Перейти к содержимому

Ссылка для ultralytics/hub/session.py

Примечание

Этот файл доступен по адресу https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/ hub/session .py. Если ты обнаружил проблему, пожалуйста, помоги исправить ее, создав Pull Request 🛠️. Спасибо 🙏!



ultralytics.hub.session.HUBTrainingSession

HUB тренировочная сессия для моделей Ultralytics HUB YOLO . Обрабатывает инициализацию модели, сердцебиения и чекпоинты.

Атрибуты:

Имя Тип Описание
agent_id str

Идентификатор экземпляра, взаимодействующего с сервером.

model_id str

Идентификатор обучаемой модели YOLO .

model_url str

URL для модели в Ultralytics HUB .

api_url str

API URL для модели в Ultralytics HUB .

auth_header dict

Заголовок аутентификации для запросов API Ultralytics HUB .

rate_limits dict

Ограничения по скорости для различных вызовов API (в секундах).

timers dict

Таймеры для ограничения скорости.

metrics_queue dict

Очередь за метриками модели.

model dict

Данные о модели взяты с сайта Ultralytics HUB .

alive bool

Указывает, активен ли цикл сердцебиения.

Исходный код в ultralytics/hub/session.py
class HUBTrainingSession:
    """
    HUB training session for Ultralytics HUB YOLO models. Handles model initialization, heartbeats, and checkpointing.

    Attributes:
        agent_id (str): Identifier for the instance communicating with the server.
        model_id (str): Identifier for the YOLO model being trained.
        model_url (str): URL for the model in Ultralytics HUB.
        api_url (str): API URL for the model in Ultralytics HUB.
        auth_header (dict): Authentication header for the Ultralytics HUB API requests.
        rate_limits (dict): Rate limits for different API calls (in seconds).
        timers (dict): Timers for rate limiting.
        metrics_queue (dict): Queue for the model's metrics.
        model (dict): Model data fetched from Ultralytics HUB.
        alive (bool): Indicates if the heartbeat loop is active.
    """

    def __init__(self, identifier):
        """
        Initialize the HUBTrainingSession with the provided model identifier.

        Args:
            identifier (str): Model identifier used to initialize the HUB training session.
                It can be a URL string or a model key with specific format.

        Raises:
            ValueError: If the provided model identifier is invalid.
            ConnectionError: If connecting with global API key is not supported.
            ModuleNotFoundError: If hub-sdk package is not installed.
        """
        from hub_sdk import HUBClient

        self.rate_limits = {
            "metrics": 3.0,
            "ckpt": 900.0,
            "heartbeat": 300.0,
        }  # rate limits (seconds)
        self.metrics_queue = {}  # holds metrics for each epoch until upload
        self.timers = {}  # holds timers in ultralytics/utils/callbacks/hub.py

        # Parse input
        api_key, model_id, self.filename = self._parse_identifier(identifier)

        # Get credentials
        active_key = api_key or SETTINGS.get("api_key")
        credentials = {"api_key": active_key} if active_key else None  # set credentials

        # Initialize client
        self.client = HUBClient(credentials)

        if model_id:
            self.load_model(model_id)  # load existing model
        else:
            self.model = self.client.model()  # load empty model

    def load_model(self, model_id):
        """Loads an existing model from Ultralytics HUB using the provided model identifier."""
        self.model = self.client.model(model_id)
        if not self.model.data:  # then model does not exist
            raise ValueError(emojis("❌ The specified HUB model does not exist"))  # TODO: improve error handling

        self.model_url = f"{HUB_WEB_ROOT}/models/{self.model.id}"

        self._set_train_args()

        # Start heartbeats for HUB to monitor agent
        self.model.start_heartbeat(self.rate_limits["heartbeat"])
        LOGGER.info(f"{PREFIX}View model at {self.model_url} 🚀")

    def create_model(self, model_args):
        """Initializes a HUB training session with the specified model identifier."""
        payload = {
            "config": {
                "batchSize": model_args.get("batch", -1),
                "epochs": model_args.get("epochs", 300),
                "imageSize": model_args.get("imgsz", 640),
                "patience": model_args.get("patience", 100),
                "device": model_args.get("device", ""),
                "cache": model_args.get("cache", "ram"),
            },
            "dataset": {"name": model_args.get("data")},
            "lineage": {
                "architecture": {
                    "name": self.filename.replace(".pt", "").replace(".yaml", ""),
                },
                "parent": {},
            },
            "meta": {"name": self.filename},
        }

        if self.filename.endswith(".pt"):
            payload["lineage"]["parent"]["name"] = self.filename

        self.model.create_model(payload)

        # Model could not be created
        # TODO: improve error handling
        if not self.model.id:
            return

        self.model_url = f"{HUB_WEB_ROOT}/models/{self.model.id}"

        # Start heartbeats for HUB to monitor agent
        self.model.start_heartbeat(self.rate_limits["heartbeat"])

        LOGGER.info(f"{PREFIX}View model at {self.model_url} 🚀")

    def _parse_identifier(self, identifier):
        """
        Parses the given identifier to determine the type of identifier and extract relevant components.

