─░├žeri─če ge├ž

Referans i├žin ultralytics/models/utils/loss.py

Not

Bu dosya https://github.com/ultralytics/ultralytics/blob/main/ ultralytics/models/utils/loss .py adresinde mevcuttur. Bir sorun tespit ederseniz l├╝tfen bir ├çekme ─░ste─či ­čŤá´ŞĆ ile katk─▒da bulunarak d├╝zeltilmesine yard─▒mc─▒ olun. Te┼čekk├╝rler ­čÖĆ!



ultralytics.models.utils.loss.DETRLoss

├ťsler: Module

DETR (DEtection TRansformer) Kay─▒p s─▒n─▒f─▒. Bu s─▒n─▒f, transformat├Âr i├žin farkl─▒ kay─▒p bile┼čenlerini hesaplar ve d├Ând├╝r├╝r. DETR nesne alg─▒lama modeli. S─▒n─▒fland─▒rma kayb─▒n─▒, s─▒n─▒rlay─▒c─▒ kutu kayb─▒n─▒, GIoU kayb─▒n─▒ ve iste─če ba─čl─▒ olarak yard─▒mc─▒ kay─▒plar.

Nitelikler:

─░sim Tip A├ž─▒klama
nc int

S─▒n─▒f say─▒s─▒.

loss_gain dict

Farkl─▒ kay─▒p bile┼čenleri i├žin katsay─▒lar.

aux_loss bool

Yard─▒mc─▒ kay─▒plar─▒n hesaplan─▒p hesaplanmayaca─č─▒.

use_fl bool

FocalLoss kullan─▒n ya da kullanmay─▒n.

use_vfl bool

VarifocalLoss kullan─▒n ya da kullanmay─▒n.

use_uni_match bool

Yard─▒mc─▒ dal i├žin etiket atamak ├╝zere sabit bir katman kullan─▒l─▒p kullan─▒lmayaca─č─▒.

uni_match_ind int

A┼ča─č─▒daki durumlarda kullan─▒lacak katman─▒n sabit indisleri use_uni_match Do─čru.

matcher HungarianMatcher

E┼čle┼čtirme maliyetini ve indeksleri hesaplamak i├žin nesne.

fl FocalLoss or None

Odak Kayb─▒ nesnesi e─čer use_fl True'dur, aksi takdirde None'd─▒r.

vfl VarifocalLoss or None

Varifokal Kay─▒p nesnesi e─čer use_vfl True'dur, aksi takdirde None'd─▒r.

device device

Tens├Ârlerin depoland─▒─č─▒ cihaz.

Kaynak kodu ultralytics/models/utils/loss.py
class DETRLoss(nn.Module):
    """
    DETR (DEtection TRansformer) Loss class. This class calculates and returns the different loss components for the
    DETR object detection model. It computes classification loss, bounding box loss, GIoU loss, and optionally auxiliary
    losses.

    Attributes:
        nc (int): The number of classes.
        loss_gain (dict): Coefficients for different loss components.
        aux_loss (bool): Whether to compute auxiliary losses.
        use_fl (bool): Use FocalLoss or not.
        use_vfl (bool): Use VarifocalLoss or not.
        use_uni_match (bool): Whether to use a fixed layer to assign labels for the auxiliary branch.
        uni_match_ind (int): The fixed indices of a layer to use if `use_uni_match` is True.
        matcher (HungarianMatcher): Object to compute matching cost and indices.
        fl (FocalLoss or None): Focal Loss object if `use_fl` is True, otherwise None.
        vfl (VarifocalLoss or None): Varifocal Loss object if `use_vfl` is True, otherwise None.
        device (torch.device): Device on which tensors are stored.
    """

    def __init__(
        self, nc=80, loss_gain=None, aux_loss=True, use_fl=True, use_vfl=False, use_uni_match=False, uni_match_ind=0
    ):
        """
        DETR loss function.

