YOLO ããããåé¡ã®ãã©ãã«ã·ã¥ãŒãã£ã³ã°
ã¯ããã«
This guide serves as a comprehensive aid for troubleshooting common issues encountered while working with YOLO11 on your Ultralytics projects. Navigating through these issues can be a breeze with the right guidance, ensuring your projects remain on track without unnecessary delays.
èŠããã ïŒ Ultralytics YOLO11 Common Issues | Installation Errors, Model Training Issues
ããããåé¡
ã€ã³ã¹ããŒã«ãšã©ãŒ
ã€ã³ã¹ããŒã«ãšã©ãŒã¯ãäºææ§ã®ãªãããŒãžã§ã³ãäŸåé¢ä¿ã®æ¬ èœãäžé©åãªç°å¢èšå®ãªã©ãããŸããŸãªçç±ã§çºçããå¯èœæ§ããããŸãããŸãã以äžã®ããšã確èªããŠãã ããïŒ
-
æšå¥šãããŠããPython 3.8以éã䜿çšããŠããŸãã
-
Ensure that you have the correct version of PyTorch (1.8 or later) installed.
-
ã³ã³ããªã¯ããé¿ãããããä»®æ³ç°å¢ã®å©çšãæ€èšããã
-
å ¬åŒã®ã€ã³ã¹ããŒã«ã¬ã€ãã«åŸã£ãŠã¹ããããã€ã¹ãããã§ã€ã³ã¹ããŒã«ããŠãã ããã
ããã«ããŠãŒã¶ãŒãééããäžè¬çãªã€ã³ã¹ããŒã«ã®åé¡ãšãããããã®è§£æ±ºçãã玹ä»ããŸãïŒ
-
Import Errors or Dependency Issues - If you're getting errors during the import of YOLO11, or you're having issues related to dependencies, consider the following troubleshooting steps:
-
æ°èŠã€ã³ã¹ããŒã«ïŒæ°èŠã€ã³ã¹ããŒã«ããå§ããããšã§ãäºæãã¬åé¡ã解決ããããšããããŸããç¹ã«ãUltralytics ã®ãããªã©ã€ãã©ãªã§ã¯ãã¢ããããŒãã«ãã£ãŠãã¡ã€ã«ããªãŒæ§é ãæ©èœã«å€æŽãå ããããå¯èœæ§ããããŸãã
-
å®æçãªã¢ããããŒãïŒã©ã€ãã©ãªã®ææ°ããŒãžã§ã³ã䜿çšããŠããããšã確èªããŠãã ãããå€ãããŒãžã§ã³ã¯æè¿ã®ã¢ããããŒããšäºææ§ããªããã³ã³ããªã¯ããåé¡ãçºçããå¯èœæ§ããããŸãã
-
äŸåé¢ä¿ããã§ãã¯ããïŒãã¹ãŠã®å¿ èŠãªäŸåé¢ä¿ãæ£ããã€ã³ã¹ããŒã«ãããäºææ§ã®ããããŒãžã§ã³ã§ããããšã確èªããŸãã
-
å€æŽç¹ã®ç¢ºèªæåã«å€ãããŒãžã§ã³ãã¯ããŒã³ãŸãã¯ã€ã³ã¹ããŒã«ããå ŽåãéèŠãªã¢ããããŒããã©ã€ãã©ãªã®æ§é ãæ©èœã«åœ±é¿ãäžããå¯èœæ§ãããããšã«æ³šæããŠãã ãããäž»èŠãªå€æŽç¹ãç解ããããã«ãåžžã«å ¬åŒããã¥ã¡ã³ããå€æŽå±¥æŽãåç §ããŠãã ããã
-
ã©ã€ãã©ãªãšäŸåé¢ä¿ãåžžã«ææ°ã«ä¿ã€ããšã¯ãã¹ã ãŒãºã§ãšã©ãŒã®ãªããšã¯ã¹ããªãšã³ã¹ã®ããã«éåžžã«éèŠã§ããããšãå¿ããªãã§ãã ããã