        The method supports different identifier formats:
            - A HUB URL, which starts with HUB_WEB_ROOT followed by '/models/'
            - An identifier containing an API key and a model ID separated by an underscore
            - An identifier that is solely a model ID of a fixed length
            - A local filename that ends with '.pt' or '.yaml'

        Args:
            identifier (str): The identifier string to be parsed.

        Returns:
            (tuple): A tuple containing the API key, model ID, and filename as applicable.

        Raises:
            HUBModelError: If the identifier format is not recognized.
        """

        # Initialize variables
        api_key, model_id, filename = None, None, None

        # Check if identifier is a HUB URL
        if identifier.startswith(f"{HUB_WEB_ROOT}/models/"):
            # Extract the model_id after the HUB_WEB_ROOT URL
            model_id = identifier.split(f"{HUB_WEB_ROOT}/models/")[-1]
        else:
            # Split the identifier based on underscores only if it's not a HUB URL
            parts = identifier.split("_")

            # Check if identifier is in the format of API key and model ID
            if len(parts) == 2 and len(parts[0]) == 42 and len(parts[1]) == 20:
                api_key, model_id = parts
            # Check if identifier is a single model ID
            elif len(parts) == 1 and len(parts[0]) == 20:
                model_id = parts[0]
            # Check if identifier is a local filename
            elif identifier.endswith(".pt") or identifier.endswith(".yaml"):
                filename = identifier
            else:
                raise HUBModelError(
                    f"model='{identifier}' could not be parsed. Check format is correct. "
                    f"Supported formats are Ultralytics HUB URL, apiKey_modelId, modelId, local pt or yaml file."
                )

        return api_key, model_id, filename

    def _set_train_args(self, **kwargs):
        """Initializes training arguments and creates a model entry on the Ultralytics HUB."""
        if self.model.is_trained():
            # Model is already trained
            raise ValueError(emojis(f"Model is already trained and uploaded to {self.model_url} 🚀"))

        if self.model.is_resumable():
            # Model has saved weights
            self.train_args = {"data": self.model.get_dataset_url(), "resume": True}
            self.model_file = self.model.get_weights_url("last")
        else:
            # Model has no saved weights
            def get_train_args(config):
                """Parses an identifier to extract API key, model ID, and filename if applicable."""
                return {
                    "batch": config["batchSize"],
                    "epochs": config["epochs"],
                    "imgsz": config["imageSize"],
                    "patience": config["patience"],
                    "device": config["device"],
                    "cache": config["cache"],
                    "data": self.model.get_dataset_url(),
                }

            self.train_args = get_train_args(self.model.data.get("config"))
            # Set the model file as either a *.pt or *.yaml file
            self.model_file = (
                self.model.get_weights_url("parent") if self.model.is_pretrained() else self.model.get_architecture()
            )

        if not self.train_args.get("data"):
            raise ValueError("Dataset may still be processing. Please wait a minute and try again.")  # RF fix

        self.model_file = checks.check_yolov5u_filename(self.model_file, verbose=False)  # YOLOv5->YOLOv5u
        self.model_id = self.model.id

    def request_queue(
        self,
        request_func,
        retry=3,
        timeout=30,
        thread=True,
        verbose=True,
        progress_total=None,
        *args,
        **kwargs,
    ):
        def retry_request():
            """Attempts to call `request_func` with retries, timeout, and optional threading."""
            t0 = time.time()  # Record the start time for the timeout
            for i in range(retry + 1):
                if (time.time() - t0) > timeout:
                    LOGGER.warning(f"{PREFIX}Timeout for request reached. {HELP_MSG}")
                    break  # Timeout reached, exit loop

                response = request_func(*args, **kwargs)
                if response is None:
                    LOGGER.warning(f"{PREFIX}Received no response from the request. {HELP_MSG}")
                    time.sleep(2**i)  # Exponential backoff before retrying
                    continue  # Skip further processing and retry

                if progress_total:
                    self._show_upload_progress(progress_total, response)

                if HTTPStatus.OK <= response.status_code < HTTPStatus.MULTIPLE_CHOICES:
                    return response  # Success, no need to retry

                if i == 0:
                    # Initial attempt, check status code and provide messages
                    message = self._get_failure_message(response, retry, timeout)