        Args:
            nc (int): The number of classes.
            loss_gain (dict): The coefficient of loss.
            aux_loss (bool): If 'aux_loss = True', loss at each decoder layer are to be used.
            use_vfl (bool): Use VarifocalLoss or not.
            use_uni_match (bool): Whether to use a fixed layer to assign labels for auxiliary branch.
            uni_match_ind (int): The fixed indices of a layer.
        """
        super().__init__()

        if loss_gain is None:
            loss_gain = {"class": 1, "bbox": 5, "giou": 2, "no_object": 0.1, "mask": 1, "dice": 1}
        self.nc = nc
        self.matcher = HungarianMatcher(cost_gain={"class": 2, "bbox": 5, "giou": 2})
        self.loss_gain = loss_gain
        self.aux_loss = aux_loss
        self.fl = FocalLoss() if use_fl else None
        self.vfl = VarifocalLoss() if use_vfl else None

        self.use_uni_match = use_uni_match
        self.uni_match_ind = uni_match_ind
        self.device = None

    def _get_loss_class(self, pred_scores, targets, gt_scores, num_gts, postfix=""):
        """Computes the classification loss based on predictions, target values, and ground truth scores."""
        # Logits: [b, query, num_classes], gt_class: list[[n, 1]]
        name_class = f"loss_class{postfix}"
        bs, nq = pred_scores.shape[:2]
        # one_hot = F.one_hot(targets, self.nc + 1)[..., :-1]  # (bs, num_queries, num_classes)
        one_hot = torch.zeros((bs, nq, self.nc + 1), dtype=torch.int64, device=targets.device)
        one_hot.scatter_(2, targets.unsqueeze(-1), 1)
        one_hot = one_hot[..., :-1]
        gt_scores = gt_scores.view(bs, nq, 1) * one_hot

        if self.fl:
            if num_gts and self.vfl:
                loss_cls = self.vfl(pred_scores, gt_scores, one_hot)
            else:
                loss_cls = self.fl(pred_scores, one_hot.float())
            loss_cls /= max(num_gts, 1) / nq
        else:
            loss_cls = nn.BCEWithLogitsLoss(reduction="none")(pred_scores, gt_scores).mean(1).sum()  # YOLO CLS loss

        return {name_class: loss_cls.squeeze() * self.loss_gain["class"]}

    def _get_loss_bbox(self, pred_bboxes, gt_bboxes, postfix=""):
        """Calculates and returns the bounding box loss and GIoU loss for the predicted and ground truth bounding
        boxes.
        """
        # Boxes: [b, query, 4], gt_bbox: list[[n, 4]]
        name_bbox = f"loss_bbox{postfix}"
        name_giou = f"loss_giou{postfix}"

        loss = {}
        if len(gt_bboxes) == 0:
            loss[name_bbox] = torch.tensor(0.0, device=self.device)
            loss[name_giou] = torch.tensor(0.0, device=self.device)
            return loss

        loss[name_bbox] = self.loss_gain["bbox"] * F.l1_loss(pred_bboxes, gt_bboxes, reduction="sum") / len(gt_bboxes)
        loss[name_giou] = 1.0 - bbox_iou(pred_bboxes, gt_bboxes, xywh=True, GIoU=True)
        loss[name_giou] = loss[name_giou].sum() / len(gt_bboxes)
        loss[name_giou] = self.loss_gain["giou"] * loss[name_giou]
        return {k: v.squeeze() for k, v in loss.items()}

