Перейти к содержимому

Ссылка для ultralytics/engine/results.py

Примечание

Этот файл доступен по адресу https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/engine/results .py. Если ты заметил проблему, пожалуйста, помоги исправить ее, отправив Pull Request 🛠️. Спасибо 🙏!



ultralytics.engine.results.BaseTensor

Базы: SimpleClass

Базовый класс tensor с дополнительными методами для удобства манипуляций и работы с устройствами.

Исходный код в ultralytics/engine/results.py
class BaseTensor(SimpleClass):
    """Base tensor class with additional methods for easy manipulation and device handling."""

    def __init__(self, data, orig_shape) -> None:
        """
        Initialize BaseTensor with data and original shape.

        Args:
            data (torch.Tensor | np.ndarray): Predictions, such as bboxes, masks and keypoints.
            orig_shape (tuple): Original shape of image.
        """
        assert isinstance(data, (torch.Tensor, np.ndarray))
        self.data = data
        self.orig_shape = orig_shape

    @property
    def shape(self):
        """Return the shape of the data tensor."""
        return self.data.shape

    def cpu(self):
        """Return a copy of the tensor on CPU memory."""
        return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape)

    def numpy(self):
        """Return a copy of the tensor as a numpy array."""
        return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape)

    def cuda(self):
        """Return a copy of the tensor on GPU memory."""
        return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape)

    def to(self, *args, **kwargs):
        """Return a copy of the tensor with the specified device and dtype."""
        return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape)

    def __len__(self):  # override len(results)
        """Return the length of the data tensor."""
        return len(self.data)

    def __getitem__(self, idx):
        """Return a BaseTensor with the specified index of the data tensor."""
        return self.__class__(self.data[idx], self.orig_shape)

shape property

Верни форму данных tensor.

__getitem__(idx)

Возвращает BaseTensor с указанным индексом данных tensor.

Исходный код в ultralytics/engine/results.py
def __getitem__(self, idx):
    """Return a BaseTensor with the specified index of the data tensor."""
    return self.__class__(self.data[idx], self.orig_shape)

__init__(data, orig_shape)

Инициализируй BaseTensor с данными и исходной формой.

Параметры:

Имя Тип Описание По умолчанию
data Tensor | ndarray

Предсказания, такие как bboxes, маски и ключевые точки.

требуется
orig_shape tuple

Оригинальная форма изображения.

требуется
Исходный код в ultralytics/engine/results.py
def __init__(self, data, orig_shape) -> None:
    """
    Initialize BaseTensor with data and original shape.

    Args:
        data (torch.Tensor | np.ndarray): Predictions, such as bboxes, masks and keypoints.
        orig_shape (tuple): Original shape of image.
    """
    assert isinstance(data, (torch.Tensor, np.ndarray))
    self.data = data
    self.orig_shape = orig_shape

__len__()

Верни длину данных tensor.

Исходный код в ultralytics/engine/results.py
def __len__(self):  # override len(results)
    """Return the length of the data tensor."""
    return len(self.data)

cpu()

Верни копию tensor в память процессора.

Исходный код в ultralytics/engine/results.py
def cpu(self):
    """Return a copy of the tensor on CPU memory."""
    return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape)

cuda()

Верни копию tensor в память GPU.

Исходный код в ultralytics/engine/results.py
def cuda(self):
    """Return a copy of the tensor on GPU memory."""
    return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape)

numpy()

Верни копию tensor в виде массива numpy.

Исходный код в ultralytics/engine/results.py
def numpy(self):
    """Return a copy of the tensor as a numpy array."""
    return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape)

to(*args, **kwargs)

Верни копию tensor с указанным устройством и dtype.

Исходный код в ultralytics/engine/results.py
def to(self, *args, **kwargs):
    """Return a copy of the tensor with the specified device and dtype."""
    return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape)



ultralytics.engine.results.Results

Базы: SimpleClass

Класс для хранения и манипулирования результатами умозаключений.

Атрибуты:

Имя Тип Описание
orig_img ndarray

Оригинальное изображение в виде массива numpy.

orig_shape tuple

Оригинальная форма изображения в формате (высота, ширина).

boxes Boxes

Объект, содержащий ограничительные рамки обнаружения.

masks Masks

Объект, содержащий маски обнаружения.

probs Probs

Объект, содержащий вероятности классов для задач классификации.

keypoints Keypoints

Объект, содержащий обнаруженные ключевые точки для каждого объекта.

speed dict

Словарь скоростей препроцесса, инференции и постпроцесса (мс/изображение).

names dict

Словарь имен классов.

path str

Путь к файлу с изображением.

Методы:

Имя Описание
update

Обновляй атрибуты объектов с учетом новых результатов обнаружения.

cpu

Возвращает копию объекта Results со всеми тензорами в памяти процессора.

numpy

Возвращает копию объекта Results со всеми тензорами в виде массивов numpy.

cuda

Возвращает копию объекта Results со всеми тензорами в памяти GPU.

to

Возвращает копию объекта Results с тензорами на указанном устройстве и dtype.

new

Возвращает новый объект Results с тем же изображением, путем и именами.

plot

Положи результаты обнаружения на входное изображение и верни аннотированное изображение.

show

Покажи аннотированные результаты на экране.

save

Сохрани аннотированные результаты в файл.

verbose

Возвращает строку журнала для каждого задания с подробным описанием обнаружений и классификаций.

save_txt

Сохрани результаты обнаружения в текстовый файл.

save_crop

Сохрани обрезанные изображения обнаружения.

tojson

Преобразует результаты обнаружения в формат JSON.

Исходный код в ultralytics/engine/results.py
class Results(SimpleClass):
    """
    A class for storing and manipulating inference results.

    Attributes:
        orig_img (numpy.ndarray): Original image as a numpy array.
        orig_shape (tuple): Original image shape in (height, width) format.
        boxes (Boxes, optional): Object containing detection bounding boxes.
        masks (Masks, optional): Object containing detection masks.
        probs (Probs, optional): Object containing class probabilities for classification tasks.
        keypoints (Keypoints, optional): Object containing detected keypoints for each object.
        speed (dict): Dictionary of preprocess, inference, and postprocess speeds (ms/image).
        names (dict): Dictionary of class names.
        path (str): Path to the image file.

    Methods:
        update(boxes=None, masks=None, probs=None, obb=None): Updates object attributes with new detection results.
        cpu(): Returns a copy of the Results object with all tensors on CPU memory.
        numpy(): Returns a copy of the Results object with all tensors as numpy arrays.
        cuda(): Returns a copy of the Results object with all tensors on GPU memory.
        to(*args, **kwargs): Returns a copy of the Results object with tensors on a specified device and dtype.
        new(): Returns a new Results object with the same image, path, and names.
        plot(...): Plots detection results on an input image, returning an annotated image.
        show(): Show annotated results to screen.
        save(filename): Save annotated results to file.
        verbose(): Returns a log string for each task, detailing detections and classifications.
        save_txt(txt_file, save_conf=False): Saves detection results to a text file.
        save_crop(save_dir, file_name=Path("im.jpg")): Saves cropped detection images.
        tojson(normalize=False): Converts detection results to JSON format.
    """

    def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None, obb=None) -> None:
        """
        Initialize the Results class.