-
-
Running YOLO11 on GPU - If you're having trouble running YOLO11 on GPU, consider the following troubleshooting steps:
-
CUDA äºææ§ãšã€ã³ã¹ããŒã«ã確èªãã:GPU ãCUDA ãšäºææ§ããããCUDA ãæ£ããã€ã³ã¹ããŒã«ãããŠããããšã確èªããŠãã ãããã䜿çšããŠãã ããã
nvidia-smi
ã³ãã³ãã䜿çšããŠãNVIDIA GPU ãšCUDA ããŒãžã§ã³ã®ã¹ããŒã¿ã¹ã確èªããŠãã ããã -
PyTorch ãšCUDA ã®çµ±åããã§ãã¯:PyTorch ãCUDA ãå©çšã§ããããã«ããã
import torch; print(torch.cuda.is_available())
ãPython 端æ«ã§å®è¡ããããã'True'ãè¿ãã°ãPyTorch ã¯CUDA ã䜿ãããã«èšå®ãããŠããã -
ç°å¢ã®èµ·åïŒå¿ èŠãªããã±ãŒãžããã¹ãŠã€ã³ã¹ããŒã«ãããŠããæ£ããç°å¢ã«ããããšã確èªããã
-
ããã±ãŒãžãæŽæ°ããŠãã ããïŒå€ãããã±ãŒãžã¯ããªãã®GPU ãšäºææ§ããªããããããŸãããåžžã«æŽæ°ããŠãã ããã
-
Program Configuration: Check if the program or code specifies GPU usage. In YOLO11, this might be in the settings or configuration.
-
ã¢ãã«ãã¬ãŒãã³ã°ã®åé¡
ãã®ã»ã¯ã·ã§ã³ã§ã¯ããã¬ãŒãã³ã°äžã«çŽé¢ããäžè¬çãªåé¡ãšãããããã®èª¬æãšè§£æ±ºçãåãäžããã
ã³ã³ãã£ã®ã¥ã¬ãŒã·ã§ã³èšå®ã®æ€èšŒ
åé¡:ã®ã³ã³ãã£ã®ã¥ã¬ãŒã·ã§ã³èšå®ãæ£ãããã©ããããããªãã .yaml
ãã¡ã€ã«ãã¢ãã«ãã¬ãŒãã³ã°äžã«æ£ããé©çšãããŠãããã©ããã確èªããã
ãœãªã¥ãŒã·ã§ã³:ã®ã³ã³ãã£ã®ã¥ã¬ãŒã·ã§ã³èšå®ã¯ .yaml
ãã¡ã€ã«ãé©çšããå¿
èŠãããã model.train()
é¢æ°ã䜿çšããŠãã ããããããã®èšå®ãæ£ããé©çšãããŠããããšã確èªããã«ã¯ã以äžã®æé ã«åŸã£ãŠãã ããïŒ
- ã®ãã¹ã確èªããŠãã ããã
.yaml
èšå®ãã¡ã€ã«ã¯æ£ããã - ãžã®ãã¹ãæž¡ããŠãã ããã
.yaml
ãã¡ã€ã«ãdata
ãåŒã³åºãéã®åŒæ°ã§ãããmodel.train()
以äžã®ããã«ïŒ
ãã«ãGPUã«ãããã¬ãŒãã³ã°ã®é«éå
課é¡ãã¬ãŒãã³ã°ã¯ã·ã³ã°ã«GPU ã§ã¯æéãããããããè€æ°ã®GPUã䜿çšããŠããã»ã¹ãé«éåãããã
Solution: Increasing the batch size can accelerate training, but it's essential to consider GPU memory capacity. To speed up training with multiple GPUs, follow these steps:
-
è€æ°ã®GPUãå©çšå¯èœã§ããããšã確èªããŠãã ããã
-
.yamlèšå®ãã¡ã€ã«ãä¿®æ£ããŠã䜿çšããGPUã®æ°ãæå®ããŸãïŒäŸïŒgpusïŒïŒ4.