                    if verbose:
                        LOGGER.warning(f"{PREFIX}{message} {HELP_MSG} ({response.status_code})")

                if not self._should_retry(response.status_code):
                    LOGGER.warning(f"{PREFIX}Request failed. {HELP_MSG} ({response.status_code}")
                    break  # Not an error that should be retried, exit loop

                time.sleep(2**i)  # Exponential backoff for retries

            return response

        if thread:
            # Start a new thread to run the retry_request function
            threading.Thread(target=retry_request, daemon=True).start()
        else:
            # If running in the main thread, call retry_request directly
            return retry_request()

    def _should_retry(self, status_code):
        """Determines if a request should be retried based on the HTTP status code."""
        retry_codes = {
            HTTPStatus.REQUEST_TIMEOUT,
            HTTPStatus.BAD_GATEWAY,
            HTTPStatus.GATEWAY_TIMEOUT,
        }
        return status_code in retry_codes

    def _get_failure_message(self, response: requests.Response, retry: int, timeout: int):
        """
        Generate a retry message based on the response status code.

        Args:
            response: The HTTP response object.
            retry: The number of retry attempts allowed.
            timeout: The maximum timeout duration.

        Returns:
            (str): The retry message.
        """
        if self._should_retry(response.status_code):
            return f"Retrying {retry}x for {timeout}s." if retry else ""
        elif response.status_code == HTTPStatus.TOO_MANY_REQUESTS:  # rate limit
            headers = response.headers
            return (
                f"Rate limit reached ({headers['X-RateLimit-Remaining']}/{headers['X-RateLimit-Limit']}). "
                f"Please retry after {headers['Retry-After']}s."
            )
        else:
            try:
                return response.json().get("message", "No JSON message.")
            except AttributeError:
                return "Unable to read JSON."

    def upload_metrics(self):
        """Upload model metrics to Ultralytics HUB."""
        return self.request_queue(self.model.upload_metrics, metrics=self.metrics_queue.copy(), thread=True)

    def upload_model(
        self,
        epoch: int,
        weights: str,
        is_best: bool = False,
        map: float = 0.0,
        final: bool = False,
    ) -> None:
        """
        Upload a model checkpoint to Ultralytics HUB.

        Args:
            epoch (int): The current training epoch.
            weights (str): Path to the model weights file.
            is_best (bool): Indicates if the current model is the best one so far.
            map (float): Mean average precision of the model.
            final (bool): Indicates if the model is the final model after training.
        """
        if Path(weights).is_file():
            progress_total = Path(weights).stat().st_size if final else None  # Only show progress if final
            self.request_queue(
                self.model.upload_model,
                epoch=epoch,
                weights=weights,
                is_best=is_best,
                map=map,
                final=final,
                retry=10,
                timeout=3600,
                thread=not final,
                progress_total=progress_total,
            )
        else:
            LOGGER.warning(f"{PREFIX}WARNING ⚠️ Model upload issue. Missing model {weights}.")

    def _show_upload_progress(self, content_length: int, response: requests.Response) -> None:
        """
        Display a progress bar to track the upload progress of a file download.

        Args:
            content_length (int): The total size of the content to be downloaded in bytes.
            response (requests.Response): The response object from the file download request.

        Returns:
            None
        """
        with TQDM(total=content_length, unit="B", unit_scale=True, unit_divisor=1024) as pbar:
            for data in response.iter_content(chunk_size=1024):
                pbar.update(len(data))

__init__(identifier)

Инициализируй HUBTrainingSession с предоставленным идентификатором модели.

Параметры:

Имя Тип Описание По умолчанию
identifier str

Идентификатор модели, используемый для инициализации тренировочной сессии HUB . Это может быть строка URL или ключ модели с определенным форматом.

требуется

Поднимает:

Тип Описание
ValueError

Если предоставленный идентификатор модели недействителен.

ConnectionError

Если подключение с помощью глобального API-ключа не поддерживается.

ModuleNotFoundError

Если пакет hub-sdk не установлен.

Исходный код в ultralytics/hub/session.py
def __init__(self, identifier):
    """
    Initialize the HUBTrainingSession with the provided model identifier.

    Args:
        identifier (str): Model identifier used to initialize the HUB training session.
            It can be a URL string or a model key with specific format.