        Args:
            orig_img (numpy.ndarray): The original image as a numpy array.
            path (str): The path to the image file.
            names (dict): A dictionary of class names.
            boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
            masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
            probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
            keypoints (torch.tensor, optional): A 2D tensor of keypoint coordinates for each detection.
            obb (torch.tensor, optional): A 2D tensor of oriented bounding box coordinates for each detection.
        """
        self.orig_img = orig_img
        self.orig_shape = orig_img.shape[:2]
        self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None  # native size boxes
        self.masks = Masks(masks, self.orig_shape) if masks is not None else None  # native size or imgsz masks
        self.probs = Probs(probs) if probs is not None else None
        self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None
        self.obb = OBB(obb, self.orig_shape) if obb is not None else None
        self.speed = {"preprocess": None, "inference": None, "postprocess": None}  # milliseconds per image
        self.names = names
        self.path = path
        self.save_dir = None
        self._keys = "boxes", "masks", "probs", "keypoints", "obb"

    def __getitem__(self, idx):
        """Return a Results object for the specified index."""
        return self._apply("__getitem__", idx)

    def __len__(self):
        """Return the number of detections in the Results object."""
        for k in self._keys:
            v = getattr(self, k)
            if v is not None:
                return len(v)

    def update(self, boxes=None, masks=None, probs=None, obb=None):
        """Update the boxes, masks, and probs attributes of the Results object."""
        if boxes is not None:
            self.boxes = Boxes(ops.clip_boxes(boxes, self.orig_shape), self.orig_shape)
        if masks is not None:
            self.masks = Masks(masks, self.orig_shape)
        if probs is not None:
            self.probs = probs
        if obb is not None:
            self.obb = OBB(obb, self.orig_shape)

    def _apply(self, fn, *args, **kwargs):
        """
        Applies a function to all non-empty attributes and returns a new Results object with modified attributes. This
        function is internally called by methods like .to(), .cuda(), .cpu(), etc.

        Args:
            fn (str): The name of the function to apply.
            *args: Variable length argument list to pass to the function.
            **kwargs: Arbitrary keyword arguments to pass to the function.

        Returns:
            Results: A new Results object with attributes modified by the applied function.
        """
        r = self.new()
        for k in self._keys:
            v = getattr(self, k)
            if v is not None:
                setattr(r, k, getattr(v, fn)(*args, **kwargs))
        return r

    def cpu(self):
        """Return a copy of the Results object with all tensors on CPU memory."""
        return self._apply("cpu")

    def numpy(self):
        """Return a copy of the Results object with all tensors as numpy arrays."""
        return self._apply("numpy")

    def cuda(self):
        """Return a copy of the Results object with all tensors on GPU memory."""
        return self._apply("cuda")

    def to(self, *args, **kwargs):
        """Return a copy of the Results object with tensors on the specified device and dtype."""
        return self._apply("to", *args, **kwargs)

    def new(self):
        """Return a new Results object with the same image, path, and names."""
        return Results(orig_img=self.orig_img, path=self.path, names=self.names)

    def plot(
        self,
        conf=True,
        line_width=None,
        font_size=None,
        font="Arial.ttf",
        pil=False,
        img=None,
        im_gpu=None,
        kpt_radius=5,
        kpt_line=True,
        labels=True,
        boxes=True,
        masks=True,
        probs=True,
        show=False,
        save=False,
        filename=None,
    ):
        """
        Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.

        Args:
            conf (bool): Whether to plot the detection confidence score.
            line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size.
            font_size (float, optional): The font size of the text. If None, it is scaled to the image size.
            font (str): The font to use for the text.
            pil (bool): Whether to return the image as a PIL Image.
            img (numpy.ndarray): Plot to another image. if not, plot to original image.
            im_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting.
            kpt_radius (int, optional): Radius of the drawn keypoints. Default is 5.
            kpt_line (bool): Whether to draw lines connecting keypoints.
            labels (bool): Whether to plot the label of bounding boxes.
            boxes (bool): Whether to plot the bounding boxes.
            masks (bool): Whether to plot the masks.
            probs (bool): Whether to plot classification probability
            show (bool): Whether to display the annotated image directly.
            save (bool): Whether to save the annotated image to `filename`.
            filename (str): Filename to save image to if save is True.

        Returns:
            (numpy.ndarray): A numpy array of the annotated image.

        Example:
            ```python
            from PIL import Image
            from ultralytics import YOLO

            model = YOLO('yolov8n.pt')
            results = model('bus.jpg')  # results list
            for r in results:
                im_array = r.plot()  # plot a BGR numpy array of predictions
                im = Image.fromarray(im_array[..., ::-1])  # RGB PIL image
                im.show()  # show image
                im.save('results.jpg')  # save image
            ```
        """
        if img is None and isinstance(self.orig_img, torch.Tensor):
            img = (self.orig_img[0].detach().permute(1, 2, 0).contiguous() * 255).to(torch.uint8).cpu().numpy()

        names = self.names
        is_obb = self.obb is not None
        pred_boxes, show_boxes = self.obb if is_obb else self.boxes, boxes
        pred_masks, show_masks = self.masks, masks
        pred_probs, show_probs = self.probs, probs
        annotator = Annotator(
            deepcopy(self.orig_img if img is None else img),
            line_width,
            font_size,
            font,
            pil or (pred_probs is not None and show_probs),  # Classify tasks default to pil=True
            example=names,
        )

        # Plot Segment results
        if pred_masks and show_masks:
            if im_gpu is None:
                img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
                im_gpu = (
                    torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device)
                    .permute(2, 0, 1)
                    .flip(0)
                    .contiguous()
                    / 255
                )
            idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
            annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)

        # Plot Detect results
        if pred_boxes is not None and show_boxes:
            for d in reversed(pred_boxes):
                c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
                name = ("" if id is None else f"id:{id} ") + names[c]
                label = (f"{name} {conf:.2f}" if conf else name) if labels else None
                box = d.xyxyxyxy.reshape(-1, 4, 2).squeeze() if is_obb else d.xyxy.squeeze()
                annotator.box_label(box, label, color=colors(c, True), rotated=is_obb)

        # Plot Classify results
        if pred_probs is not None and show_probs:
            text = ",\n".join(f"{names[j] if names else j} {pred_probs.data[j]:.2f}" for j in pred_probs.top5)
            x = round(self.orig_shape[0] * 0.03)
            annotator.text([x, x], text, txt_color=(255, 255, 255))  # TODO: allow setting colors

        # Plot Pose results
        if self.keypoints is not None:
            for k in reversed(self.keypoints.data):
                annotator.kpts(k, self.orig_shape, radius=kpt_radius, kpt_line=kpt_line)

        # Show results
        if show:
            annotator.show(self.path)

        # Save results
        if save:
            annotator.save(filename)

        return annotator.result()

    def show(self, *args, **kwargs):
        """Show annotated results image."""
        self.plot(show=True, *args, **kwargs)

    def save(self, filename=None, *args, **kwargs):
        """Save annotated results image."""
        if not filename:
            filename = f"results_{Path(self.path).name}"
        self.plot(save=True, filename=filename, *args, **kwargs)
        return filename

    def verbose(self):
        """Return log string for each task."""
        log_string = ""
        probs = self.probs
        boxes = self.boxes
        if len(self) == 0:
            return log_string if probs is not None else f"{log_string}(no detections), "
        if probs is not None:
            log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
        if boxes:
            for c in boxes.cls.unique():
                n = (boxes.cls == c).sum()  # detections per class
                log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
        return log_string

    def save_txt(self, txt_file, save_conf=False):
        """
        Save predictions into txt file.

