─░├žeri─če ge├ž

Referans i├žin ultralytics/data/base.py

Not

Bu dosya https://github.com/ultralytics/ultralytics/blob/main/ ultralytics/data/base .py adresinde mevcuttur. Bir sorun tespit ederseniz l├╝tfen bir ├çekme ─░ste─či ­čŤá´ŞĆ ile katk─▒da bulunarak d├╝zeltilmesine yard─▒mc─▒ olun. Te┼čekk├╝rler ­čÖĆ!



ultralytics.data.base.BaseDataset

├ťsler: Dataset

G├Âr├╝nt├╝ verilerini y├╝klemek ve i┼člemek i├žin temel veri k├╝mesi s─▒n─▒f─▒.

Parametreler:

─░sim Tip A├ž─▒klama Varsay─▒lan
img_path str

G├Âr├╝nt├╝leri i├žeren klas├Âr├╝n yolu.

gerekli
imgsz int

G├Âr├╝nt├╝ boyutu. Varsay─▒lan de─čer 640't─▒r.

640
cache bool

E─čitim s─▒ras─▒nda g├Âr├╝nt├╝leri RAM'e veya diske ├Ânbelle─če al─▒n. Varsay─▒lan de─čer False'dir.

False
augment bool

True ise, veri b├╝y├╝tme uygulan─▒r. Varsay─▒lan de─čer True'dur.

True
hyp dict

Veri b├╝y├╝tme uygulamak i├žin hiperparametreler. Varsay─▒lan de─čer Yok'tur.

DEFAULT_CFG
prefix str

G├╝nl├╝k iletilerinde yazd─▒r─▒lacak ├Ânek. Varsay─▒lan de─čer ''.

''
rect bool

True ise, dikd├Ârtgen e─čitim kullan─▒l─▒r. Varsay─▒lan de─čer False'dir.

False
batch_size int

Toplu i┼člerin boyutu. Varsay─▒lan de─čer Yok'tur.

16
stride int

Ad─▒m. Varsay─▒lan de─čer 32'dir.

32
pad float

Dolgu. Varsay─▒lan de─čer 0,0'd─▒r.

0.5
single_cls bool

True ise, tek s─▒n─▒f e─čitimi kullan─▒l─▒r. Varsay─▒lan de─čer False'dir.

False
classes list

Dahil edilen s─▒n─▒flar─▒n listesi. Varsay─▒lan de─čer Yok'tur.

None
fraction float

Kullan─▒lacak veri k├╝mesi oran─▒. Varsay─▒lan de─čer 1,0'd─▒r (t├╝m verileri kullan─▒n).

1.0

Nitelikler:

─░sim Tip A├ž─▒klama
im_files list

G├Âr├╝nt├╝ dosyas─▒ yollar─▒n─▒n listesi.

labels list

Etiket veri s├Âzl├╝klerinin listesi.

ni int

Veri k├╝mesindeki g├Âr├╝nt├╝ say─▒s─▒.

ims list

Y├╝klenen g├Âr├╝nt├╝lerin listesi.

npy_files list

Numpy dosya yollar─▒n─▒n listesi.

transforms callable

G├Âr├╝nt├╝ d├Ân├╝┼čt├╝rme i┼člevi.

Kaynak kodu ultralytics/data/base.py
class BaseDataset(Dataset):
    """
    Base dataset class for loading and processing image data.

    Args:
        img_path (str): Path to the folder containing images.
        imgsz (int, optional): Image size. Defaults to 640.
        cache (bool, optional): Cache images to RAM or disk during training. Defaults to False.
        augment (bool, optional): If True, data augmentation is applied. Defaults to True.
        hyp (dict, optional): Hyperparameters to apply data augmentation. Defaults to None.
        prefix (str, optional): Prefix to print in log messages. Defaults to ''.
        rect (bool, optional): If True, rectangular training is used. Defaults to False.
        batch_size (int, optional): Size of batches. Defaults to None.
        stride (int, optional): Stride. Defaults to 32.
        pad (float, optional): Padding. Defaults to 0.0.
        single_cls (bool, optional): If True, single class training is used. Defaults to False.
        classes (list): List of included classes. Default is None.
        fraction (float): Fraction of dataset to utilize. Default is 1.0 (use all data).

