®ãªã¢ã«ã¿ã€ã ã®ãããªãã£ãŒããæå°éã®é 延ã§åŠçã§ããªããã°ãªããªãã
å ·äœçã§å®éåå¯èœãªç®æšãèšå®ããããšã§ãé²æç¶æ³ãå¹æçã«è¿œè·¡ããæ¹åç¹ãç¹å®ãããããžã§ã¯ããè»éã«ä¹ãããã«ããããšãã§ããã
åé¡æèµ·ãšã³ã³ãã¥ãŒã¿ã»ããžã§ã³ã»ã¿ã¹ã¯ã®é¢ä¿
åé¡æã¯ãã©ã®ã³ã³ãã¥ãŒã¿ã»ããžã§ã³ã»ã¿ã¹ã¯ãããªãã®åé¡ã解決ã§ããããæŠå¿µåããã®ã«åœ¹ç«ã¡ãŸãã
äŸãã°ãé«ééè·¯ã«ãããè»äž¡é床ã®ç£èŠãåé¡ã§ããã°ãé¢é£ããã³ã³ãã¥ãŒã¿ããžã§ã³ã®ã¿ã¹ã¯ã¯ãªããžã§ã¯ã远跡ã§ããããªããžã§ã¯ã远跡ãé©ããŠããã®ã¯ãã·ã¹ãã ããããªãã£ãŒãå ã®åè»äž¡ãç¶ç¶çã«è¿œè·¡ã§ããããã§ãããããã¯é床ãæ£ç¢ºã«èšç®ããäžã§æ¥µããŠéèŠã§ããã
ç©äœæ€åºã®ãããªä»ã®ã¿ã¹ã¯ã¯ãç¶ç¶çãªäœçœ®ãåãã®æ å ±ãæäŸããªãããé©ããŠããŸãããé©åãªã³ã³ãã¥ãŒã¿ããžã§ã³ã¿ã¹ã¯ãç¹å®ããããã¢ãã«ã®éžæãããŒã¿ã»ããã®æºåãã¢ãã«ã®ãã¬ãŒãã³ã°ã¢ãããŒããªã©ããããžã§ã¯ãã®ããã€ãã®éèŠãªåŽé¢ãå°ããŸãã
ã©ã¡ããå ãïŒã¢ãã«ã®éžæãããŒã¿ã»ããã®æºåãã¢ãã«ãã¬ãŒãã³ã°ã®ã¢ãããŒãïŒ
ã¢ãã«ã®éžæãããŒã¿ã»ããã®æºåããã¬ãŒãã³ã°æ¹æ³ã®é åºã¯ããããžã§ã¯ãã®è©³çŽ°ã«ãã£ãŠç°ãªããŸãã以äžã¯ãããã決ããããã®ãã³ãã§ãïŒ
-
åé¡ã®æ確ãªç解ïŒåé¡ãšç®çãæ確ã«å®çŸ©ãããŠããå Žåã¯ãã¢ãã«ã®éžæããå§ããã次ã«ãããŒã¿ã»ãããæºåããã¢ãã«ã®èŠä»¶ã«åºã¥ããŠãã¬ãŒãã³ã°æ¹æ³ã決å®ããŸãã
- äŸè»éãæšå®ãã亀éç£èŠã·ã¹ãã ã®ã¢ãã«ãéžæããããšããå§ããããªããžã§ã¯ã远跡ã¢ãã«ãéžæããé«ééè·¯ã®ãããªãåéãã泚éãä»ãããªã¢ã«ã¿ã€ã ãããªåŠçã®æè¡ã§ã¢ãã«ãèšç·Žããã
-
ãŠããŒã¯ãªããŒã¿ãéãããããŒã¿ïŒããªãã®ãããžã§ã¯ããããŠããŒã¯ãªããŒã¿ãéãããããŒã¿ã«ãã£ãŠå¶çŽãããŠããå ŽåãããŒã¿ã»ããã®æºåããå§ããŸããããäŸãã°ãçããå»çç»åã®ããŒã¿ã»ãããããå ŽåããŸãããŒã¿ã«æ³šéãä»ããŠæºåããã次ã«ããã®ãããªããŒã¿ã§åªããæ§èœãçºæ®ããã¢ãã«ãéžæããé©åãªãã¬ãŒãã³ã°æ¹æ³ãéžæããŸãã
- Example: Prepare the data first for a facial recognition system with a small dataset. Annotate it, then select a model that works well with limited data, such as a pre-trained model for transfer learning. Finally, decide on a training approach, including data augmentation, to expand the dataset.