        Args:
            txt_file (str): txt file path.
            save_conf (bool): save confidence score or not.
        """
        is_obb = self.obb is not None
        boxes = self.obb if is_obb else self.boxes
        masks = self.masks
        probs = self.probs
        kpts = self.keypoints
        texts = []
        if probs is not None:
            # Classify
            [texts.append(f"{probs.data[j]:.2f} {self.names[j]}") for j in probs.top5]
        elif boxes:
            # Detect/segment/pose
            for j, d in enumerate(boxes):
                c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
                line = (c, *(d.xyxyxyxyn.view(-1) if is_obb else d.xywhn.view(-1)))
                if masks:
                    seg = masks[j].xyn[0].copy().reshape(-1)  # reversed mask.xyn, (n,2) to (n*2)
                    line = (c, *seg)
                if kpts is not None:
                    kpt = torch.cat((kpts[j].xyn, kpts[j].conf[..., None]), 2) if kpts[j].has_visible else kpts[j].xyn
                    line += (*kpt.reshape(-1).tolist(),)
                line += (conf,) * save_conf + (() if id is None else (id,))
                texts.append(("%g " * len(line)).rstrip() % line)

        if texts:
            Path(txt_file).parent.mkdir(parents=True, exist_ok=True)  # make directory
            with open(txt_file, "a") as f:
                f.writelines(text + "\n" for text in texts)

    def save_crop(self, save_dir, file_name=Path("im.jpg")):
        """
        Save cropped predictions to `save_dir/cls/file_name.jpg`.

        Args:
            save_dir (str | pathlib.Path): Save path.
            file_name (str | pathlib.Path): File name.
        """
        if self.probs is not None:
            LOGGER.warning("WARNING ⚠️ Classify task do not support `save_crop`.")
            return
        if self.obb is not None:
            LOGGER.warning("WARNING ⚠️ OBB task do not support `save_crop`.")
            return
        for d in self.boxes:
            save_one_box(
                d.xyxy,
                self.orig_img.copy(),
                file=Path(save_dir) / self.names[int(d.cls)] / f"{Path(file_name)}.jpg",
                BGR=True,
            )

    def tojson(self, normalize=False):
        """Convert the object to JSON format."""
        if self.probs is not None:
            LOGGER.warning("Warning: Classify task do not support `tojson` yet.")
            return

        import json

        # Create list of detection dictionaries
        results = []
        data = self.boxes.data.cpu().tolist()
        h, w = self.orig_shape if normalize else (1, 1)
        for i, row in enumerate(data):  # xyxy, track_id if tracking, conf, class_id
            box = {"x1": row[0] / w, "y1": row[1] / h, "x2": row[2] / w, "y2": row[3] / h}
            conf = row[-2]
            class_id = int(row[-1])
            name = self.names[class_id]
            result = {"name": name, "class": class_id, "confidence": conf, "box": box}
            if self.boxes.is_track:
                result["track_id"] = int(row[-3])  # track ID
            if self.masks:
                x, y = self.masks.xy[i][:, 0], self.masks.xy[i][:, 1]  # numpy array
                result["segments"] = {"x": (x / w).tolist(), "y": (y / h).tolist()}
            if self.keypoints is not None:
                x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1)  # torch Tensor
                result["keypoints"] = {"x": (x / w).tolist(), "y": (y / h).tolist(), "visible": visible.tolist()}
            results.append(result)

        # Convert detections to JSON
        return json.dumps(results, indent=2)

__getitem__(idx)

Возвращает объект Results для указанного индекса.

Исходный код в ultralytics/engine/results.py
def __getitem__(self, idx):
    """Return a Results object for the specified index."""
    return self._apply("__getitem__", idx)

__init__(orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None, obb=None)

Инициализируй класс Results.

Параметры:

Имя Тип Описание По умолчанию
orig_img ndarray

Оригинальное изображение в виде массива numpy.

требуется
path str

Путь к файлу с изображением.

требуется
names dict

Словарь имен классов.

требуется
boxes tensor

Двумерный tensor координат ограничительной рамки для каждого обнаружения.

None
masks tensor

3D tensor масок обнаружения, где каждая маска - бинарное изображение.

None
probs tensor

1D tensor вероятностей каждого класса для задачи классификации.

None
keypoints tensor

Двумерный tensor координат ключевых точек для каждого обнаружения.

None
obb tensor

Двумерный tensor ориентированных координат ограничительной рамки для каждого обнаружения.

None
Исходный код в ultralytics/engine/results.py
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None, obb=None) -> None:
    """
    Initialize the Results class.

    Args:
        orig_img (numpy.ndarray): The original image as a numpy array.
        path (str): The path to the image file.
        names (dict): A dictionary of class names.
        boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
        masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
        probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
        keypoints (torch.tensor, optional): A 2D tensor of keypoint coordinates for each detection.
        obb (torch.tensor, optional): A 2D tensor of oriented bounding box coordinates for each detection.
    """
    self.orig_img = orig_img
    self.orig_shape = orig_img.shape[:2]
    self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None  # native size boxes
    self.masks = Masks(masks, self.orig_shape) if masks is not None else None  # native size or imgsz masks
    self.probs = Probs(probs) if probs is not None else None
    self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None
    self.obb = OBB(obb, self.orig_shape) if obb is not None else None
    self.speed = {"preprocess": None, "inference": None, "postprocess": None}  # milliseconds per image
    self.names = names
    self.path = path
    self.save_dir = None
    self._keys = "boxes", "masks", "probs", "keypoints", "obb"

__len__()

Верни количество обнаружений в объекте Results.

Исходный код в ultralytics/engine/results.py
def __len__(self):
    """Return the number of detections in the Results object."""
    for k in self._keys:
        v = getattr(self, k)
        if v is not None:
            return len(v)

cpu()

Верни копию объекта Results со всеми тензорами в памяти процессора.

Исходный код в ultralytics/engine/results.py
def cpu(self):
    """Return a copy of the Results object with all tensors on CPU memory."""
    return self._apply("cpu")

cuda()

Верни копию объекта Results со всеми тензорами в памяти GPU.