    Raises:
        ValueError: If the provided model identifier is invalid.
        ConnectionError: If connecting with global API key is not supported.
        ModuleNotFoundError: If hub-sdk package is not installed.
    """
    from hub_sdk import HUBClient

    self.rate_limits = {
        "metrics": 3.0,
        "ckpt": 900.0,
        "heartbeat": 300.0,
    }  # rate limits (seconds)
    self.metrics_queue = {}  # holds metrics for each epoch until upload
    self.timers = {}  # holds timers in ultralytics/utils/callbacks/hub.py

    # Parse input
    api_key, model_id, self.filename = self._parse_identifier(identifier)

    # Get credentials
    active_key = api_key or SETTINGS.get("api_key")
    credentials = {"api_key": active_key} if active_key else None  # set credentials

    # Initialize client
    self.client = HUBClient(credentials)

    if model_id:
        self.load_model(model_id)  # load existing model
    else:
        self.model = self.client.model()  # load empty model

create_model(model_args)

Инициализирует тренировочную сессию HUB с указанным идентификатором модели.

Исходный код в ultralytics/hub/session.py
def create_model(self, model_args):
    """Initializes a HUB training session with the specified model identifier."""
    payload = {
        "config": {
            "batchSize": model_args.get("batch", -1),
            "epochs": model_args.get("epochs", 300),
            "imageSize": model_args.get("imgsz", 640),
            "patience": model_args.get("patience", 100),
            "device": model_args.get("device", ""),
            "cache": model_args.get("cache", "ram"),
        },
        "dataset": {"name": model_args.get("data")},
        "lineage": {
            "architecture": {
                "name": self.filename.replace(".pt", "").replace(".yaml", ""),
            },
            "parent": {},
        },
        "meta": {"name": self.filename},
    }

    if self.filename.endswith(".pt"):
        payload["lineage"]["parent"]["name"] = self.filename

    self.model.create_model(payload)

    # Model could not be created
    # TODO: improve error handling
    if not self.model.id:
        return

    self.model_url = f"{HUB_WEB_ROOT}/models/{self.model.id}"

    # Start heartbeats for HUB to monitor agent
    self.model.start_heartbeat(self.rate_limits["heartbeat"])

    LOGGER.info(f"{PREFIX}View model at {self.model_url} 🚀")

load_model(model_id)

Загрузи существующую модель с сайта Ultralytics HUB , используя предоставленный идентификатор модели.

Исходный код в ultralytics/hub/session.py
def load_model(self, model_id):
    """Loads an existing model from Ultralytics HUB using the provided model identifier."""
    self.model = self.client.model(model_id)
    if not self.model.data:  # then model does not exist
        raise ValueError(emojis("❌ The specified HUB model does not exist"))  # TODO: improve error handling

    self.model_url = f"{HUB_WEB_ROOT}/models/{self.model.id}"

    self._set_train_args()

    # Start heartbeats for HUB to monitor agent
    self.model.start_heartbeat(self.rate_limits["heartbeat"])
    LOGGER.info(f"{PREFIX}View model at {self.model_url} 🚀")

upload_metrics()

Загрузи метрики модели на Ultralytics HUB .

Исходный код в ultralytics/hub/session.py
def upload_metrics(self):
    """Upload model metrics to Ultralytics HUB."""
    return self.request_queue(self.model.upload_metrics, metrics=self.metrics_queue.copy(), thread=True)

upload_model(epoch, weights, is_best=False, map=0.0, final=False)

Загрузи контрольную точку модели на Ultralytics HUB .

Параметры:

Имя Тип Описание По умолчанию
epoch int

Текущая эпоха обучения.

требуется
weights str

Путь к файлу с весами модели.

требуется
is_best bool

Показывает, является ли текущая модель лучшей на данный момент.

False
map float

Средняя точность модели.

0.0
final bool

Указывает, является ли данная модель финальной моделью после тренировки.

False
Исходный код в ultralytics/hub/session.py
def upload_model(
    self,
    epoch: int,
    weights: str,
    is_best: bool = False,
    map: float = 0.0,
    final: bool = False,
) -> None:
    """
    Upload a model checkpoint to Ultralytics HUB.

    Args:
        epoch (int): The current training epoch.
        weights (str): Path to the model weights file.
        is_best (bool): Indicates if the current model is the best one so far.
        map (float): Mean average precision of the model.
        final (bool): Indicates if the model is the final model after training.
    """
    if Path(weights).is_file():
        progress_total = Path(weights).stat().st_size if final else None  # Only show progress if final
        self.request_queue(
            self.model.upload_model,
            epoch=epoch,
            weights=weights,
            is_best=is_best,
            map=map,
            final=final,
            retry=10,
            timeout=3600,
            thread=not final,
            progress_total=progress_total,
        )
    else:
        LOGGER.warning(f"{PREFIX}WARNING ⚠️ Model upload issue. Missing model {weights}.")





Создано 2023-11-12, Обновлено 2023-11-25
Авторы: glenn-jocher (3)