-
å®éšã®å¿ èŠæ§ïŒå®éšãéèŠãªãããžã§ã¯ãã§ã¯ããã¬ãŒãã³ã°æ¹æ³ããå§ãããããã¯ç 究ãããžã§ã¯ãã§ããããããšã§ãæåã¯ããŸããŸãªãã¬ãŒãã³ã°ææ³ããã¹ããããææãªæ¹æ³ãç¹å®ããåŸãã¢ãã«ã®éžæãæŽç·Žããããã®çµæã«åºã¥ããŠããŒã¿ã»ãããæºåããã
- äŸè£œé äžã®æ¬ é¥ãæ€åºããããã®æ°ããææ³ãæ¢æ±ãããããžã§ã¯ãã§ã¯ããŸãå°ããªããŒã¿ãµãã»ããã§å®éšããããšããå§ãããææãªææ³ãèŠã€ãã£ããããã®çµæã«åãããã¢ãã«ãéžæããå æ¬çãªããŒã¿ã»ãããæºåããã
å°å瀟äŒã«ãããå ±éã®è«ç¹
次ã«ãã³ã³ãã¥ãŒã¿ã»ããžã§ã³ã®ã¿ã¹ã¯ãšãããžã§ã¯ãèšç»ã«é¢ããŠãã³ãã¥ããã£ã§ããè°è«ãããç¹ãããã€ãèŠãŠã¿ãŸãããã
ããŸããŸãªã³ã³ãã¥ãŒã¿ã»ããžã§ã³ã»ã¿ã¹ã¯ãšã¯ïŒ
The most popular computer vision tasks include image classification, object detection, and image segmentation.
For a detailed explanation of various tasks, please take a look at the Ultralytics Docs page on YOLO11 Tasks.
äºåèšç·Žãããã¢ãã«ã¯ãã«ã¹ã¿ã èšç·Žåã«ç¥ã£ãŠããã¯ã©ã¹ãèšæ¶ã§ãããïŒ
ããããäºåã«èšç·Žãããã¢ãã«ã¯ãäŒçµ±çãªæå³ã§ã®ã¯ã©ã¹ããèšæ¶ãããŠããããã§ã¯ãããŸãããèšå€§ãªããŒã¿ã»ãããããã¿ãŒã³ãåŠç¿ããã«ã¹ã¿ã ãã¬ãŒãã³ã°ïŒãã¡ã€ã³ãã¥ãŒãã³ã°ïŒã®éã«ããããã®ãã¿ãŒã³ãç¹å®ã®ã¿ã¹ã¯çšã«èª¿æŽãããã¢ãã«ã®å®¹éã«ã¯éãããããæ°ããæ å ±ã«éäžããããšã§ä»¥åã®åŠç¿ãäžæžããããããšãããã
ã¢ãã«ãäºåã«ãã¬ãŒãã³ã°ãããã¯ã©ã¹ã䜿çšããå Žåãå®çšçãªã¢ãããŒãã¯ãå ã®ããã©ãŒãã³ã¹ãä¿æããã¢ãã«ãšãç¹å®ã®ã¿ã¹ã¯ã«åãããŠåŸ®èª¿æŽãããã¢ãã«ãšãã 2 ã€ã®ã¢ãã«ã䜿çšããããšã§ããããã«ãããäž¡æ¹ã®ã¢ãã«ã®åºåãçµã¿åãããããšãã§ããŸããã¬ã€ã€ãŒã®ããªãŒãºãäºåãã¬ãŒãã³ã°æžã¿ã¢ãã«ãç¹åŸŽæœåºåšãšããŠäœ¿çšãããã¿ã¹ã¯åºæã®åå²ãªã©ãä»ã®ãªãã·ã§ã³ããããŸããããããã¯ããè€éãªãœãªã¥ãŒã·ã§ã³ã§ãããããå€ãã®å°éç¥èãå¿ èŠã§ãã
å±éãªãã·ã§ã³ã¯ã³ã³ãã¥ãŒã¿ã»ããžã§ã³ã»ãããžã§ã¯ãã«ã©ã圱é¿ãããïŒ