    # This function is for future RT-DETR Segment models
    # def _get_loss_mask(self, masks, gt_mask, match_indices, postfix=''):
    #     # masks: [b, query, h, w], gt_mask: list[[n, H, W]]
    #     name_mask = f'loss_mask{postfix}'
    #     name_dice = f'loss_dice{postfix}'
    #
    #     loss = {}
    #     if sum(len(a) for a in gt_mask) == 0:
    #         loss[name_mask] = torch.tensor(0., device=self.device)
    #         loss[name_dice] = torch.tensor(0., device=self.device)
    #         return loss
    #
    #     num_gts = len(gt_mask)
    #     src_masks, target_masks = self._get_assigned_bboxes(masks, gt_mask, match_indices)
    #     src_masks = F.interpolate(src_masks.unsqueeze(0), size=target_masks.shape[-2:], mode='bilinear')[0]
    #     # TODO: torch does not have `sigmoid_focal_loss`, but it's not urgent since we don't use mask branch for now.
    #     loss[name_mask] = self.loss_gain['mask'] * F.sigmoid_focal_loss(src_masks, target_masks,
    #                                                                     torch.tensor([num_gts], dtype=torch.float32))
    #     loss[name_dice] = self.loss_gain['dice'] * self._dice_loss(src_masks, target_masks, num_gts)
    #     return loss

    # This function is for future RT-DETR Segment models
    # @staticmethod
    # def _dice_loss(inputs, targets, num_gts):
    #     inputs = F.sigmoid(inputs).flatten(1)
    #     targets = targets.flatten(1)
    #     numerator = 2 * (inputs * targets).sum(1)
    #     denominator = inputs.sum(-1) + targets.sum(-1)
    #     loss = 1 - (numerator + 1) / (denominator + 1)
    #     return loss.sum() / num_gts

    def _get_loss_aux(
        self,
        pred_bboxes,
        pred_scores,
        gt_bboxes,
        gt_cls,
        gt_groups,
        match_indices=None,
        postfix="",
        masks=None,
        gt_mask=None,
    ):
        """Get auxiliary losses."""
        # NOTE: loss class, bbox, giou, mask, dice
        loss = torch.zeros(5 if masks is not None else 3, device=pred_bboxes.device)
        if match_indices is None and self.use_uni_match:
            match_indices = self.matcher(
                pred_bboxes[self.uni_match_ind],
                pred_scores[self.uni_match_ind],
                gt_bboxes,
                gt_cls,
                gt_groups,
                masks=masks[self.uni_match_ind] if masks is not None else None,
                gt_mask=gt_mask,
            )
        for i, (aux_bboxes, aux_scores) in enumerate(zip(pred_bboxes, pred_scores)):
            aux_masks = masks[i] if masks is not None else None
            loss_ = self._get_loss(
                aux_bboxes,
                aux_scores,
                gt_bboxes,
                gt_cls,
                gt_groups,
                masks=aux_masks,
                gt_mask=gt_mask,
                postfix=postfix,
                match_indices=match_indices,
            )
            loss[0] += loss_[f"loss_class{postfix}"]
            loss[1] += loss_[f"loss_bbox{postfix}"]
            loss[2] += loss_[f"loss_giou{postfix}"]
            # if masks is not None and gt_mask is not None:
            #     loss_ = self._get_loss_mask(aux_masks, gt_mask, match_indices, postfix)
            #     loss[3] += loss_[f'loss_mask{postfix}']
            #     loss[4] += loss_[f'loss_dice{postfix}']

        loss = {
            f"loss_class_aux{postfix}": loss[0],
            f"loss_bbox_aux{postfix}": loss[1],
            f"loss_giou_aux{postfix}": loss[2],
        }
        # if masks is not None and gt_mask is not None:
        #     loss[f'loss_mask_aux{postfix}'] = loss[3]
        #     loss[f'loss_dice_aux{postfix}'] = loss[4]
        return loss

    @staticmethod
    def _get_index(match_indices):
        """Returns batch indices, source indices, and destination indices from provided match indices."""
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(match_indices)])
        src_idx = torch.cat([src for (src, _) in match_indices])
        dst_idx = torch.cat([dst for (_, dst) in match_indices])
        return (batch_idx, src_idx), dst_idx

    def _get_assigned_bboxes(self, pred_bboxes, gt_bboxes, match_indices):
        """Assigns predicted bounding boxes to ground truth bounding boxes based on the match indices."""
        pred_assigned = torch.cat(
            [
                t[i] if len(i) > 0 else torch.zeros(0, t.shape[-1], device=self.device)
                for t, (i, _) in zip(pred_bboxes, match_indices)
            ]
        )
        gt_assigned = torch.cat(
            [
                t[j] if len(j) > 0 else torch.zeros(0, t.shape[-1], device=self.device)
                for t, (_, j) in zip(gt_bboxes, match_indices)
            ]
        )
        return pred_assigned, gt_assigned