-
ããããµã€ãºãé©å®å€§ããããŠãã¡ã¢ãªå¶éãè¶ ããããšãªãè€æ°ã®GPUããã«ã«æŽ»çšããã
-
è€æ°ã®GPUãå©çšããããã«ãã¬ãŒãã³ã°ã³ãã³ããä¿®æ£ããïŒ
# Adjust the batch size and other settings as needed to optimize training speed
model.train(data="/path/to/your/data.yaml", batch=32, multi_scale=True)
é£ç¶ã¢ãã¿ãªã³ã°ã»ãã©ã¡ãŒã¿ãŒ
åé¡ãã¬ãŒãã³ã°äžã«ãæ倱ãšã¯å¥ã«ãã©ã®ãã©ã¡ãŒã¿ãŒãç¶ç¶çã«ã¢ãã¿ãŒãã¹ãããç¥ãããã
解決çæ倱ã¯ç£èŠãã¹ãéèŠãªææšã§ãããã¢ãã«ã®ããã©ãŒãã³ã¹ãæé©åããããã«ã¯ãä»ã®ææšã远跡ããããšãäžå¯æ¬ ã§ãããã¬ãŒãã³ã°äžã«ã¢ãã¿ãŒãã¹ãäž»ãªææšã«ã¯ã以äžã®ãããªãã®ããããŸãïŒ
- 粟å¯
- ãªã³ãŒã«
- Mean Average Precision (mAP)
ãããã®ã¡ããªã¯ã¹ã«ã¯ããã¬ãŒãã³ã°ãã°ããã¢ã¯ã»ã¹ããããTensorBoardãwandbã®ãããªããŒã«ã䜿ã£ãŠå¯èŠåããããšãã§ããŸãããããã®ã¡ããªã¯ã¹ã«åºã¥ããŠæ©æåæ¢ãå®æœããããšã§ãããè¯ãçµæãåŸãããšãã§ããŸãã
ãã¬ãŒãã³ã°ã®é²æã远跡ããããŒã«
åé¡ãã¬ãŒãã³ã°ã®é²æç¶æ³ã远跡ããããã®æšå¥šããŒã«ãæ¢ããŠããã
解決çãã¬ãŒãã³ã°ã®é²æç¶æ³ã远跡ããèŠèŠåããã«ã¯ã以äžã®ããŒã«ã®äœ¿çšãæ€èšããããšãã§ããŸãïŒ
- TensorBoard: TensorBoard is a popular choice for visualizing training metrics, including loss, accuracy, and more. You can integrate it with your YOLO11 training process.
- Comet:Comet ã¯ãå®éšã®è¿œè·¡ãšæ¯èŒã®ããã®åºç¯ãªããŒã«ããããæäŸããŸããã¡ããªã¯ã¹ããã€ããŒãã©ã¡ãŒã¿ããããŠã¢ãã«ã®éã¿ãŸã§è¿œè·¡ããããšãã§ããŸããYOLO ã¢ãã«ãšã®çµ±åãç°¡åã§ãå®éšãµã€ã¯ã«ã®å®å šãªæŠèŠãæäŸããŸãã
- Ultralytics HUB:Ultralytics HUBã¯ãYOLO ã¢ãã«ã®ãã©ããã³ã°ã«ç¹åããç°å¢ãæäŸããã¡ããªã¯ã¹ãããŒã¿ã»ããã®ç®¡çãããã«ã¯ããŒã ãšã®ã³ã©ãã¬ãŒã·ã§ã³ãã¯ã³ã¹ãããã§è¡ãããã©ãããã©ãŒã ãæäŸãããYOLO ã«ç¹åããŠãããããããã«ã¹ã¿ãã€ãºããã远跡ãªãã·ã§ã³ãæäŸããã