ã¢ãã«ã®å±éãªãã·ã§ã³ã¯ãã³ã³ãã¥ãŒã¿ããžã§ã³ãããžã§ã¯ãã®ããã©ãŒãã³ã¹ã«æ±ºå®çãªåœ±é¿ãäžããŸããäŸãã°ãå±éç°å¢ã¯ã¢ãã«ã®èšç®è² è·ãåŠçããªããã°ãªããŸããã以äžã¯ãã®å®äŸã§ãïŒ
- ãšããžããã€ã¹ïŒã¹ããŒããã©ã³ãIoTããã€ã¹ã®ãããªãšããžããã€ã¹ã«å±éããã«ã¯ãèšç®ãªãœãŒã¹ãéãããŠããããã軜éãªã¢ãã«ãå¿ èŠãšãªããäŸãã°ãTensorFlow LiteãONNX Runtime ãªã©ããã®ãããªç°å¢ã«æé©åããããã¯ãããžããããŸãã
- ã¯ã©ãŠããµãŒããŒïŒã¯ã©ãŠãã®ãããã€ã¡ã³ãã§ã¯ãããè€éãªã¢ãã«ãããã倧ããªèšç®èŠæ±ãæ±ãããšãã§ãããAWSãGoogle CloudãAzureãªã©ã®ã¯ã©ãŠããã©ãããã©ãŒã ã¯ããããžã§ã¯ãã®ããŒãºã«å¿ããŠæ¡åŒµã§ããå ç¢ãªããŒããŠã§ã¢ãªãã·ã§ã³ãæäŸããŸãã
- On-Premise Servers: For scenarios requiring high data privacy and security, deploying on-premise might be necessary. This involves significant upfront hardware investment but allows full control over the data and infrastructure.
- ãã€ããªãããœãªã¥ãŒã·ã§ã³ïŒãããžã§ã¯ãã«ãã£ãŠã¯ãäžéšã®åŠçããšããžã§è¡ããããè€éãªåæãã¯ã©ãŠãã«ãªãããŒããããšãããã€ããªããã»ã¢ãããŒããæå¹ãªå Žåããããããã«ãããããã©ãŒãã³ã¹ããŒãºãšã³ã¹ããã¬ã€ãã³ã·ãŒã®ãã©ã³ã¹ãåãããšãã§ããã
åå±éãªãã·ã§ã³ã¯ãç°ãªãå©ç¹ãšèª²é¡ãæäŸããéžæã¯ãããã©ãŒãã³ã¹ãã³ã¹ããã»ãã¥ãªãã£ãªã©ã®ç¹å®ã®ãããžã§ã¯ãã®èŠä»¶ã«äŸåããŸãã
å°å瀟äŒãšã®ã€ãªãã
ä»ã®ã³ã³ãã¥ãŒã¿ã»ããžã§ã³æ奜家ãšã€ãªããããšã¯ããµããŒãã解決çãæ°ããã¢ã€ãã¢ãæäŸããããšã§ãããªãã®ãããžã§ã¯ãã«éåžžã«åœ¹ç«ã¡ãŸããããã§ã¯ãåŠç¿ããã©ãã«ã·ã¥ãŒãã£ã³ã°ããããã¯ãŒã¯ãæ§ç¯ããããã®çŽ æŽãããæ¹æ³ãã玹ä»ããŸãïŒ
ã³ãã¥ããã£ã»ãµããŒãã»ãã£ã³ãã«
- GitHub Issues: Head over to the YOLO11 GitHub repository. You can use the Issues tab to raise questions, report bugs, and suggest features. The community and maintainers can assist with specific problems you encounter.