    def _get_loss(
        self,
        pred_bboxes,
        pred_scores,
        gt_bboxes,
        gt_cls,
        gt_groups,
        masks=None,
        gt_mask=None,
        postfix="",
        match_indices=None,
    ):
        """Get losses."""
        if match_indices is None:
            match_indices = self.matcher(
                pred_bboxes, pred_scores, gt_bboxes, gt_cls, gt_groups, masks=masks, gt_mask=gt_mask
            )

        idx, gt_idx = self._get_index(match_indices)
        pred_bboxes, gt_bboxes = pred_bboxes[idx], gt_bboxes[gt_idx]

        bs, nq = pred_scores.shape[:2]
        targets = torch.full((bs, nq), self.nc, device=pred_scores.device, dtype=gt_cls.dtype)
        targets[idx] = gt_cls[gt_idx]

        gt_scores = torch.zeros([bs, nq], device=pred_scores.device)
        if len(gt_bboxes):
            gt_scores[idx] = bbox_iou(pred_bboxes.detach(), gt_bboxes, xywh=True).squeeze(-1)

        loss = {}
        loss.update(self._get_loss_class(pred_scores, targets, gt_scores, len(gt_bboxes), postfix))
        loss.update(self._get_loss_bbox(pred_bboxes, gt_bboxes, postfix))
        # if masks is not None and gt_mask is not None:
        #     loss.update(self._get_loss_mask(masks, gt_mask, match_indices, postfix))
        return loss

    def forward(self, pred_bboxes, pred_scores, batch, postfix="", **kwargs):
        """
        Args:
            pred_bboxes (torch.Tensor): [l, b, query, 4]
            pred_scores (torch.Tensor): [l, b, query, num_classes]
            batch (dict): A dict includes:
                gt_cls (torch.Tensor) with shape [num_gts, ],
                gt_bboxes (torch.Tensor): [num_gts, 4],
                gt_groups (List(int)): a list of batch size length includes the number of gts of each image.
            postfix (str): postfix of loss name.
        """
        self.device = pred_bboxes.device
        match_indices = kwargs.get("match_indices", None)
        gt_cls, gt_bboxes, gt_groups = batch["cls"], batch["bboxes"], batch["gt_groups"]

        total_loss = self._get_loss(
            pred_bboxes[-1], pred_scores[-1], gt_bboxes, gt_cls, gt_groups, postfix=postfix, match_indices=match_indices
        )

        if self.aux_loss:
            total_loss.update(
                self._get_loss_aux(
                    pred_bboxes[:-1], pred_scores[:-1], gt_bboxes, gt_cls, gt_groups, match_indices, postfix
                )
            )

        return total_loss

__init__(nc=80, loss_gain=None, aux_loss=True, use_fl=True, use_vfl=False, use_uni_match=False, uni_match_ind=0)

DETR kay─▒p fonksiyonu.

Parametreler:

─░sim Tip A├ž─▒klama Varsay─▒lan
nc int

S─▒n─▒f say─▒s─▒.

80
loss_gain dict

Kay─▒p katsay─▒s─▒.

None
aux_loss bool

'aux_loss = True' ise, her kod ├ž├Âz├╝c├╝ katman─▒ndaki kay─▒p kullan─▒lacakt─▒r.

True
use_vfl bool

VarifocalLoss kullan─▒n ya da kullanmay─▒n.

False
use_uni_match bool

Yard─▒mc─▒ bran┼č i├žin etiket atamak ├╝zere sabit bir katman kullan─▒l─▒p kullan─▒lmayaca─č─▒.

False
uni_match_ind int

Bir katman─▒n sabit indeksleri.