ãããã®ããŒã«ã«ã¯ããããå©ç¹ãããããããããžã§ã¯ãã®å ·äœçãªããŒãºãèæ ®ããŠéžæãããšããã ããã
ãã¬ãŒãã³ã°ãè¡ãããŠãããã©ããã確èªããæ¹æ³GPU
åé¡ãã¬ãŒãã³ã°ãã°ã®'device'ã®å€ã'null'ã§ããããã¬ãŒãã³ã°ãGPU ã
解決æ¹æ³device'å€ã'null'ã§ããããšã¯ãéåžžããã¬ãŒãã³ã°ã»ããã»ã¹ãèªåçã«å©çšå¯èœãªGPU ã䜿çšããããã«èšå®ãããŠããããšãæå³ããŸãïŒããã¯ããã©ã«ãã®åäœã§ãïŒãç¹å®ã®GPU ã§ãã¬ãŒãã³ã°ãè¡ãããããã«ããã«ã¯ã.yaml æ§æãã¡ã€ã«ã§ã'device' å€ãGPU ã®ã€ã³ããã¯ã¹ïŒäŸãã°ãæåã®GPU ã®å Žå㯠'0' ïŒã«æåã§èšå®ããŸãïŒ
ããã«ããããã¬ãŒãã³ã°ããã»ã¹ãæå®ãããGPU ã«æ瀺çã«å²ãåœãŠããããCPU ã§ãã¬ãŒãã³ã°ãããå Žåã¯ã'device' ã 'cpu' ã«èšå®ããã
ãã¬ãŒãã³ã°ã®é²æç¶æ³ãå¹æçã«ã¢ãã¿ãŒããããã«ããrunsããã©ã«ãã§ãã°ãææšã確èªããŸãããã
å¹æçãªã¢ãã«ãã¬ãŒãã³ã°ã®ããã®äž»ãªèæ ®äºé
ã¢ãã«ãã¬ãŒãã³ã°ã«é¢ããåé¡ã«çŽé¢ããŠããå Žåãçæãã¹ãç¹ãããã€ãæããŠã¿ããã
ããŒã¿ã»ããã»ãã©ãŒããããšã©ãã«
-
Importance: The foundation of any machine learning model lies in the quality and format of the data it is trained on.
-
æšå¥šã«ã¹ã¿ã ã»ããŒã¿ã»ãããšããã«é¢é£ããã©ãã«ããæåŸ ããããã©ãŒãããã«åŸã£ãŠããããšã確èªããŠãã ãããã¢ãããŒã·ã§ã³ãæ£ç¢ºã§é«å質ã§ããããšã確èªããããšã¯æ¥µããŠéèŠã§ããäžæ£ç¢ºãªã¢ãããŒã·ã§ã³ãå£æªãªã¢ãããŒã·ã§ã³ã¯ãã¢ãã«ã®åŠç¿ããã»ã¹ãçãããäºæž¬äžå¯èœãªçµæãæãå¯èœæ§ããããŸãã
ã¢ãã«ã®åæ
-
Importance: Achieving model convergence ensures that the model has sufficiently learned from the training data.
-
Recommendation: When training a model 'from scratch', it's vital to ensure that the model reaches a satisfactory level of convergence. This might necessitate a longer training duration, with more epochs, compared to when you're fine-tuning an existing model.