- Ultralytics DiscordãµãŒããŒïŒ Ultralytics Discord ãµãŒããŒã®äžå¡ã«ãªããŸãããã仲éã®ãŠãŒã¶ãŒãéçºè ãšã€ãªããããµããŒããæ±ããç¥èã亀æããã¢ã€ãã¢ãè°è«ããŸãããã
å æ¬çãªã¬ã€ããšææž
- Ultralytics YOLO11 Documentation: Explore the official YOLO11 documentation for in-depth guides and valuable tips on various computer vision tasks and projects.
çµè«
æ確ãªåé¡ãå®çŸ©ãã枬å®å¯èœãªç®æšãèšå®ããããšã¯ãã³ã³ãã¥ãŒã¿ãŒ ããžã§ã³ ãããžã§ã¯ããæåãããããã®éµã§ããç§ãã¡ã¯ãæåããæ確ã§çŠç¹ãçµãããšã®éèŠæ§ã匷調ããŠããŸãããå ·äœçãªç®æšãæã€ããšã§ãèŠèœãšããé¿ããããšãã§ããŸãããŸããGitHub ã Discord ãªã©ã®ãã©ãããã©ãŒã ãéããŠã³ãã¥ããã£å ã®ä»ã®ãŠãŒã¶ãŒãšã€ãªããç¶ããããšã¯ãåŠç¿ããŠææ°ã®ç¶æ ã«ä¿ã€ããã«éèŠã§ããèŠããã«ãåªããèšç»ãšã³ãã¥ããã£ãšã®é¢ããã¯ãã³ã³ãã¥ãŒã¿ãŒ ããžã§ã³ ãããžã§ã¯ããæåãããããã®å€§ããªéšåãå ããŠããŸãã
ããããã質å
Ultralytics ã³ã³ãã¥ãŒã¿ããžã§ã³ãããžã§ã¯ãã®æ確ãªåé¡æèµ·ãå®çŸ©ããã«ã¯ã©ãããã°ããã§ããããïŒ
Ultralytics ã³ã³ãã¥ãŒã¿ããžã§ã³ãããžã§ã¯ãã®æ確ãªåé¡æèµ·ãå®çŸ©ããã«ã¯ã以äžã®ã¹ãããã«åŸããŸãïŒ
- æ žãšãªã課é¡ãç¹å®ããïŒãããžã§ã¯ãã解決ããããšããå ·äœçãªèª²é¡ãç¹å®ããã
- ç¯å²ã決ããïŒåé¡ã®å¢çãæ確ã«ããã
- ãšã³ããŠãŒã¶ãŒãšå©å®³é¢ä¿è ãèæ ®ããïŒãœãªã¥ãŒã·ã§ã³ã®åœ±é¿ãåãã人ç©ãç¹å®ããã
- ãããžã§ã¯ãã®èŠä»¶ãšå¶çŽãåæããïŒå©çšå¯èœãªãªãœãŒã¹ãšæè¡çãŸãã¯èŠå¶äžã®å¶çŽãè©äŸ¡ããã
æ確ã«å®çŸ©ãããåé¡æèµ·ãè¡ãããšã§ããããžã§ã¯ãã®çŠç¹ã¯çµãããç®çã«æ²¿ã£ããã®ãšãªããŸãã詳ããã¯ãå®è·µã¬ã€ããã芧ãã ããã
Why should I use Ultralytics YOLO11 for speed estimation in my computer vision project?
Ultralytics YOLO11 is ideal for speed estimation because of its real-time object tracking capabilities, high accuracy, and robust performance in detecting and monitoring vehicle speeds. It overcomes inefficiencies and inaccuracies of traditional radar systems by leveraging cutting-edge computer vision technology. Check out our blog on speed estimation using YOLO11 for more insights and practical examples.
How do I set effective measurable objectives for my computer vision project with Ultralytics YOLO11?