    Attributes:
        im_files (list): List of image file paths.
        labels (list): List of label data dictionaries.
        ni (int): Number of images in the dataset.
        ims (list): List of loaded images.
        npy_files (list): List of numpy file paths.
        transforms (callable): Image transformation function.
    """

    def __init__(
        self,
        img_path,
        imgsz=640,
        cache=False,
        augment=True,
        hyp=DEFAULT_CFG,
        prefix="",
        rect=False,
        batch_size=16,
        stride=32,
        pad=0.5,
        single_cls=False,
        classes=None,
        fraction=1.0,
    ):
        """Initialize BaseDataset with given configuration and options."""
        super().__init__()
        self.img_path = img_path
        self.imgsz = imgsz
        self.augment = augment
        self.single_cls = single_cls
        self.prefix = prefix
        self.fraction = fraction
        self.im_files = self.get_img_files(self.img_path)
        self.labels = self.get_labels()
        self.update_labels(include_class=classes)  # single_cls and include_class
        self.ni = len(self.labels)  # number of images
        self.rect = rect
        self.batch_size = batch_size
        self.stride = stride
        self.pad = pad
        if self.rect:
            assert self.batch_size is not None
            self.set_rectangle()

        # Buffer thread for mosaic images
        self.buffer = []  # buffer size = batch size
        self.max_buffer_length = min((self.ni, self.batch_size * 8, 1000)) if self.augment else 0

        # Cache images (options are cache = True, False, None, "ram", "disk")
        self.ims, self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni, [None] * self.ni
        self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files]
        self.cache = cache.lower() if isinstance(cache, str) else "ram" if cache is True else None
        if (self.cache == "ram" and self.check_cache_ram()) or self.cache == "disk":
            self.cache_images()

        # Transforms
        self.transforms = self.build_transforms(hyp=hyp)

    def get_img_files(self, img_path):
        """Read image files."""
        try:
            f = []  # image files
            for p in img_path if isinstance(img_path, list) else [img_path]:
                p = Path(p)  # os-agnostic
                if p.is_dir():  # dir
                    f += glob.glob(str(p / "**" / "*.*"), recursive=True)
                    # F = list(p.rglob('*.*'))  # pathlib
                elif p.is_file():  # file
                    with open(p) as t:
                        t = t.read().strip().splitlines()
                        parent = str(p.parent) + os.sep
                        f += [x.replace("./", parent) if x.startswith("./") else x for x in t]  # local to global path
                        # F += [p.parent / x.lstrip(os.sep) for x in t]  # local to global path (pathlib)
                else:
                    raise FileNotFoundError(f"{self.prefix}{p} does not exist")
            im_files = sorted(x.replace("/", os.sep) for x in f if x.split(".")[-1].lower() in IMG_FORMATS)
            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS])  # pathlib
            assert im_files, f"{self.prefix}No images found in {img_path}. {FORMATS_HELP_MSG}"
        except Exception as e:
            raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}\n{HELP_URL}") from e
        if self.fraction < 1:
            im_files = im_files[: round(len(im_files) * self.fraction)]  # retain a fraction of the dataset
        return im_files

    def update_labels(self, include_class: Optional[list]):
        """Update labels to include only these classes (optional)."""
        include_class_array = np.array(include_class).reshape(1, -1)
        for i in range(len(self.labels)):
            if include_class is not None:
                cls = self.labels[i]["cls"]
                bboxes = self.labels[i]["bboxes"]
                segments = self.labels[i]["segments"]
                keypoints = self.labels[i]["keypoints"]
                j = (cls == include_class_array).any(1)
                self.labels[i]["cls"] = cls[j]
                self.labels[i]["bboxes"] = bboxes[j]
                if segments:
                    self.labels[i]["segments"] = [segments[si] for si, idx in enumerate(j) if idx]
                if keypoints is not None:
                    self.labels[i]["keypoints"] = keypoints[j]
            if self.single_cls:
                self.labels[i]["cls"][:, 0] = 0