Learning Rate and Batch Size
-
éèŠã§ããïŒãããã®ãã€ããŒãã©ã¡ãŒã¿ã¯ãåŠç¿äžã«ã¢ãã«ãã©ã®ããã«éã¿ãæŽæ°ãããã決å®ããäžã§æ¥µããŠéèŠãªåœ¹å²ãæããã
-
æšå¥šéžæããåŠç¿ã¬ãŒããšããããµã€ãºãç¹å®ã®ããŒã¿ã»ããã«æé©ãã©ãããå®æçã«è©äŸ¡ãããããŒã¿ã»ããã®ç¹æ§ãšèª¿åããŠããªããã©ã¡ãŒã¿ã¯ãã¢ãã«ã®ããã©ãŒãã³ã¹ã劚ããå¯èœæ§ãããã
ã¯ã©ã¹ååž
-
éèŠæ§ããŒã¿ã»ããå ã®ã¯ã©ã¹ã®ååžã¯ãã¢ãã«ã®äºæž¬åŸåã«åœ±é¿ãäžããŸãã
-
æšå¥šããŒã¿ã»ããå ã®ã¯ã©ã¹ååžãå®æçã«è©äŸ¡ããŸããããã¯ã©ã¹ã®ãã©ã³ã¹ãæªããšãã¢ãã«ãããåªå¢ãªã¯ã©ã¹ã«ãã€ã¢ã¹ããããå±éºæ§ããããŸãããã®ãã€ã¢ã¹ã¯æ··åè¡åã§æããã«ãªãããšããããããã§ã¯ã¢ãã«ãå€æ°æŽŸã¯ã©ã¹ãåªå¢ã«äºæž¬ãããããããŸããã
äºåèšç·Žãããéã¿ãšã®ã¯ãã¹ãã§ãã¯
-
éèŠæ§äºååŠç¿ãããéã¿ã掻çšããããšã§ãç¹ã«ããŒã¿ãéãããŠããå Žåã«ãã¢ãã«ãã¬ãŒãã³ã°ã®ç¢ºããªåºçºç¹ãæäŸããããšãã§ããã
-
æšå¥šèšºæã®ã¹ããããšããŠãåãããŒã¿ã䜿ã£ãŠã¢ãã«ããã¬ãŒãã³ã°ããŸãããäºåã«ãã¬ãŒãã³ã°ããéã¿ã§åæåããããšãæ€èšããŠãã ããããã®ã¢ãããŒãã§æ··åè¡åãããŸã圢æãããå ŽåãããŒããããã¢ãã«ã¯ãããªããã¬ãŒãã³ã°ã調æŽãå¿ èŠãããããªãããšã瀺åããŸãã
ã¢ãã«äºæž¬ã«é¢ããåé¡
ãã®ã»ã¯ã·ã§ã³ã§ã¯ãã¢ãã«ã®äºæž¬äžã«çŽé¢ããäžè¬çãªåé¡ãåãäžããã
Getting Bounding Box Predictions With Your YOLO11 Custom Model
Issue: When running predictions with a custom YOLO11 model, there are challenges with the format and visualization of the bounding box coordinates.
解決ç
- Coordinate Format: YOLO11 provides bounding box coordinates in absolute pixel values. To convert these to relative coordinates (ranging from 0 to 1), you need to divide by the image dimensions. For example, let's say your image size is 640x640. Then you would do the following:
# Convert absolute coordinates to relative coordinates
x1 = x1 / 640 # Divide x-coordinates by image width
x2 = x2 / 640
y1 = y1 / 640 # Divide y-coordinates by image height
y2 = y2 / 640
- ãã¡ã€ã«åïŒãã¡ã€ã«åïŒäºæž¬ããŠããç»åã®ãã¡ã€ã«åãååŸããã«ã¯ãäºæž¬ã«ãŒãå ã®çµæãªããžã§ã¯ãããçŽæ¥ç»åãã¡ã€ã«ãã¹ã«ã¢ã¯ã»ã¹ããŸãã
Filtering Objects in YOLO11 Predictions
Issue: Facing issues with how to filter and display only specific objects in the prediction results when running YOLO11 using the Ultralytics library.
解決çç¹å®ã®ã¯ã©ã¹ãæ€åºããã«ã¯ãclass åŒæ°ã䜿çšããŠãåºåã«å«ãããã¯ã©ã¹ãæå®ããŸããäŸãã°ãèªåè»ã ããæ€åºããå ŽåïŒ'cars'ã¯ã¯ã©ã¹ã»ã€ã³ããã¯ã¹2ãæã£ãŠãããšä»®å®ïŒïŒ
Understanding Precision Metrics in YOLO11
Issue: Confusion regarding the difference between box precision, mask precision, and confusion matrix precision in YOLO11.