Исходный код в ultralytics/engine/results.py
def cuda(self):
    """Return a copy of the Results object with all tensors on GPU memory."""
    return self._apply("cuda")

new()

Возвращай новый объект Results с тем же изображением, путем и именами.

Исходный код в ultralytics/engine/results.py
def new(self):
    """Return a new Results object with the same image, path, and names."""
    return Results(orig_img=self.orig_img, path=self.path, names=self.names)

numpy()

Возвращай копию объекта Results со всеми тензорами в виде массивов numpy.

Исходный код в ultralytics/engine/results.py
def numpy(self):
    """Return a copy of the Results object with all tensors as numpy arrays."""
    return self._apply("numpy")

plot(conf=True, line_width=None, font_size=None, font='Arial.ttf', pil=False, img=None, im_gpu=None, kpt_radius=5, kpt_line=True, labels=True, boxes=True, masks=True, probs=True, show=False, save=False, filename=None)

Построил график результатов обнаружения на входном RGB-изображении. Принимает массив numpy (cv2) или изображение PIL.

Параметры:

Имя Тип Описание По умолчанию
conf bool

Нужно ли строить график оценки достоверности обнаружения.

True
line_width float

Ширина линии ограничительных рамок. Если нет, то она масштабируется по размеру изображения.

None
font_size float

Размер шрифта текста. Если нет, то он масштабируется по размеру изображения.

None
font str

Шрифт, который будет использоваться для текста.

'Arial.ttf'
pil bool

Нужно ли возвращать изображение как PIL Image.

False
img ndarray

Нарисуй другое изображение. Если нет, нарисуй оригинальное изображение.

None
im_gpu Tensor

Нормализованное изображение в gpu с формой (1, 3, 640, 640), для более быстрого построения масок.

None
kpt_radius int

Радиус нарисованных ключевых точек. По умолчанию равен 5.

5
kpt_line bool

Нужно ли рисовать линии, соединяющие ключевые точки.

True
labels bool

Нужно ли выводить на экран метки ограничительных рамок.

True
boxes bool

Нужно ли строить ограничительные рамки.

True
masks bool

Нужно ли строить графики для масок.

True
probs bool

Нужно ли строить график вероятности классификации

True
show bool

Нужно ли отображать аннотированное изображение напрямую.

False
save bool

Сохранять ли аннотированное изображение в filename.

False
filename str

Имя файла, в который будет сохранено изображение, если параметр save равен True.

None

Возвращается:

Тип Описание
ndarray

Массив numpy, содержащий аннотированное изображение.

Пример
from PIL import Image
from ultralytics import YOLO

model = YOLO('yolov8n.pt')
results = model('bus.jpg')  # results list
for r in results:
    im_array = r.plot()  # plot a BGR numpy array of predictions
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL image
    im.show()  # show image
    im.save('results.jpg')  # save image
Исходный код в ultralytics/engine/results.py
def plot(
    self,
    conf=True,
    line_width=None,
    font_size=None,
    font="Arial.ttf",
    pil=False,
    img=None,
    im_gpu=None,
    kpt_radius=5,
    kpt_line=True,
    labels=True,
    boxes=True,
    masks=True,
    probs=True,
    show=False,
    save=False,
    filename=None,
):
    """
    Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.

    Args:
        conf (bool): Whether to plot the detection confidence score.
        line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size.
        font_size (float, optional): The font size of the text. If None, it is scaled to the image size.
        font (str): The font to use for the text.
        pil (bool): Whether to return the image as a PIL Image.
        img (numpy.ndarray): Plot to another image. if not, plot to original image.
        im_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting.
        kpt_radius (int, optional): Radius of the drawn keypoints. Default is 5.
        kpt_line (bool): Whether to draw lines connecting keypoints.
        labels (bool): Whether to plot the label of bounding boxes.
        boxes (bool): Whether to plot the bounding boxes.
        masks (bool): Whether to plot the masks.
        probs (bool): Whether to plot classification probability
        show (bool): Whether to display the annotated image directly.
        save (bool): Whether to save the annotated image to `filename`.
        filename (str): Filename to save image to if save is True.

    Returns:
        (numpy.ndarray): A numpy array of the annotated image.

    Example:
        ```python
        from PIL import Image
        from ultralytics import YOLO

        model = YOLO('yolov8n.pt')
        results = model('bus.jpg')  # results list
        for r in results:
            im_array = r.plot()  # plot a BGR numpy array of predictions
            im = Image.fromarray(im_array[..., ::-1])  # RGB PIL image
            im.show()  # show image
            im.save('results.jpg')  # save image
        ```
    """
    if img is None and isinstance(self.orig_img, torch.Tensor):
        img = (self.orig_img[0].detach().permute(1, 2, 0).contiguous() * 255).to(torch.uint8).cpu().numpy()

    names = self.names
    is_obb = self.obb is not None
    pred_boxes, show_boxes = self.obb if is_obb else self.boxes, boxes
    pred_masks, show_masks = self.masks, masks
    pred_probs, show_probs = self.probs, probs
    annotator = Annotator(
        deepcopy(self.orig_img if img is None else img),
        line_width,
        font_size,
        font,
        pil or (pred_probs is not None and show_probs),  # Classify tasks default to pil=True
        example=names,
    )

    # Plot Segment results
    if pred_masks and show_masks:
        if im_gpu is None:
            img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
            im_gpu = (
                torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device)
                .permute(2, 0, 1)
                .flip(0)
                .contiguous()
                / 255
            )
        idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
        annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)

    # Plot Detect results
    if pred_boxes is not None and show_boxes:
        for d in reversed(pred_boxes):
            c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
            name = ("" if id is None else f"id:{id} ") + names[c]
            label = (f"{name} {conf:.2f}" if conf else name) if labels else None
            box = d.xyxyxyxy.reshape(-1, 4, 2).squeeze() if is_obb else d.xyxy.squeeze()
            annotator.box_label(box, label, color=colors(c, True), rotated=is_obb)

    # Plot Classify results
    if pred_probs is not None and show_probs:
        text = ",\n".join(f"{names[j] if names else j} {pred_probs.data[j]:.2f}" for j in pred_probs.top5)
        x = round(self.orig_shape[0] * 0.03)
        annotator.text([x, x], text, txt_color=(255, 255, 255))  # TODO: allow setting colors

    # Plot Pose results
    if self.keypoints is not None:
        for k in reversed(self.keypoints.data):
            annotator.kpts(k, self.orig_shape, radius=kpt_radius, kpt_line=kpt_line)

    # Show results
    if show:
        annotator.show(self.path)

    # Save results
    if save:
        annotator.save(filename)

    return annotator.result()

save(filename=None, *args, **kwargs)

Сохрани изображение аннотированных результатов.

Исходный код в ultralytics/engine/results.py
def save(self, filename=None, *args, **kwargs):
    """Save annotated results image."""
    if not filename:
        filename = f"results_{Path(self.path).name}"
    self.plot(save=True, filename=filename, *args, **kwargs)
    return filename

save_crop(save_dir, file_name=Path('im.jpg'))

Сохрани обрезанные предсказания в save_dir/cls/file_name.jpg.