    def load_image(self, i, rect_mode=True):
        """Loads 1 image from dataset index 'i', returns (im, resized hw)."""
        im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i]
        if im is None:  # not cached in RAM
            if fn.exists():  # load npy
                try:
                    im = np.load(fn)
                except Exception as e:
                    LOGGER.warning(f"{self.prefix}WARNING ÔÜá´ŞĆ Removing corrupt *.npy image file {fn} due to: {e}")
                    Path(fn).unlink(missing_ok=True)
                    im = cv2.imread(f)  # BGR
            else:  # read image
                im = cv2.imread(f)  # BGR
            if im is None:
                raise FileNotFoundError(f"Image Not Found {f}")

            h0, w0 = im.shape[:2]  # orig hw
            if rect_mode:  # resize long side to imgsz while maintaining aspect ratio
                r = self.imgsz / max(h0, w0)  # ratio
                if r != 1:  # if sizes are not equal
                    w, h = (min(math.ceil(w0 * r), self.imgsz), min(math.ceil(h0 * r), self.imgsz))
                    im = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
            elif not (h0 == w0 == self.imgsz):  # resize by stretching image to square imgsz
                im = cv2.resize(im, (self.imgsz, self.imgsz), interpolation=cv2.INTER_LINEAR)

            # Add to buffer if training with augmentations
            if self.augment:
                self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
                self.buffer.append(i)
                if 1 < len(self.buffer) >= self.max_buffer_length:  # prevent empty buffer
                    j = self.buffer.pop(0)
                    if self.cache != "ram":
                        self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None

            return im, (h0, w0), im.shape[:2]

        return self.ims[i], self.im_hw0[i], self.im_hw[i]

    def cache_images(self):
        """Cache images to memory or disk."""
        b, gb = 0, 1 << 30  # bytes of cached images, bytes per gigabytes
        fcn, storage = (self.cache_images_to_disk, "Disk") if self.cache == "disk" else (self.load_image, "RAM")
        with ThreadPool(NUM_THREADS) as pool:
            results = pool.imap(fcn, range(self.ni))
            pbar = TQDM(enumerate(results), total=self.ni, disable=LOCAL_RANK > 0)
            for i, x in pbar:
                if self.cache == "disk":
                    b += self.npy_files[i].stat().st_size
                else:  # 'ram'
                    self.ims[i], self.im_hw0[i], self.im_hw[i] = x  # im, hw_orig, hw_resized = load_image(self, i)
                    b += self.ims[i].nbytes
                pbar.desc = f"{self.prefix}Caching images ({b / gb:.1f}GB {storage})"
            pbar.close()

    def cache_images_to_disk(self, i):
        """Saves an image as an *.npy file for faster loading."""
        f = self.npy_files[i]
        if not f.exists():
            np.save(f.as_posix(), cv2.imread(self.im_files[i]), allow_pickle=False)

    def check_cache_ram(self, safety_margin=0.5):
        """Check image caching requirements vs available memory."""
        b, gb = 0, 1 << 30  # bytes of cached images, bytes per gigabytes
        n = min(self.ni, 30)  # extrapolate from 30 random images
        for _ in range(n):
            im = cv2.imread(random.choice(self.im_files))  # sample image
            ratio = self.imgsz / max(im.shape[0], im.shape[1])  # max(h, w)  # ratio
            b += im.nbytes * ratio**2
        mem_required = b * self.ni / n * (1 + safety_margin)  # GB required to cache dataset into RAM
        mem = psutil.virtual_memory()
        success = mem_required < mem.available  # to cache or not to cache, that is the question
        if not success:
            self.cache = None
            LOGGER.info(
                f"{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images "
                f"with {int(safety_margin * 100)}% safety margin but only "
                f"{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, not caching images ÔÜá´ŞĆ"
            )
        return success

    def set_rectangle(self):
        """Sets the shape of bounding boxes for YOLO detections as rectangles."""
        bi = np.floor(np.arange(self.ni) / self.batch_size).astype(int)  # batch index
        nb = bi[-1] + 1  # number of batches

        s = np.array([x.pop("shape") for x in self.labels])  # hw
        ar = s[:, 0] / s[:, 1]  # aspect ratio
        irect = ar.argsort()
        self.im_files = [self.im_files[i] for i in irect]
        self.labels = [self.labels[i] for i in irect]
        ar = ar[irect]