Solution: Box precision measures the accuracy of predicted bounding boxes compared to the actual ground truth boxes using IoU (Intersection over Union) as the metric. Mask precision assesses the agreement between predicted segmentation masks and ground truth masks in pixel-wise object classification. Confusion matrix precision, on the other hand, focuses on overall classification accuracy across all classes and does not consider the geometric accuracy of predictions. It's important to note that a bounding box can be geometrically accurate (true positive) even if the class prediction is wrong, leading to differences between box precision and confusion matrix precision. These metrics evaluate distinct aspects of a model's performance, reflecting the need for different evaluation metrics in various tasks.
Extracting Object Dimensions in YOLO11
Issue: Difficulty in retrieving the length and height of detected objects in YOLO11, especially when multiple objects are detected in an image.
Solution: To retrieve the bounding box dimensions, first use the Ultralytics YOLO11 model to predict objects in an image. Then, extract the width and height information of bounding boxes from the prediction results.
from ultralytics import YOLO
# Load a pre-trained YOLO11 model
model = YOLO("yolo11n.pt")
# Specify the source image
source = "https://ultralytics.com/images/bus.jpg"
# Make predictions
results = model.predict(source, save=True, imgsz=320, conf=0.5)
# Extract bounding box dimensions
boxes = results[0].boxes.xywh.cpu()
for box in boxes:
x, y, w, h = box
print(f"Width of Box: {w}, Height of Box: {h}")
é åã®èª²é¡
GPU é åã®åé¡
åé¡ãã«ãGPU ç°å¢ã§ã¢ãã«ããããã€ãããšãäºæããªãã¡ã¢ãªäœ¿çšãGPUéã§äžè²«æ§ã®ãªãçµæãªã©ãäºæããªãåäœãçºçããããšããããŸãã
解決çããã©ã«ãã®GPU åæåããã§ãã¯ããŠãã ãããPyTorch ã®ãããªããã€ãã®ãã¬ãŒã ã¯ãŒã¯ã¯ãæå®ããã GPU ã«ç§»è¡ããåã«ãããã©ã«ãã®GPU ã§CUDA æäœãåæåãããããããŸãããäºæããªãããã©ã«ãã®åæåãåé¿ããã«ã¯ããããã€ãšäºæž¬äžã«GPU ãçŽæ¥æå®ããŸãããã®åŸãGPU å©çšçãšã¡ã¢ãªäœ¿çšéãç£èŠããããŒã«ã䜿çšãããªã¢ã«ã¿ã€ã ã§ç°åžžãç¹å®ããŸãããŸãããã¬ãŒã ã¯ãŒã¯ãŸãã¯ã©ã€ãã©ãªã®ææ°ããŒãžã§ã³ã䜿çšããŠããããšã確èªããŸãã
ã¢ãã«å€æ/ãšã¯ã¹ããŒãã®åé¡
åé¡æ©æ¢°åŠç¿ã¢ãã«ãç°ãªããã©ãŒãããããã©ãããã©ãŒã ã«å€æãŸãã¯ãšã¯ã¹ããŒãããéçšã§ããŠãŒã¶ãŒããšã©ãŒãäºæãã¬åäœã«ééããå¯èœæ§ãããã
解決ç
-
äºææ§ã®ãã§ãã¯ïŒã©ã€ãã©ãªãšãã¬ãŒã ã¯ãŒã¯ã®ããŒãžã§ã³ãäºãã«äºææ§ãããããšã確èªããŠãã ãããããŒãžã§ã³ãäžäžèŽã®å Žåãå€ææã«äºæãã¬ãšã©ãŒãçºçããå¯èœæ§ããããŸãã
-