Параметры:

Имя Тип Описание По умолчанию
save_dir str | Path

Сохрани путь.

требуется
file_name str | Path

Название файла.

Path('im.jpg')
Исходный код в ultralytics/engine/results.py
def save_crop(self, save_dir, file_name=Path("im.jpg")):
    """
    Save cropped predictions to `save_dir/cls/file_name.jpg`.

    Args:
        save_dir (str | pathlib.Path): Save path.
        file_name (str | pathlib.Path): File name.
    """
    if self.probs is not None:
        LOGGER.warning("WARNING ⚠️ Classify task do not support `save_crop`.")
        return
    if self.obb is not None:
        LOGGER.warning("WARNING ⚠️ OBB task do not support `save_crop`.")
        return
    for d in self.boxes:
        save_one_box(
            d.xyxy,
            self.orig_img.copy(),
            file=Path(save_dir) / self.names[int(d.cls)] / f"{Path(file_name)}.jpg",
            BGR=True,
        )

save_txt(txt_file, save_conf=False)

Сохрани предсказания в txt-файл.

Параметры:

Имя Тип Описание По умолчанию
txt_file str

Путь к файлу txt.

требуется
save_conf bool

сохранять показатели уверенности или нет.

False
Исходный код в ultralytics/engine/results.py
def save_txt(self, txt_file, save_conf=False):
    """
    Save predictions into txt file.

    Args:
        txt_file (str): txt file path.
        save_conf (bool): save confidence score or not.
    """
    is_obb = self.obb is not None
    boxes = self.obb if is_obb else self.boxes
    masks = self.masks
    probs = self.probs
    kpts = self.keypoints
    texts = []
    if probs is not None:
        # Classify
        [texts.append(f"{probs.data[j]:.2f} {self.names[j]}") for j in probs.top5]
    elif boxes:
        # Detect/segment/pose
        for j, d in enumerate(boxes):
            c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
            line = (c, *(d.xyxyxyxyn.view(-1) if is_obb else d.xywhn.view(-1)))
            if masks:
                seg = masks[j].xyn[0].copy().reshape(-1)  # reversed mask.xyn, (n,2) to (n*2)
                line = (c, *seg)
            if kpts is not None:
                kpt = torch.cat((kpts[j].xyn, kpts[j].conf[..., None]), 2) if kpts[j].has_visible else kpts[j].xyn
                line += (*kpt.reshape(-1).tolist(),)
            line += (conf,) * save_conf + (() if id is None else (id,))
            texts.append(("%g " * len(line)).rstrip() % line)

    if texts:
        Path(txt_file).parent.mkdir(parents=True, exist_ok=True)  # make directory
        with open(txt_file, "a") as f:
            f.writelines(text + "\n" for text in texts)

show(*args, **kwargs)

Покажи аннотированное изображение результатов.

Исходный код в ultralytics/engine/results.py
def show(self, *args, **kwargs):
    """Show annotated results image."""
    self.plot(show=True, *args, **kwargs)

to(*args, **kwargs)

Верни копию объекта Results с тензорами на указанном устройстве и dtype.

Исходный код в ultralytics/engine/results.py
def to(self, *args, **kwargs):
    """Return a copy of the Results object with tensors on the specified device and dtype."""
    return self._apply("to", *args, **kwargs)

tojson(normalize=False)

Преобразуй объект в формат JSON.

Исходный код в ultralytics/engine/results.py
def tojson(self, normalize=False):
    """Convert the object to JSON format."""
    if self.probs is not None:
        LOGGER.warning("Warning: Classify task do not support `tojson` yet.")
        return

    import json

    # Create list of detection dictionaries
    results = []
    data = self.boxes.data.cpu().tolist()
    h, w = self.orig_shape if normalize else (1, 1)
    for i, row in enumerate(data):  # xyxy, track_id if tracking, conf, class_id
        box = {"x1": row[0] / w, "y1": row[1] / h, "x2": row[2] / w, "y2": row[3] / h}
        conf = row[-2]
        class_id = int(row[-1])
        name = self.names[class_id]
        result = {"name": name, "class": class_id, "confidence": conf, "box": box}
        if self.boxes.is_track:
            result["track_id"] = int(row[-3])  # track ID
        if self.masks:
            x, y = self.masks.xy[i][:, 0], self.masks.xy[i][:, 1]  # numpy array
            result["segments"] = {"x": (x / w).tolist(), "y": (y / h).tolist()}
        if self.keypoints is not None:
            x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1)  # torch Tensor
            result["keypoints"] = {"x": (x / w).tolist(), "y": (y / h).tolist(), "visible": visible.tolist()}
        results.append(result)

    # Convert detections to JSON
    return json.dumps(results, indent=2)

update(boxes=None, masks=None, probs=None, obb=None)

Обнови атрибуты box, masks и probs объекта Results.

Исходный код в ultralytics/engine/results.py
def update(self, boxes=None, masks=None, probs=None, obb=None):
    """Update the boxes, masks, and probs attributes of the Results object."""
    if boxes is not None:
        self.boxes = Boxes(ops.clip_boxes(boxes, self.orig_shape), self.orig_shape)
    if masks is not None:
        self.masks = Masks(masks, self.orig_shape)
    if probs is not None:
        self.probs = probs
    if obb is not None:
        self.obb = OBB(obb, self.orig_shape)

verbose()

Возвращай строку журнала для каждого задания.

Исходный код в ultralytics/engine/results.py
def verbose(self):
    """Return log string for each task."""
    log_string = ""
    probs = self.probs
    boxes = self.boxes
    if len(self) == 0:
        return log_string if probs is not None else f"{log_string}(no detections), "
    if probs is not None:
        log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
    if boxes:
        for c in boxes.cls.unique():
            n = (boxes.cls == c).sum()  # detections per class
            log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
    return log_string



ultralytics.engine.results.Boxes

Базы: BaseTensor

Управляй коробками обнаружения, обеспечивая легкий доступ и манипуляции с координатами коробок, показателями уверенности, идентификаторами класса идентификаторы и дополнительные идентификаторы отслеживания. Поддерживает несколько форматов координат боксов, включая абсолютные и нормализованные формы.

Атрибуты:

Имя Тип Описание
data Tensor

Необработанный tensor , содержащий блоки обнаружения и связанные с ними данные.

orig_shape tuple

Размер исходного изображения в виде кортежа (высота, ширина), используемый для нормализации.

is_track bool

Указывает, включать ли идентификаторы отслеживания в данные коробки.