        # Set training image shapes
        shapes = [[1, 1]] * nb
        for i in range(nb):
            ari = ar[bi == i]
            mini, maxi = ari.min(), ari.max()
            if maxi < 1:
                shapes[i] = [maxi, 1]
            elif mini > 1:
                shapes[i] = [1, 1 / mini]

        self.batch_shapes = np.ceil(np.array(shapes) * self.imgsz / self.stride + self.pad).astype(int) * self.stride
        self.batch = bi  # batch index of image

    def __getitem__(self, index):
        """Returns transformed label information for given index."""
        return self.transforms(self.get_image_and_label(index))

    def get_image_and_label(self, index):
        """Get and return label information from the dataset."""
        label = deepcopy(self.labels[index])  # requires deepcopy() https://github.com/ultralytics/ultralytics/pull/1948
        label.pop("shape", None)  # shape is for rect, remove it
        label["img"], label["ori_shape"], label["resized_shape"] = self.load_image(index)
        label["ratio_pad"] = (
            label["resized_shape"][0] / label["ori_shape"][0],
            label["resized_shape"][1] / label["ori_shape"][1],
        )  # for evaluation
        if self.rect:
            label["rect_shape"] = self.batch_shapes[self.batch[index]]
        return self.update_labels_info(label)

    def __len__(self):
        """Returns the length of the labels list for the dataset."""
        return len(self.labels)

    def update_labels_info(self, label):
        """Custom your label format here."""
        return label

    def build_transforms(self, hyp=None):
        """
        Users can customize augmentations here.

        Example:
            ```python
            if self.augment:
                # Training transforms
                return Compose([])
            else:
                # Val transforms
                return Compose([])
            ```
        """
        raise NotImplementedError

    def get_labels(self):
        """
        Users can customize their own format here.

        Note:
            Ensure output is a dictionary with the following keys:
            ```python
            dict(
                im_file=im_file,
                shape=shape,  # format: (height, width)
                cls=cls,
                bboxes=bboxes, # xywh
                segments=segments,  # xy
                keypoints=keypoints, # xy
                normalized=True, # or False
                bbox_format="xyxy",  # or xywh, ltwh
            )
            ```
        """
        raise NotImplementedError

__getitem__(index)

Verilen dizin i├žin d├Ân├╝┼čt├╝r├╝lm├╝┼č etiket bilgilerini d├Ând├╝r├╝r.

Kaynak kodu ultralytics/data/base.py
def __getitem__(self, index):
    """Returns transformed label information for given index."""
    return self.transforms(self.get_image_and_label(index))

__init__(img_path, imgsz=640, cache=False, augment=True, hyp=DEFAULT_CFG, prefix='', rect=False, batch_size=16, stride=32, pad=0.5, single_cls=False, classes=None, fraction=1.0)

BaseDataset'i verilen yap─▒land─▒rma ve se├ženeklerle ba┼člat─▒r.

Kaynak kodu ultralytics/data/base.py
def __init__(
    self,
    img_path,
    imgsz=640,
    cache=False,
    augment=True,
    hyp=DEFAULT_CFG,
    prefix="",
    rect=False,
    batch_size=16,
    stride=32,
    pad=0.5,
    single_cls=False,
    classes=None,
    fraction=1.0,
):
    """Initialize BaseDataset with given configuration and options."""
    super().__init__()
    self.img_path = img_path
    self.imgsz = imgsz
    self.augment = augment
    self.single_cls = single_cls
    self.prefix = prefix
    self.fraction = fraction
    self.im_files = self.get_img_files(self.img_path)
    self.labels = self.get_labels()
    self.update_labels(include_class=classes)  # single_cls and include_class
    self.ni = len(self.labels)  # number of images
    self.rect = rect
    self.batch_size = batch_size
    self.stride = stride
    self.pad = pad
    if self.rect:
        assert self.batch_size is not None
        self.set_rectangle()

