Reference for ultralytics/trackers/utils/kalman_filter.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/trackers/utils/kalman_filter.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.trackers.utils.kalman_filter.KalmanFilterXYAH
KalmanFilterXYAH()
A KalmanFilterXYAH class for tracking bounding boxes in image space using a Kalman filter.
Implements a simple Kalman filter for tracking bounding boxes in image space. The 8-dimensional state space (x, y, a, h, vx, vy, va, vh) contains the bounding box center position (x, y), aspect ratio a, height h, and their respective velocities. Object motion follows a constant velocity model, and bounding box location (x, y, a, h) is taken as a direct observation of the state space (linear observation model).
Attributes:
Name | Type | Description |
---|---|---|
_motion_mat |
ndarray
|
The motion matrix for the Kalman filter. |
_update_mat |
ndarray
|
The update matrix for the Kalman filter. |
_std_weight_position |
float
|
Standard deviation weight for position. |
_std_weight_velocity |
float
|
Standard deviation weight for velocity. |
Methods:
Name | Description |
---|---|
initiate |
Creates a track from an unassociated measurement. |
predict |
Runs the Kalman filter prediction step. |
project |
Projects the state distribution to measurement space. |
multi_predict |
Runs the Kalman filter prediction step (vectorized version). |
update |
Runs the Kalman filter correction step. |
gating_distance |
Computes the gating distance between state distribution and measurements. |
Examples:
Initialize the Kalman filter and create a track from a measurement
>>> kf = KalmanFilterXYAH()
>>> measurement = np.array([100, 200, 1.5, 50])
>>> mean, covariance = kf.initiate(measurement)
>>> print(mean)
>>> print(covariance)
The Kalman filter is initialized with an 8-dimensional state space (x, y, a, h, vx, vy, va, vh), where (x, y) represents the bounding box center position, 'a' is the aspect ratio, 'h' is the height, and their respective velocities are (vx, vy, va, vh). The filter uses a constant velocity model for object motion and a linear observation model for bounding box location.
Examples:
Initialize a Kalman filter for tracking:
>>> kf = KalmanFilterXYAH()
Source code in ultralytics/trackers/utils/kalman_filter.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
|
gating_distance
gating_distance(
mean: ndarray,
covariance: ndarray,
measurements: ndarray,
only_position: bool = False,
metric: str = "maha",
) -> np.ndarray
Compute gating distance between state distribution and measurements.
A suitable distance threshold can be obtained from chi2inv95
. If only_position
is False, the chi-square
distribution has 4 degrees of freedom, otherwise 2.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mean
|
ndarray
|
Mean vector over the state distribution (8 dimensional). |
required |
covariance
|
ndarray
|
Covariance of the state distribution (8x8 dimensional). |
required |
measurements
|
ndarray
|
An (N, 4) matrix of N measurements, each in format (x, y, a, h) where (x, y) is the bounding box center position, a the aspect ratio, and h the height. |
required |
only_position
|
bool
|
If True, distance computation is done with respect to box center position only. |
False
|
metric
|
str
|
The metric to use for calculating the distance. Options are 'gaussian' for the squared Euclidean distance and 'maha' for the squared Mahalanobis distance. |
'maha'
|
Returns:
Type | Description |
---|---|
ndarray
|
Returns an array of length N, where the i-th element contains the squared distance between
(mean, covariance) and |
Examples:
Compute gating distance using Mahalanobis metric:
>>> kf = KalmanFilterXYAH()
>>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
>>> covariance = np.eye(8)
>>> measurements = np.array([[1, 1, 1, 1], [2, 2, 1, 1]])
>>> distances = kf.gating_distance(mean, covariance, measurements, only_position=False, metric="maha")
Source code in ultralytics/trackers/utils/kalman_filter.py
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
initiate
initiate(measurement: ndarray)
Create a track from an unassociated measurement.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
measurement
|
ndarray
|
Bounding box coordinates (x, y, a, h) with center position (x, y), aspect ratio a, and height h. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Mean vector (8-dimensional) of the new track. Unobserved velocities are initialized to 0 mean. |