SMARTåºæºãçšããŠãå¹æçã§æž¬å®å¯èœãªç®æšãèšå®ããïŒ
- å ·äœçã«ïŒæ確ã§è©³çŽ°ãªç®æšãå®ããã
- 枬å®å¯èœã§ããããšïŒç®æšãå®éåå¯èœã§ããããšã確èªããã
- éæå¯èœãªããšïŒèªåã®èœåã®ç¯å²å ã§çŸå®çãªç®æšãèšå®ããã
- é¢é£æ§ãããïŒç®æšããããžã§ã¯ãå šäœã®ç®æšã«åãããã
- æéã決ããïŒåç®æšã«æéãèšå®ããã
äŸãã°ã"1äžå°ã®è»äž¡ç»åããŒã¿ã»ããã䜿çšããŠã6ã¶æ以å ã«é床æ€åºã§95ïŒ ã®ç²ŸåºŠãéæãã"ããã®ã¢ãããŒãã¯ãé²æç¶æ³ã远跡ããæ¹åãã¹ãé åãç¹å®ããã®ã«åœ¹ç«ã¡ãŸãã枬å®å¯èœãªç®æšã®èšå®ã«ã€ããŠãã£ãšèªãã
å±éãªãã·ã§ã³ã¯Ultralytics YOLO ã¢ãã«ã®ããã©ãŒãã³ã¹ã«ã©ã®ãããªåœ±é¿ãäžããŸããïŒ
å±éãªãã·ã§ã³ã¯ãUltralytics YOLO ã¢ãã«ã®ããã©ãŒãã³ã¹ã«æ±ºå®çãªåœ±é¿ãäžããŸãã以äžã«äž»ãªãªãã·ã§ã³ã瀺ããŸãïŒ
- Edge Devices: Use lightweight models like TensorFlow Lite or ONNX Runtime for deployment on devices with limited resources.
- ã¯ã©ãŠããµãŒããŒïŒAWSãGoogle CloudãAzureãªã©ã®å ç¢ãªã¯ã©ãŠããã©ãããã©ãŒã ã掻çšããè€éãªã¢ãã«ãæ±ãã
- ãªã³ãã¬ãã¹ã»ãµãŒããŒïŒé«ãããŒã¿ãã©ã€ãã·ãŒãšã»ãã¥ãªãã£ã®ããŒãºã«ããããªã³ãã¬ãã¹ã§ã®å±éãå¿ èŠã«ãªãå ŽåããããŸãã
- ãã€ããªãããœãªã¥ãŒã·ã§ã³ïŒãšããžã¢ãããŒããšã¯ã©ãŠãã¢ãããŒããçµã¿åãããããšã§ããã©ã³ã¹ã®åããããã©ãŒãã³ã¹ãšã³ã¹ãå¹çãå®çŸããŸãã
詳ããã¯ãã¢ãã«å±éãªãã·ã§ã³ã®è©³çŽ°ã¬ã€ããã芧ãã ããã
Ultralytics ãã³ã³ãã¥ãŒã¿ããžã§ã³ãããžã§ã¯ãã®åé¡å®çŸ©ã§æãäžè¬çãªèª²é¡ã¯äœã§ããïŒ
äžè¬çãªèª²é¡ã¯ä»¥äžã®éãïŒ
- æŒ ç¶ãšããããããã¯åºãããåé¡æèµ·ã
- éçŸå®çãªç®æšã
- å©å®³é¢ä¿è ã®é£æºäžè¶³ã
- æè¡çå¶çŽã«å¯Ÿããç解ãäžååã
- ããŒã¿èŠä»¶ã®éå°è©äŸ¡ã
培åºçãªåæ調æ»ãå©å®³é¢ä¿è ãšã®æ確ãªã³ãã¥ãã±ãŒã·ã§ã³ãåé¡æèµ·ãšç®çã®å埩çãªæ¹è¯ãéããŠããããã®èª²é¡ã«å¯ŸåŠããŠãã ããããããã®èª²é¡ã«ã€ããŠã¯ãã³ã³ãã¥ãŒã¿ã»ããžã§ã³ã»ãããžã§ã¯ãã»ã¬ã€ããã芧ãã ããã