    # Buffer thread for mosaic images
    self.buffer = []  # buffer size = batch size
    self.max_buffer_length = min((self.ni, self.batch_size * 8, 1000)) if self.augment else 0

    # Cache images (options are cache = True, False, None, "ram", "disk")
    self.ims, self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni, [None] * self.ni
    self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files]
    self.cache = cache.lower() if isinstance(cache, str) else "ram" if cache is True else None
    if (self.cache == "ram" and self.check_cache_ram()) or self.cache == "disk":
        self.cache_images()

    # Transforms
    self.transforms = self.build_transforms(hyp=hyp)

__len__()

Veri k├╝mesi i├žin etiket listesinin uzunlu─čunu d├Ând├╝r├╝r.

Kaynak kodu ultralytics/data/base.py
def __len__(self):
    """Returns the length of the labels list for the dataset."""
    return len(self.labels)

build_transforms(hyp=None)

Kullan─▒c─▒lar burada g├╝├žlendirmeleri ├Âzelle┼čtirebilir.

├ľrnek
if self.augment:
    # Training transforms
    return Compose([])
else:
    # Val transforms
    return Compose([])
Kaynak kodu ultralytics/data/base.py
def build_transforms(self, hyp=None):
    """
    Users can customize augmentations here.

    Example:
        ```python
        if self.augment:
            # Training transforms
            return Compose([])
        else:
            # Val transforms
            return Compose([])
        ```
    """
    raise NotImplementedError

cache_images()

G├Âr├╝nt├╝leri belle─če veya diske ├Ânbelle─če al─▒n.

Kaynak kodu ultralytics/data/base.py
def cache_images(self):
    """Cache images to memory or disk."""
    b, gb = 0, 1 << 30  # bytes of cached images, bytes per gigabytes
    fcn, storage = (self.cache_images_to_disk, "Disk") if self.cache == "disk" else (self.load_image, "RAM")
    with ThreadPool(NUM_THREADS) as pool:
        results = pool.imap(fcn, range(self.ni))
        pbar = TQDM(enumerate(results), total=self.ni, disable=LOCAL_RANK > 0)
        for i, x in pbar:
            if self.cache == "disk":
                b += self.npy_files[i].stat().st_size
            else:  # 'ram'
                self.ims[i], self.im_hw0[i], self.im_hw[i] = x  # im, hw_orig, hw_resized = load_image(self, i)
                b += self.ims[i].nbytes
            pbar.desc = f"{self.prefix}Caching images ({b / gb:.1f}GB {storage})"
        pbar.close()

cache_images_to_disk(i)

Daha h─▒zl─▒ y├╝kleme i├žin bir g├Âr├╝nt├╝y├╝ *.npy dosyas─▒ olarak kaydeder.

Kaynak kodu ultralytics/data/base.py
def cache_images_to_disk(self, i):
    """Saves an image as an *.npy file for faster loading."""
    f = self.npy_files[i]
    if not f.exists():
        np.save(f.as_posix(), cv2.imread(self.im_files[i]), allow_pickle=False)

check_cache_ram(safety_margin=0.5)

Kullan─▒labilir belle─če kar┼č─▒ g├Âr├╝nt├╝ ├Ânbellekleme gereksinimlerini kontrol edin.

Kaynak kodu ultralytics/data/base.py
def check_cache_ram(self, safety_margin=0.5):
    """Check image caching requirements vs available memory."""
    b, gb = 0, 1 << 30  # bytes of cached images, bytes per gigabytes
    n = min(self.ni, 30)  # extrapolate from 30 random images
    for _ in range(n):
        im = cv2.imread(random.choice(self.im_files))  # sample image
        ratio = self.imgsz / max(im.shape[0], im.shape[1])  # max(h, w)  # ratio
        b += im.nbytes * ratio**2
    mem_required = b * self.ni / n * (1 + safety_margin)  # GB required to cache dataset into RAM
    mem = psutil.virtual_memory()
    success = mem_required < mem.available  # to cache or not to cache, that is the question
    if not success:
        self.cache = None
        LOGGER.info(
            f"{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images "
            f"with {int(safety_margin * 100)}% safety margin but only "
            f"{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, not caching images ÔÜá´ŞĆ"
        )
    return success

get_image_and_label(index)

Veri k├╝mesinden etiket bilgilerini al─▒n ve iade edin.