Свойства

xyxy (torch.Tensor | numpy.ndarray): Коробки в формате [x1, y1, x2, y2]. conf (torch.Tensor | numpy.ndarray): Баллы доверия для каждого бокса. cls (torch.Tensor | numpy.ndarray): Метки классов для каждой коробки. id (torch.Tensor | numpy.ndarray, необязательно): Идентификаторы отслеживания для каждой коробки, если они есть. xywh (torch.Tensor | numpy.ndarray): Боксы в формате [x, y, ширина, высота], вычисляемые по запросу. xyxyn (torch.Tensor | numpy.ndarray): Нормализованные боксы [x1, y1, x2, y2], относительно orig_shape. xywhn (torch.Tensor | numpy.ndarray): Нормализованные [x, y, ширина, высота] коробки, относительно orig_shape.

Методы:

Имя Описание
cpu

Перемещает коробки в память процессора.

numpy

Преобразует коробки в формат массива numpy.

cuda

Перемещает боксы в память CUDA (GPU).

to

Перемещает коробки на указанное устройство.

Исходный код в ultralytics/engine/results.py
class Boxes(BaseTensor):
    """
    Manages detection boxes, providing easy access and manipulation of box coordinates, confidence scores, class
    identifiers, and optional tracking IDs. Supports multiple formats for box coordinates, including both absolute and
    normalized forms.

    Attributes:
        data (torch.Tensor): The raw tensor containing detection boxes and their associated data.
        orig_shape (tuple): The original image size as a tuple (height, width), used for normalization.
        is_track (bool): Indicates whether tracking IDs are included in the box data.

    Properties:
        xyxy (torch.Tensor | numpy.ndarray): Boxes in [x1, y1, x2, y2] format.
        conf (torch.Tensor | numpy.ndarray): Confidence scores for each box.
        cls (torch.Tensor | numpy.ndarray): Class labels for each box.
        id (torch.Tensor | numpy.ndarray, optional): Tracking IDs for each box, if available.
        xywh (torch.Tensor | numpy.ndarray): Boxes in [x, y, width, height] format, calculated on demand.
        xyxyn (torch.Tensor | numpy.ndarray): Normalized [x1, y1, x2, y2] boxes, relative to `orig_shape`.
        xywhn (torch.Tensor | numpy.ndarray): Normalized [x, y, width, height] boxes, relative to `orig_shape`.

    Methods:
        cpu(): Moves the boxes to CPU memory.
        numpy(): Converts the boxes to a numpy array format.
        cuda(): Moves the boxes to CUDA (GPU) memory.
        to(device, dtype=None): Moves the boxes to the specified device.
    """

    def __init__(self, boxes, orig_shape) -> None:
        """
        Initialize the Boxes class.

        Args:
            boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes, with
                shape (num_boxes, 6) or (num_boxes, 7). The last two columns contain confidence and class values.
                If present, the third last column contains track IDs.
            orig_shape (tuple): Original image size, in the format (height, width).
        """
        if boxes.ndim == 1:
            boxes = boxes[None, :]
        n = boxes.shape[-1]
        assert n in (6, 7), f"expected 6 or 7 values but got {n}"  # xyxy, track_id, conf, cls
        super().__init__(boxes, orig_shape)
        self.is_track = n == 7
        self.orig_shape = orig_shape

    @property
    def xyxy(self):
        """Return the boxes in xyxy format."""
        return self.data[:, :4]

    @property
    def conf(self):
        """Return the confidence values of the boxes."""
        return self.data[:, -2]

    @property
    def cls(self):
        """Return the class values of the boxes."""
        return self.data[:, -1]

    @property
    def id(self):
        """Return the track IDs of the boxes (if available)."""
        return self.data[:, -3] if self.is_track else None

    @property
    @lru_cache(maxsize=2)  # maxsize 1 should suffice
    def xywh(self):
        """Return the boxes in xywh format."""
        return ops.xyxy2xywh(self.xyxy)

    @property
    @lru_cache(maxsize=2)
    def xyxyn(self):
        """Return the boxes in xyxy format normalized by original image size."""
        xyxy = self.xyxy.clone() if isinstance(self.xyxy, torch.Tensor) else np.copy(self.xyxy)
        xyxy[..., [0, 2]] /= self.orig_shape[1]
        xyxy[..., [1, 3]] /= self.orig_shape[0]
        return xyxy

    @property
    @lru_cache(maxsize=2)
    def xywhn(self):
        """Return the boxes in xywh format normalized by original image size."""
        xywh = ops.xyxy2xywh(self.xyxy)
        xywh[..., [0, 2]] /= self.orig_shape[1]
        xywh[..., [1, 3]] /= self.orig_shape[0]
        return xywh

cls property

Верни значения классов ящиков.

conf property

Верни доверительные значения ящиков.

id property

Верни идентификаторы треков коробок (если они есть).

xywh cached property

Верни коробки в формате xywh.

xywhn cached property

Возвращай коробки в формате xywh, нормализованные по размеру исходного изображения.

xyxy property

Верни коробки в формате xyxy.

xyxyn cached property

Возвращай коробки в формате xyxy, нормализованные по размеру исходного изображения.

__init__(boxes, orig_shape)

Инициализируй класс Boxes.

Параметры:

Имя Тип Описание По умолчанию
boxes Tensor | ndarray

Массив tensor или numpy, содержащий коробки обнаружения, с формой (num_boxes, 6) или (num_boxes, 7). Два последних столбца содержат значения confidence и class. Если присутствует, то третий последний столбец содержит идентификаторы треков.

требуется
orig_shape tuple

Размер оригинального изображения, в формате (высота, ширина).

требуется
Исходный код в ultralytics/engine/results.py
def __init__(self, boxes, orig_shape) -> None:
    """
    Initialize the Boxes class.

    Args:
        boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes, with
            shape (num_boxes, 6) or (num_boxes, 7). The last two columns contain confidence and class values.
            If present, the third last column contains track IDs.
        orig_shape (tuple): Original image size, in the format (height, width).
    """
    if boxes.ndim == 1:
        boxes = boxes[None, :]
    n = boxes.shape[-1]
    assert n in (6, 7), f"expected 6 or 7 values but got {n}"  # xyxy, track_id, conf, cls
    super().__init__(boxes, orig_shape)
    self.is_track = n == 7
    self.orig_shape = orig_shape



ultralytics.engine.results.Masks

Базы: BaseTensor

Класс для хранения и манипулирования масками обнаружения.

Атрибуты:

Имя Тип Описание
xy list

Список сегментов в пиксельных координатах.

xyn list

Список нормализованных сегментов.

Методы:

Имя Описание
cpu

Возвращает маски tensor в памяти процессора.

numpy

Возвращает маски tensor в виде массива numpy.

cuda

Возвращает маски tensor в памяти GPU.

to

Возвращает маски tensor с указанным устройством и dtype.

Исходный код в ultralytics/engine/results.py
class Masks(BaseTensor):
    """
    A class for storing and manipulating detection masks.

    Attributes:
        xy (list): A list of segments in pixel coordinates.
        xyn (list): A list of normalized segments.