ç°å¢ã®ãªã»ããïŒJupyterãColabã®ãããªã€ã³ã¿ã©ã¯ãã£ãç°å¢ã䜿çšããŠããå Žåãå€§å¹ ãªå€æŽãã€ã³ã¹ããŒã«ãè¡ã£ãåŸã¯ãç°å¢ã®åèµ·åãæ€èšããŠãã ãããååºçºããããšã§ãæ ¹æ¬çãªåé¡ã解決ããããšããããŸãã
-
å ¬åŒããã¥ã¡ã³ãïŒå€æã«äœ¿çšããããŒã«ãã©ã€ãã©ãªã®å ¬åŒããã¥ã¡ã³ããåžžã«åç §ããŠãã ãããå€ãã®å Žåãã¢ãã«ã®ãšã¯ã¹ããŒãã«é¢ããå ·äœçãªã¬ã€ãã©ã€ã³ããã¹ããã©ã¯ãã£ã¹ãèšèŒãããŠããŸãã
-
ã³ãã¥ããã£ã»ãµããŒãïŒã©ã€ãã©ãªããã¬ãŒã ã¯ãŒã¯ã®å ¬åŒãªããžããªã§ãä»ã®ãŠãŒã¶ãŒããåæ§ã®åé¡ãå ±åãããŠããªãã確èªããŠãã ããããã£ã¹ã«ãã·ã§ã³ã®ã¹ã¬ããã§ãã¡ã³ãããã³ãã¥ããã£ã解決çãåé¿çãæäŸããŠãããããããŸããã
-
å®æçã«ã¢ããããŒãããïŒããŒã«ãã©ã€ãã©ãªã®ææ°ããŒãžã§ã³ã䜿çšããŠããããšã確èªããŠãã ãããéçºè ã¯ãæ¢ç¥ã®ãã°ãä¿®æ£ããããæ©èœãæ¹åãããããã¢ããããŒããé »ç¹ã«ãªãªãŒã¹ããŠããŸãã
-
段éçã«ãã¹ãããïŒå®å šãªå€æãè¡ãåã«ãå°èŠæš¡ãªã¢ãã«ãããŒã¿ã»ããã§ããã»ã¹ããã¹ãããæœåšçãªåé¡ãæ©æã«ç¹å®ããã
ã³ãã¥ããã£ãšãµããŒã
Engaging with a community of like-minded individuals can significantly enhance your experience and success in working with YOLO11. Below are some channels and resources you may find helpful.
ãã«ããåŸãããã®ãã©ãŒã©ã ãšãã£ã³ãã«
GitHub Issues: The YOLO11 repository on GitHub has an Issues tab where you can ask questions, report bugs, and suggest new features. The community and maintainers are active here, and it's a great place to get help with specific problems.
Ultralytics DiscordãµãŒããŒ: Ultralytics ã«ã¯DiscordãµãŒããŒããããä»ã®ãŠãŒã¶ãŒãéçºè ãšäº€æµããããšãã§ããŸãã
å ¬åŒææžãšãªãœãŒã¹
Ultralytics YOLO11 Docs: The official documentation provides a comprehensive overview of YOLO11, along with guides on installation, usage, and troubleshooting.
These resources should provide a solid foundation for troubleshooting and improving your YOLO11 projects, as well as connecting with others in the YOLO11 community.
çµè«
Troubleshooting is an integral part of any development process, and being equipped with the right knowledge can significantly reduce the time and effort spent in resolving issues. This guide aimed to address the most common challenges faced by users of the YOLO11 model within the Ultralytics ecosystem. By understanding and addressing these common issues, you can ensure smoother project progress and achieve better results with your computer vision tasks.
Ultralytics ã³ãã¥ããã£ã¯è²ŽéãªãªãœãŒã¹ã§ããããšãå¿ããªãã§ãã ããã仲éã®éçºè ãå°é家ãšé¢ããããšã§ãæšæºçãªææžã§ã¯ã«ããŒãããŠããªããããªããããªãæŽå¯ã解決çãåŸãããšãã§ããŸããã³ãã¥ããã£ã®éåç¥ã«è²¢ç®ããããã«ãåžžã«åŠã³ãå®éšããçµéšãå ±æãç¶ããŠãã ããã
ããããŒã»ãã©ãã«ã·ã¥ãŒãã£ã³ã°
ããããã質å
How do I resolve installation errors with YOLO11?