Kaynak kodu ultralytics/data/base.py
def get_image_and_label(self, index):
    """Get and return label information from the dataset."""
    label = deepcopy(self.labels[index])  # requires deepcopy() https://github.com/ultralytics/ultralytics/pull/1948
    label.pop("shape", None)  # shape is for rect, remove it
    label["img"], label["ori_shape"], label["resized_shape"] = self.load_image(index)
    label["ratio_pad"] = (
        label["resized_shape"][0] / label["ori_shape"][0],
        label["resized_shape"][1] / label["ori_shape"][1],
    )  # for evaluation
    if self.rect:
        label["rect_shape"] = self.batch_shapes[self.batch[index]]
    return self.update_labels_info(label)

get_img_files(img_path)

G├Âr├╝nt├╝ dosyalar─▒n─▒ okuyun.

Kaynak kodu ultralytics/data/base.py
def get_img_files(self, img_path):
    """Read image files."""
    try:
        f = []  # image files
        for p in img_path if isinstance(img_path, list) else [img_path]:
            p = Path(p)  # os-agnostic
            if p.is_dir():  # dir
                f += glob.glob(str(p / "**" / "*.*"), recursive=True)
                # F = list(p.rglob('*.*'))  # pathlib
            elif p.is_file():  # file
                with open(p) as t:
                    t = t.read().strip().splitlines()
                    parent = str(p.parent) + os.sep
                    f += [x.replace("./", parent) if x.startswith("./") else x for x in t]  # local to global path
                    # F += [p.parent / x.lstrip(os.sep) for x in t]  # local to global path (pathlib)
            else:
                raise FileNotFoundError(f"{self.prefix}{p} does not exist")
        im_files = sorted(x.replace("/", os.sep) for x in f if x.split(".")[-1].lower() in IMG_FORMATS)
        # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS])  # pathlib
        assert im_files, f"{self.prefix}No images found in {img_path}. {FORMATS_HELP_MSG}"
    except Exception as e:
        raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}\n{HELP_URL}") from e
    if self.fraction < 1:
        im_files = im_files[: round(len(im_files) * self.fraction)]  # retain a fraction of the dataset
    return im_files

get_labels()

Kullan─▒c─▒lar burada kendi formatlar─▒n─▒ ├Âzelle┼čtirebilirler.

Not

├ç─▒kt─▒n─▒n a┼ča─č─▒daki anahtarlara sahip bir s├Âzl├╝k oldu─čundan emin olun:

dict(
    im_file=im_file,
    shape=shape,  # format: (height, width)
    cls=cls,
    bboxes=bboxes, # xywh
    segments=segments,  # xy
    keypoints=keypoints, # xy
    normalized=True, # or False
    bbox_format="xyxy",  # or xywh, ltwh
)

Kaynak kodu ultralytics/data/base.py
def get_labels(self):
    """
    Users can customize their own format here.

    Note:
        Ensure output is a dictionary with the following keys:
        ```python
        dict(
            im_file=im_file,
            shape=shape,  # format: (height, width)
            cls=cls,
            bboxes=bboxes, # xywh
            segments=segments,  # xy
            keypoints=keypoints, # xy
            normalized=True, # or False
            bbox_format="xyxy",  # or xywh, ltwh
        )
        ```
    """
    raise NotImplementedError

load_image(i, rect_mode=True)

Veri k├╝mesi dizini 'i'den 1 g├Âr├╝nt├╝ y├╝kler, (im, yeniden boyutland─▒r─▒lm─▒┼č hw) d├Ând├╝r├╝r.