ndarray
|
Covariance matrix (8x8 dimensional) of the new track. |
Examples:
>>> kf = KalmanFilterXYAH()
>>> measurement = np.array([100, 50, 1.5, 200])
>>> mean, covariance = kf.initiate(measurement)
Source code in ultralytics/trackers/utils/kalman_filter.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
|
multi_predict
multi_predict(mean: ndarray, covariance: ndarray)
Run Kalman filter prediction step for multiple object states (Vectorized version).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mean
|
ndarray
|
The Nx8 dimensional mean matrix of the object states at the previous time step. |
required |
covariance
|
ndarray
|
The Nx8x8 covariance matrix of the object states at the previous time step. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Mean matrix of the predicted states with shape (N, 8). |
ndarray
|
Covariance matrix of the predicted states with shape (N, 8, 8). |
Examples:
>>> mean = np.random.rand(10, 8) # 10 object states
>>> covariance = np.random.rand(10, 8, 8) # Covariance matrices for 10 object states
>>> predicted_mean, predicted_covariance = kalman_filter.multi_predict(mean, covariance)
Source code in ultralytics/trackers/utils/kalman_filter.py
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
|
predict
predict(mean: ndarray, covariance: ndarray)
Run Kalman filter prediction step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mean
|
ndarray
|
The 8-dimensional mean vector of the object state at the previous time step. |
required |
covariance
|
ndarray
|
The 8x8-dimensional covariance matrix of the object state at the previous time step. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Mean vector of the predicted state. Unobserved velocities are initialized to 0 mean. |
ndarray
|
Covariance matrix of the predicted state. |
Examples:
>>> kf = KalmanFilterXYAH()
>>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
>>> covariance = np.eye(8)
>>> predicted_mean, predicted_covariance = kf.predict(mean, covariance)
Source code in ultralytics/trackers/utils/kalman_filter.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
project
project(mean: ndarray, covariance: ndarray)
Project state distribution to measurement space.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mean
|
ndarray
|
The state's mean vector (8 dimensional array). |
required |
covariance
|
ndarray
|
The state's covariance matrix (8x8 dimensional). |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Projected mean of the given state estimate. |
ndarray
|
Projected covariance matrix of the given state estimate. |
Examples:
>>> kf = KalmanFilterXYAH()
>>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
>>> covariance = np.eye(8)
>>> projected_mean, projected_covariance = kf.project(mean, covariance)
Source code in ultralytics/trackers/utils/kalman_filter.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
update
update(mean: ndarray, covariance: ndarray, measurement: ndarray)
Run Kalman filter correction step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mean
|
ndarray
|
The predicted state's mean vector (8 dimensional). |
required |
covariance
|
ndarray
|
The state's covariance matrix (8x8 dimensional). |
required |
measurement
|
ndarray
|
The 4 dimensional measurement vector (x, y, a, h), where (x, y) is the center position, a the aspect ratio, and h the height of the bounding box. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Measurement-corrected state mean. |
ndarray
|
Measurement-corrected state covariance. |
Examples:
>>> kf = KalmanFilterXYAH()
>>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
>>> covariance = np.eye(8)
>>> measurement = np.array([1, 1, 1, 1])
>>> new_mean, new_covariance = kf.update(mean, covariance, measurement)
Source code in ultralytics/trackers/utils/kalman_filter.py
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
|
ultralytics.trackers.utils.kalman_filter.KalmanFilterXYWH
KalmanFilterXYWH()
Bases: KalmanFilterXYAH
A KalmanFilterXYWH class for tracking bounding boxes in image space using a Kalman filter.
Implements a Kalman filter for tracking bounding boxes with state space (x, y, w, h, vx, vy, vw, vh), where (x, y) is the center position, w is the width, h is the height, and vx, vy, vw, vh are their respective velocities. The object motion follows a constant velocity model, and the bounding box location (x, y, w, h) is taken as a direct observation of the state space (linear observation model).