    Methods:
        cpu(): Returns the masks tensor on CPU memory.
        numpy(): Returns the masks tensor as a numpy array.
        cuda(): Returns the masks tensor on GPU memory.
        to(device, dtype): Returns the masks tensor with the specified device and dtype.
    """

    def __init__(self, masks, orig_shape) -> None:
        """Initialize the Masks class with the given masks tensor and original image shape."""
        if masks.ndim == 2:
            masks = masks[None, :]
        super().__init__(masks, orig_shape)

    @property
    @lru_cache(maxsize=1)
    def xyn(self):
        """Return normalized segments."""
        return [
            ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True)
            for x in ops.masks2segments(self.data)
        ]

    @property
    @lru_cache(maxsize=1)
    def xy(self):
        """Return segments in pixel coordinates."""
        return [
            ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False)
            for x in ops.masks2segments(self.data)
        ]

xy cached property

Возвращай сегменты в пиксельных координатах.

xyn cached property

Верни нормализованные сегменты.

__init__(masks, orig_shape)

Инициализируй класс Masks с заданными масками tensor и исходной формой изображения.

Исходный код в ultralytics/engine/results.py
def __init__(self, masks, orig_shape) -> None:
    """Initialize the Masks class with the given masks tensor and original image shape."""
    if masks.ndim == 2:
        masks = masks[None, :]
    super().__init__(masks, orig_shape)



ultralytics.engine.results.Keypoints

Базы: BaseTensor

Класс для хранения и манипулирования ключевыми точками обнаружения.

Атрибуты:

Имя Тип Описание
xy Tensor

Коллекция ключевых точек, содержащая координаты x, y для каждого обнаружения.

xyn Tensor

Нормализованная версия xy с координатами в диапазоне [0, 1].

conf Tensor

Значения доверия, связанные с ключевыми точками, если они доступны, в противном случае - нет.

Методы:

Имя Описание
cpu

Возвращает копию ключевых точек tensor в памяти процессора.

numpy

Возвращает копию ключевых точек tensor в виде массива numpy.

cuda

Возвращает копию ключевых точек tensor в памяти GPU.

to

Возвращает копию ключевых точек tensor с указанным устройством и dtype.

Исходный код в ultralytics/engine/results.py
class Keypoints(BaseTensor):
    """
    A class for storing and manipulating detection keypoints.

    Attributes:
        xy (torch.Tensor): A collection of keypoints containing x, y coordinates for each detection.
        xyn (torch.Tensor): A normalized version of xy with coordinates in the range [0, 1].
        conf (torch.Tensor): Confidence values associated with keypoints if available, otherwise None.

    Methods:
        cpu(): Returns a copy of the keypoints tensor on CPU memory.
        numpy(): Returns a copy of the keypoints tensor as a numpy array.
        cuda(): Returns a copy of the keypoints tensor on GPU memory.
        to(device, dtype): Returns a copy of the keypoints tensor with the specified device and dtype.
    """

    @smart_inference_mode()  # avoid keypoints < conf in-place error
    def __init__(self, keypoints, orig_shape) -> None:
        """Initializes the Keypoints object with detection keypoints and original image size."""
        if keypoints.ndim == 2:
            keypoints = keypoints[None, :]
        if keypoints.shape[2] == 3:  # x, y, conf
            mask = keypoints[..., 2] < 0.5  # points with conf < 0.5 (not visible)
            keypoints[..., :2][mask] = 0
        super().__init__(keypoints, orig_shape)
        self.has_visible = self.data.shape[-1] == 3

    @property
    @lru_cache(maxsize=1)
    def xy(self):
        """Returns x, y coordinates of keypoints."""
        return self.data[..., :2]

    @property
    @lru_cache(maxsize=1)
    def xyn(self):
        """Returns normalized x, y coordinates of keypoints."""
        xy = self.xy.clone() if isinstance(self.xy, torch.Tensor) else np.copy(self.xy)
        xy[..., 0] /= self.orig_shape[1]
        xy[..., 1] /= self.orig_shape[0]
        return xy

    @property
    @lru_cache(maxsize=1)
    def conf(self):
        """Returns confidence values of keypoints if available, else None."""
        return self.data[..., 2] if self.has_visible else None

conf cached property

Возвращает доверительные значения ключевых точек, если они доступны, иначе - нет.

xy cached property

Возвращает координаты x, y ключевых точек.

xyn cached property

Возвращает нормализованные координаты x, y ключевых точек.

__init__(keypoints, orig_shape)

Инициализирует объект Keypoints с ключевыми точками обнаружения и размером исходного изображения.

Исходный код в ultralytics/engine/results.py
@smart_inference_mode()  # avoid keypoints < conf in-place error
def __init__(self, keypoints, orig_shape) -> None:
    """Initializes the Keypoints object with detection keypoints and original image size."""
    if keypoints.ndim == 2:
        keypoints = keypoints[None, :]
    if keypoints.shape[2] == 3:  # x, y, conf
        mask = keypoints[..., 2] < 0.5  # points with conf < 0.5 (not visible)
        keypoints[..., :2][mask] = 0
    super().__init__(keypoints, orig_shape)
    self.has_visible = self.data.shape[-1] == 3



ultralytics.engine.results.Probs

Базы: BaseTensor

Класс для хранения и манипулирования классификационными предсказаниями.

Атрибуты:

Имя Тип Описание
top1 int

Индекс высшего 1 класса.

top5 list[int]

Индексы 5 лучших классов.

top1conf Tensor

Уверенность в том, что это топ-1 класс.

top5conf Tensor

Кондиции 5 лучших классов.

Методы:

Имя Описание
cpu

Возвращает копию probs tensor в памяти процессора.

numpy

Возвращает копию probs tensor в виде массива numpy.

cuda

Возвращает копию probs tensor в памяти GPU.

to

Возвращает копию probs tensor с указанным устройством и dtype.

Исходный код в ultralytics/engine/results.py
class Probs(BaseTensor):
    """
    A class for storing and manipulating classification predictions.

    Attributes:
        top1 (int): Index of the top 1 class.
        top5 (list[int]): Indices of the top 5 classes.
        top1conf (torch.Tensor): Confidence of the top 1 class.
        top5conf (torch.Tensor): Confidences of the top 5 classes.

    Methods:
        cpu(): Returns a copy of the probs tensor on CPU memory.
        numpy(): Returns a copy of the probs tensor as a numpy array.
        cuda(): Returns a copy of the probs tensor on GPU memory.
        to(): Returns a copy of the probs tensor with the specified device and dtype.
    """

    def __init__(self, probs, orig_shape=None) -> None:
        """Initialize the Probs class with classification probabilities and optional original shape of the image."""
        super().__init__(probs, orig_shape)

    @property
    @lru_cache(maxsize=1)
    def top1(self):
        """Return the index of top 1."""
        return int(self.data.argmax())

    @property
    @lru_cache(maxsize=1)
    def top5(self):
        """Return the indices of top 5."""
        return (-self.data).argsort(0)[:5].tolist()  # this way works with both torch and numpy.