Kaynak kodu ultralytics/data/base.py
def load_image(self, i, rect_mode=True):
    """Loads 1 image from dataset index 'i', returns (im, resized hw)."""
    im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i]
    if im is None:  # not cached in RAM
        if fn.exists():  # load npy
            try:
                im = np.load(fn)
            except Exception as e:
                LOGGER.warning(f"{self.prefix}WARNING ÔÜá´ŞĆ Removing corrupt *.npy image file {fn} due to: {e}")
                Path(fn).unlink(missing_ok=True)
                im = cv2.imread(f)  # BGR
        else:  # read image
            im = cv2.imread(f)  # BGR
        if im is None:
            raise FileNotFoundError(f"Image Not Found {f}")

        h0, w0 = im.shape[:2]  # orig hw
        if rect_mode:  # resize long side to imgsz while maintaining aspect ratio
            r = self.imgsz / max(h0, w0)  # ratio
            if r != 1:  # if sizes are not equal
                w, h = (min(math.ceil(w0 * r), self.imgsz), min(math.ceil(h0 * r), self.imgsz))
                im = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
        elif not (h0 == w0 == self.imgsz):  # resize by stretching image to square imgsz
            im = cv2.resize(im, (self.imgsz, self.imgsz), interpolation=cv2.INTER_LINEAR)

        # Add to buffer if training with augmentations
        if self.augment:
            self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
            self.buffer.append(i)
            if 1 < len(self.buffer) >= self.max_buffer_length:  # prevent empty buffer
                j = self.buffer.pop(0)
                if self.cache != "ram":
                    self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None

        return im, (h0, w0), im.shape[:2]

    return self.ims[i], self.im_hw0[i], self.im_hw[i]

set_rectangle()

YOLO alg─▒lamalar─▒ i├žin s─▒n─▒rlay─▒c─▒ kutular─▒n ┼čeklini dikd├Ârtgen olarak ayarlar.

Kaynak kodu ultralytics/data/base.py
def set_rectangle(self):
    """Sets the shape of bounding boxes for YOLO detections as rectangles."""
    bi = np.floor(np.arange(self.ni) / self.batch_size).astype(int)  # batch index
    nb = bi[-1] + 1  # number of batches

    s = np.array([x.pop("shape") for x in self.labels])  # hw
    ar = s[:, 0] / s[:, 1]  # aspect ratio
    irect = ar.argsort()
    self.im_files = [self.im_files[i] for i in irect]
    self.labels = [self.labels[i] for i in irect]
    ar = ar[irect]

    # Set training image shapes
    shapes = [[1, 1]] * nb
    for i in range(nb):
        ari = ar[bi == i]
        mini, maxi = ari.min(), ari.max()
        if maxi < 1:
            shapes[i] = [maxi, 1]
        elif mini > 1:
            shapes[i] = [1, 1 / mini]

    self.batch_shapes = np.ceil(np.array(shapes) * self.imgsz / self.stride + self.pad).astype(int) * self.stride
    self.batch = bi  # batch index of image

update_labels(include_class)

Etiketleri yaln─▒zca bu s─▒n─▒flar─▒ i├žerecek ┼čekilde g├╝ncelleyin (iste─če ba─čl─▒).

Kaynak kodu ultralytics/data/base.py
def update_labels(self, include_class: Optional[list]):
    """Update labels to include only these classes (optional)."""
    include_class_array = np.array(include_class).reshape(1, -1)
    for i in range(len(self.labels)):
        if include_class is not None:
            cls = self.labels[i]["cls"]
            bboxes = self.labels[i]["bboxes"]
            segments = self.labels[i]["segments"]
            keypoints = self.labels[i]["keypoints"]
            j = (cls == include_class_array).any(1)
            self.labels[i]["cls"] = cls[j]
            self.labels[i]["bboxes"] = bboxes[j]
            if segments:
                self.labels[i]["segments"] = [segments[si] for si, idx in enumerate(j) if idx]
            if keypoints is not None:
                self.labels[i]["keypoints"] = keypoints[j]
        if self.single_cls:
            self.labels[i]["cls"][:, 0] = 0

update_labels_info(label)

Etiket format─▒n─▒z─▒ buradan ├Âzelle┼čtirin.

Kaynak kodu ultralytics/data/base.py
def update_labels_info(self, label):
    """Custom your label format here."""
    return label





Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (5), Burhan-Q (1)