0
Kaynak kodu ultralytics/models/utils/loss.py
def __init__(
    self, nc=80, loss_gain=None, aux_loss=True, use_fl=True, use_vfl=False, use_uni_match=False, uni_match_ind=0
):
    """
    DETR loss function.

    Args:
        nc (int): The number of classes.
        loss_gain (dict): The coefficient of loss.
        aux_loss (bool): If 'aux_loss = True', loss at each decoder layer are to be used.
        use_vfl (bool): Use VarifocalLoss or not.
        use_uni_match (bool): Whether to use a fixed layer to assign labels for auxiliary branch.
        uni_match_ind (int): The fixed indices of a layer.
    """
    super().__init__()

    if loss_gain is None:
        loss_gain = {"class": 1, "bbox": 5, "giou": 2, "no_object": 0.1, "mask": 1, "dice": 1}
    self.nc = nc
    self.matcher = HungarianMatcher(cost_gain={"class": 2, "bbox": 5, "giou": 2})
    self.loss_gain = loss_gain
    self.aux_loss = aux_loss
    self.fl = FocalLoss() if use_fl else None
    self.vfl = VarifocalLoss() if use_vfl else None

    self.use_uni_match = use_uni_match
    self.uni_match_ind = uni_match_ind
    self.device = None

forward(pred_bboxes, pred_scores, batch, postfix='', **kwargs)

Parametreler:

─░sim Tip A├ž─▒klama Varsay─▒lan
pred_bboxes Tensor

[l, b, sorgu, 4]

gerekli
pred_scores Tensor

[l, b, query, num_classes]

gerekli
batch dict

Bir dict ┼čunlar─▒ i├žerir: gt_cls (torch.Tensor) ile ┼čekil [num_gts, ], gt_bboxes (torch.Tensor): [num_gts, 4], gt_groups (Liste(int)): her g├Âr├╝nt├╝n├╝n gts say─▒s─▒n─▒ i├žeren toplu i┼č boyutu uzunlu─čunda bir liste.

gerekli
postfix str

kay─▒p ad─▒n─▒n son eki.

''
Kaynak kodu ultralytics/models/utils/loss.py
def forward(self, pred_bboxes, pred_scores, batch, postfix="", **kwargs):
    """
    Args:
        pred_bboxes (torch.Tensor): [l, b, query, 4]
        pred_scores (torch.Tensor): [l, b, query, num_classes]
        batch (dict): A dict includes:
            gt_cls (torch.Tensor) with shape [num_gts, ],
            gt_bboxes (torch.Tensor): [num_gts, 4],
            gt_groups (List(int)): a list of batch size length includes the number of gts of each image.
        postfix (str): postfix of loss name.
    """
    self.device = pred_bboxes.device
    match_indices = kwargs.get("match_indices", None)
    gt_cls, gt_bboxes, gt_groups = batch["cls"], batch["bboxes"], batch["gt_groups"]

    total_loss = self._get_loss(
        pred_bboxes[-1], pred_scores[-1], gt_bboxes, gt_cls, gt_groups, postfix=postfix, match_indices=match_indices
    )

    if self.aux_loss:
        total_loss.update(
            self._get_loss_aux(
                pred_bboxes[:-1], pred_scores[:-1], gt_bboxes, gt_cls, gt_groups, match_indices, postfix
            )
        )

    return total_loss



ultralytics.models.utils.loss.RTDETRDetectionLoss

├ťsler: DETRLoss

DETRLoss'u geni┼čleten Ger├žek Zamanl─▒ DeepTracker (RT-DETR) Tespit Kayb─▒ s─▒n─▒f─▒.

Bu s─▒n─▒f, RT-DETR modeli i├žin standart alg─▒lama kayb─▒n─▒n yan─▒ s─▒ra a┼ča─č─▒dakileri de i├žeren alg─▒lama kayb─▒n─▒ hesaplar denoising meta verileri sa─čland─▒─č─▒nda ek bir denoising e─čitim kayb─▒.