    @property
    @lru_cache(maxsize=1)
    def top1conf(self):
        """Return the confidence of top 1."""
        return self.data[self.top1]

    @property
    @lru_cache(maxsize=1)
    def top5conf(self):
        """Return the confidences of top 5."""
        return self.data[self.top5]

top1 cached property

Верни индекс вершины 1.

top1conf cached property

Верни уверенность в вершине 1.

top5 cached property

Возвращай индексы 5 лучших.

top5conf cached property

Верни себе конфиденции из 5 лучших.

__init__(probs, orig_shape=None)

Инициализируй класс Probs с вероятностями классификации и необязательной исходной формой изображения.

Исходный код в ultralytics/engine/results.py
def __init__(self, probs, orig_shape=None) -> None:
    """Initialize the Probs class with classification probabilities and optional original shape of the image."""
    super().__init__(probs, orig_shape)



ultralytics.engine.results.OBB

Базы: BaseTensor

Класс для хранения и манипулирования ориентированными границами (Oriented Bounding Boxes, OBB).

Параметры:

Имя Тип Описание По умолчанию
boxes Tensor | ndarray

Массив tensor или numpy, содержащий коробки обнаружения, с формой (num_boxes, 7) или (num_boxes, 8). Два последних столбца содержат значения confidence и class. Если присутствует, то третий последний столбец содержит идентификаторы треков, а пятый столбец слева - вращение.

требуется
orig_shape tuple

Размер оригинального изображения, в формате (высота, ширина).

требуется

Атрибуты:

Имя Тип Описание
xywhr Tensor | ndarray

Коробки в формате [x_center, y_center, width, height, rotation].

conf Tensor | ndarray

Доверительные значения коробок.

cls Tensor | ndarray

Значения классов для коробок.

id Tensor | ndarray

Идентификаторы треков в боксах (если они есть).

xyxyxyxyn Tensor | ndarray

Повернутые коробки в формате xyxyxyxy, нормализованные по размеру изображения orig.

xyxyxyxy Tensor | ndarray

Повернутые коробки в формате xyxyxyxy.

xyxy Tensor | ndarray

Горизонтальные коробки в формате xyxyxyxy.

data Tensor

Необработанный OBB tensor (псевдоним для boxes).

Методы:

Имя Описание
cpu

Переместите объект в память процессора.

numpy

Преобразуй объект в массив numpy.

cuda

Переместите объект в память CUDA.

to

Перемести объект на указанное устройство.

Исходный код в ultralytics/engine/results.py
class OBB(BaseTensor):
    """
    A class for storing and manipulating Oriented Bounding Boxes (OBB).

    Args:
        boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
            with shape (num_boxes, 7) or (num_boxes, 8). The last two columns contain confidence and class values.
            If present, the third last column contains track IDs, and the fifth column from the left contains rotation.
        orig_shape (tuple): Original image size, in the format (height, width).

    Attributes:
        xywhr (torch.Tensor | numpy.ndarray): The boxes in [x_center, y_center, width, height, rotation] format.
        conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes.
        cls (torch.Tensor | numpy.ndarray): The class values of the boxes.
        id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available).
        xyxyxyxyn (torch.Tensor | numpy.ndarray): The rotated boxes in xyxyxyxy format normalized by orig image size.
        xyxyxyxy (torch.Tensor | numpy.ndarray): The rotated boxes in xyxyxyxy format.
        xyxy (torch.Tensor | numpy.ndarray): The horizontal boxes in xyxyxyxy format.
        data (torch.Tensor): The raw OBB tensor (alias for `boxes`).

    Methods:
        cpu(): Move the object to CPU memory.
        numpy(): Convert the object to a numpy array.
        cuda(): Move the object to CUDA memory.
        to(*args, **kwargs): Move the object to the specified device.
    """

    def __init__(self, boxes, orig_shape) -> None:
        """Initialize the Boxes class."""
        if boxes.ndim == 1:
            boxes = boxes[None, :]
        n = boxes.shape[-1]
        assert n in (7, 8), f"expected 7 or 8 values but got {n}"  # xywh, rotation, track_id, conf, cls
        super().__init__(boxes, orig_shape)
        self.is_track = n == 8
        self.orig_shape = orig_shape

    @property
    def xywhr(self):
        """Return the rotated boxes in xywhr format."""
        return self.data[:, :5]

    @property
    def conf(self):
        """Return the confidence values of the boxes."""
        return self.data[:, -2]

    @property
    def cls(self):
        """Return the class values of the boxes."""
        return self.data[:, -1]

    @property
    def id(self):
        """Return the track IDs of the boxes (if available)."""
        return self.data[:, -3] if self.is_track else None

    @property
    @lru_cache(maxsize=2)
    def xyxyxyxy(self):
        """Return the boxes in xyxyxyxy format, (N, 4, 2)."""
        return ops.xywhr2xyxyxyxy(self.xywhr)

    @property
    @lru_cache(maxsize=2)
    def xyxyxyxyn(self):
        """Return the boxes in xyxyxyxy format, (N, 4, 2)."""
        xyxyxyxyn = self.xyxyxyxy.clone() if isinstance(self.xyxyxyxy, torch.Tensor) else np.copy(self.xyxyxyxy)
        xyxyxyxyn[..., 0] /= self.orig_shape[1]
        xyxyxyxyn[..., 1] /= self.orig_shape[0]
        return xyxyxyxyn

    @property
    @lru_cache(maxsize=2)
    def xyxy(self):
        """
        Return the horizontal boxes in xyxy format, (N, 4).

        Accepts both torch and numpy boxes.
        """
        x1 = self.xyxyxyxy[..., 0].min(1).values
        x2 = self.xyxyxyxy[..., 0].max(1).values
        y1 = self.xyxyxyxy[..., 1].min(1).values
        y2 = self.xyxyxyxy[..., 1].max(1).values
        xyxy = [x1, y1, x2, y2]
        return np.stack(xyxy, axis=-1) if isinstance(self.data, np.ndarray) else torch.stack(xyxy, dim=-1)

cls property

Верни значения классов ящиков.

conf property

Верни доверительные значения ящиков.

id property

Верни идентификаторы треков коробок (если они есть).

xywhr property

Верни повернутые коробки в формате xywhr.

xyxy cached property

Верни горизонтальные коробки в формате xyxy, (N, 4).

Принимает как torch , так и numpy-боксы.

xyxyxyxy cached property

Верни коробки в формате xyxyxyxyxy, (N, 4, 2).

xyxyxyxyn cached property

Верни коробки в формате xyxyxyxyxy, (N, 4, 2).

__init__(boxes, orig_shape)

Инициализируй класс Boxes.

Исходный код в ultralytics/engine/results.py
def __init__(self, boxes, orig_shape) -> None:
    """Initialize the Boxes class."""
    if boxes.ndim == 1:
        boxes = boxes[None, :]
    n = boxes.shape[-1]
    assert n in (7, 8), f"expected 7 or 8 values but got {n}"  # xywh, rotation, track_id, conf, cls
    super().__init__(boxes, orig_shape)
    self.is_track = n == 8
    self.orig_shape = orig_shape





Создано 2023-11-12, Обновлено 2024-01-05
Авторы: glenn-jocher (4), Laughing-q (1)