Attributes:
Name | Type | Description |
---|---|---|
_motion_mat |
ndarray
|
The motion matrix for the Kalman filter. |
_update_mat |
ndarray
|
The update matrix for the Kalman filter. |
_std_weight_position |
float
|
Standard deviation weight for position. |
_std_weight_velocity |
float
|
Standard deviation weight for velocity. |
Methods:
Name | Description |
---|---|
initiate |
Creates a track from an unassociated measurement. |
predict |
Runs the Kalman filter prediction step. |
project |
Projects the state distribution to measurement space. |
multi_predict |
Runs the Kalman filter prediction step in a vectorized manner. |
update |
Runs the Kalman filter correction step. |
Examples:
Create a Kalman filter and initialize a track
>>> kf = KalmanFilterXYWH()
>>> measurement = np.array([100, 50, 20, 40])
>>> mean, covariance = kf.initiate(measurement)
>>> print(mean)
>>> print(covariance)
Source code in ultralytics/trackers/utils/kalman_filter.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
|
initiate
initiate(measurement: ndarray)
Create track from unassociated measurement.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
measurement
|
ndarray
|
Bounding box coordinates (x, y, w, h) with center position (x, y), width, and height. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Mean vector (8 dimensional) of the new track. Unobserved velocities are initialized to 0 mean. |
ndarray
|
Covariance matrix (8x8 dimensional) of the new track. |
Examples:
>>> kf = KalmanFilterXYWH()
>>> measurement = np.array([100, 50, 20, 40])
>>> mean, covariance = kf.initiate(measurement)
>>> print(mean)
[100. 50. 20. 40. 0. 0. 0. 0.]
>>> print(covariance)
[[ 4. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 4. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 4. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 4. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.25 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0.25 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0.25 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0.25]]
Source code in ultralytics/trackers/utils/kalman_filter.py
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
|
multi_predict
multi_predict(mean, covariance)
Run Kalman filter prediction step (Vectorized version).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mean
|
ndarray
|
The Nx8 dimensional mean matrix of the object states at the previous time step. |
required |
covariance
|
ndarray
|
The Nx8x8 covariance matrix of the object states at the previous time step. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Mean matrix of the predicted states with shape (N, 8). |
ndarray
|
Covariance matrix of the predicted states with shape (N, 8, 8). |
Examples:
>>> mean = np.random.rand(5, 8) # 5 objects with 8-dimensional state vectors
>>> covariance = np.random.rand(5, 8, 8) # 5 objects with 8x8 covariance matrices
>>> kf = KalmanFilterXYWH()
>>> predicted_mean, predicted_covariance = kf.multi_predict(mean, covariance)
Source code in ultralytics/trackers/utils/kalman_filter.py
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
|
predict
predict(mean, covariance)
Run Kalman filter prediction step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mean
|
ndarray
|
The 8-dimensional mean vector of the object state at the previous time step. |
required |
covariance
|
ndarray
|
The 8x8-dimensional covariance matrix of the object state at the previous time step. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Mean vector of the predicted state. Unobserved velocities are initialized to 0 mean. |
ndarray
|
Covariance matrix of the predicted state. |
Examples:
>>> kf = KalmanFilterXYWH()
>>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
>>> covariance = np.eye(8)
>>> predicted_mean, predicted_covariance = kf.predict(mean, covariance)
Source code in ultralytics/trackers/utils/kalman_filter.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
|
project
project(mean, covariance)
Project state distribution to measurement space.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mean
|
ndarray
|
The state's mean vector (8 dimensional array). |
required |
covariance
|
ndarray
|
The state's covariance matrix (8x8 dimensional). |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Projected mean of the given state estimate. |
ndarray
|
Projected covariance matrix of the given state estimate. |
Examples:
>>> kf = KalmanFilterXYWH()
>>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
>>> covariance = np.eye(8)
>>> projected_mean, projected_cov = kf.project(mean, covariance)
Source code in ultralytics/trackers/utils/kalman_filter.py
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
|
update
update(mean, covariance, measurement)
Run Kalman filter correction step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mean
|
ndarray
|
The predicted state's mean vector (8 dimensional). |
required |
covariance
|
ndarray
|
The state's covariance matrix (8x8 dimensional). |
required |
measurement
|
ndarray
|
The 4 dimensional measurement vector (x, y, w, h), where (x, y) is the center position, w the width, and h the height of the bounding box. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Measurement-corrected state mean. |
ndarray
|
Measurement-corrected state covariance. |
Examples:
>>> kf = KalmanFilterXYWH()
>>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
>>> covariance = np.eye(8)
>>> measurement = np.array([0.5, 0.5, 1.2, 1.2])
>>> new_mean, new_covariance = kf.update(mean, covariance, measurement)
Source code in ultralytics/trackers/utils/kalman_filter.py
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
|