Kaynak kodu ultralytics/models/utils/loss.py
class RTDETRDetectionLoss(DETRLoss):
    """
    Real-Time DeepTracker (RT-DETR) Detection Loss class that extends the DETRLoss.

    This class computes the detection loss for the RT-DETR model, which includes the standard detection loss as well as
    an additional denoising training loss when provided with denoising metadata.
    """

    def forward(self, preds, batch, dn_bboxes=None, dn_scores=None, dn_meta=None):
        """
        Forward pass to compute the detection loss.

        Args:
            preds (tuple): Predicted bounding boxes and scores.
            batch (dict): Batch data containing ground truth information.
            dn_bboxes (torch.Tensor, optional): Denoising bounding boxes. Default is None.
            dn_scores (torch.Tensor, optional): Denoising scores. Default is None.
            dn_meta (dict, optional): Metadata for denoising. Default is None.

        Returns:
            (dict): Dictionary containing the total loss and, if applicable, the denoising loss.
        """
        pred_bboxes, pred_scores = preds
        total_loss = super().forward(pred_bboxes, pred_scores, batch)

        # Check for denoising metadata to compute denoising training loss
        if dn_meta is not None:
            dn_pos_idx, dn_num_group = dn_meta["dn_pos_idx"], dn_meta["dn_num_group"]
            assert len(batch["gt_groups"]) == len(dn_pos_idx)

            # Get the match indices for denoising
            match_indices = self.get_dn_match_indices(dn_pos_idx, dn_num_group, batch["gt_groups"])

            # Compute the denoising training loss
            dn_loss = super().forward(dn_bboxes, dn_scores, batch, postfix="_dn", match_indices=match_indices)
            total_loss.update(dn_loss)
        else:
            # If no denoising metadata is provided, set denoising loss to zero
            total_loss.update({f"{k}_dn": torch.tensor(0.0, device=self.device) for k in total_loss.keys()})

        return total_loss

    @staticmethod
    def get_dn_match_indices(dn_pos_idx, dn_num_group, gt_groups):
        """
        Get the match indices for denoising.

        Args:
            dn_pos_idx (List[torch.Tensor]): List of tensors containing positive indices for denoising.
            dn_num_group (int): Number of denoising groups.
            gt_groups (List[int]): List of integers representing the number of ground truths for each image.

        Returns:
            (List[tuple]): List of tuples containing matched indices for denoising.
        """
        dn_match_indices = []
        idx_groups = torch.as_tensor([0, *gt_groups[:-1]]).cumsum_(0)
        for i, num_gt in enumerate(gt_groups):
            if num_gt > 0:
                gt_idx = torch.arange(end=num_gt, dtype=torch.long) + idx_groups[i]
                gt_idx = gt_idx.repeat(dn_num_group)
                assert len(dn_pos_idx[i]) == len(gt_idx), "Expected the same length, "
                f"but got {len(dn_pos_idx[i])} and {len(gt_idx)} respectively."
                dn_match_indices.append((dn_pos_idx[i], gt_idx))
            else:
                dn_match_indices.append((torch.zeros([0], dtype=torch.long), torch.zeros([0], dtype=torch.long)))
        return dn_match_indices

forward(preds, batch, dn_bboxes=None, dn_scores=None, dn_meta=None)

Alg─▒lama kayb─▒n─▒ hesaplamak i├žin ileri ge├ži┼č.

Parametreler:

─░sim Tip A├ž─▒klama Varsay─▒lan
preds tuple

Tahmin edilen s─▒n─▒rlay─▒c─▒ kutular ve puanlar.

gerekli
batch dict

Temel ger├žek bilgilerini i├žeren toplu veriler.

gerekli
dn_bboxes Tensor

S─▒n─▒rlay─▒c─▒ kutular─▒ denoising. Varsay─▒lan de─čer Yok'tur.

None
dn_scores Tensor

Denoising puanlar─▒. Varsay─▒lan de─čer Yok'tur.

None
dn_meta dict

Denoising i├žin meta veriler. Varsay─▒lan de─čer Yok'tur.