ã€ã³ã¹ããŒã«ãšã©ãŒã¯ãäºææ§ã®åé¡ãäŸåé¢ä¿ã®æ¬ èœãåå ã§ããããšããããããŸããPython 3.8以éã䜿çšããPyTorch 1.8以éãã€ã³ã¹ããŒã«ãããŠããããšã確èªããŠãã ãããã³ã³ããªã¯ããé¿ããããã«ä»®æ³ç°å¢ã䜿çšããããšã¯æçã§ããã¹ããããã€ã¹ãããã®ã€ã³ã¹ããŒã«ã¬ã€ãã«ã€ããŠã¯ãå ¬åŒã€ã³ã¹ããŒã«ã¬ã€ãã«åŸã£ãŠãã ãããã€ã³ããŒããšã©ãŒãçºçããå Žåã¯ãæ°èŠã€ã³ã¹ããŒã«ãè©Šãããã©ã€ãã©ãªãææ°ããŒãžã§ã³ã«æŽæ°ããŠãã ããã
Why is my YOLO11 model training slow on a single GPU?
ããããµã€ãºã倧ãããã¡ã¢ãªãäžååãªããã1ã€ã®GPU ã§ã®ãã¬ãŒãã³ã°ãé
ããªãå¯èœæ§ããããŸãããã¬ãŒãã³ã°ãé«éåããã«ã¯ãè€æ°ã®GPUã䜿çšããŸããã·ã¹ãã ã«è€æ°ã®GPUãå©çšå¯èœã§ããããšã確èªã .yaml
èšå®ãã¡ã€ã«ã§GPUã®æ°ãæå®ããŸãã gpus: 4
.ããããµã€ãºãé©å®å€§ããããŠãã¡ã¢ãªå¶éãè¶
ããããšãªãGPUããã«æŽ»çšããŸããã³ãã³ãäŸïŒ
How can I ensure my YOLO11 model is training on the GPU?
ãã¬ãŒãã³ã°ãã°ã«ãdeviceãã®å€ããnullããšè¡šç€ºãããŠããå Žåã¯ãéåžžããã¬ãŒãã³ã°ããã»ã¹ãèªåçã«å©çšå¯èœãªGPU ã䜿çšããããã«èšå®ãããŠããããšãæå³ããŸããç¹å®ã®GPU ãæ瀺çã«å²ãåœãŠãã«ã¯ã'device' ã®å€ã次ã®ããã«èšå®ããŸãã .yaml
èšå®ãã¡ã€ã«ãåç
§ããŠãã ãããäŸãã°
ããã«ããããã¬ãŒãã³ã°ããã»ã¹ãæåã®GPU ã«èšå®ãããŸãããåç
§ããŠãã ããã nvidia-smi
ã³ãã³ãã§CUDA ã®ã»ããã¢ããã確èªããã
How can I monitor and track my YOLO11 model training progress?
Tracking and visualizing training progress can be efficiently managed through tools like TensorBoard, Comet, and Ultralytics HUB. These tools allow you to log and visualize metrics such as loss, precision, recall, and mAP. Implementing early stopping based on these metrics can also help achieve better training outcomes.
What should I do if YOLO11 is not recognizing my dataset format?
ããŒã¿ã»ãããšã©ãã«ãæåŸ ããããã©ãŒãããã«é©åããŠããããšã確èªããã泚éãæ£ç¢ºã§é«å質ã§ããããšã確èªãããäœããã®åé¡ã«çŽé¢ããå Žåã¯ããããŒã¿åéãšæ³šéãã®ãã¹ããã©ã¯ãã£ã¹ãåç §ããŠãã ãããããŒã¿ã»ããåºæã®ã¬ã€ãã³ã¹ã«ã€ããŠã¯ãããã¥ã¡ã³ãã®ããŒã¿ã»ããã»ã¯ã·ã§ã³ãã芧ãã ããã