None

─░ade:

Tip A├ž─▒klama
dict

Toplam kayb─▒ ve varsa denoising kayb─▒n─▒ i├žeren s├Âzl├╝k.

Kaynak kodu ultralytics/models/utils/loss.py
def forward(self, preds, batch, dn_bboxes=None, dn_scores=None, dn_meta=None):
    """
    Forward pass to compute the detection loss.

    Args:
        preds (tuple): Predicted bounding boxes and scores.
        batch (dict): Batch data containing ground truth information.
        dn_bboxes (torch.Tensor, optional): Denoising bounding boxes. Default is None.
        dn_scores (torch.Tensor, optional): Denoising scores. Default is None.
        dn_meta (dict, optional): Metadata for denoising. Default is None.

    Returns:
        (dict): Dictionary containing the total loss and, if applicable, the denoising loss.
    """
    pred_bboxes, pred_scores = preds
    total_loss = super().forward(pred_bboxes, pred_scores, batch)

    # Check for denoising metadata to compute denoising training loss
    if dn_meta is not None:
        dn_pos_idx, dn_num_group = dn_meta["dn_pos_idx"], dn_meta["dn_num_group"]
        assert len(batch["gt_groups"]) == len(dn_pos_idx)

        # Get the match indices for denoising
        match_indices = self.get_dn_match_indices(dn_pos_idx, dn_num_group, batch["gt_groups"])

        # Compute the denoising training loss
        dn_loss = super().forward(dn_bboxes, dn_scores, batch, postfix="_dn", match_indices=match_indices)
        total_loss.update(dn_loss)
    else:
        # If no denoising metadata is provided, set denoising loss to zero
        total_loss.update({f"{k}_dn": torch.tensor(0.0, device=self.device) for k in total_loss.keys()})

    return total_loss

get_dn_match_indices(dn_pos_idx, dn_num_group, gt_groups) staticmethod

Denoising i├žin e┼čle┼čme indekslerini al─▒n.

Parametreler:

─░sim Tip A├ž─▒klama Varsay─▒lan
dn_pos_idx List[Tensor]

Denoising i├žin pozitif indisler i├žeren tens├Ârlerin listesi.

gerekli
dn_num_group int

Denoising gruplar─▒n─▒n say─▒s─▒.

gerekli
gt_groups List[int]

Her g├Âr├╝nt├╝ i├žin temel ger├žeklerin say─▒s─▒n─▒ temsil eden tamsay─▒lar─▒n listesi.

gerekli

─░ade:

Tip A├ž─▒klama
List[tuple]

Denoising i├žin e┼čle┼čen indisleri i├žeren tuple'lar─▒n listesi.

Kaynak kodu ultralytics/models/utils/loss.py
@staticmethod
def get_dn_match_indices(dn_pos_idx, dn_num_group, gt_groups):
    """
    Get the match indices for denoising.

    Args:
        dn_pos_idx (List[torch.Tensor]): List of tensors containing positive indices for denoising.
        dn_num_group (int): Number of denoising groups.
        gt_groups (List[int]): List of integers representing the number of ground truths for each image.

    Returns:
        (List[tuple]): List of tuples containing matched indices for denoising.
    """
    dn_match_indices = []
    idx_groups = torch.as_tensor([0, *gt_groups[:-1]]).cumsum_(0)
    for i, num_gt in enumerate(gt_groups):
        if num_gt > 0:
            gt_idx = torch.arange(end=num_gt, dtype=torch.long) + idx_groups[i]
            gt_idx = gt_idx.repeat(dn_num_group)
            assert len(dn_pos_idx[i]) == len(gt_idx), "Expected the same length, "
            f"but got {len(dn_pos_idx[i])} and {len(gt_idx)} respectively."
            dn_match_indices.append((dn_pos_idx[i], gt_idx))
        else:
            dn_match_indices.append((torch.zeros([0], dtype=torch.long), torch.zeros([0], dtype=torch.long)))
    return dn_match_indices





Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (5), Burhan-Q (1), Laughing-q (1)