Bỏ để qua phần nội dung

Tài liệu tham khảo cho ultralytics/models/yolo/segment/train.py

Ghi

Tệp này có sẵn tại https://github.com/ultralytics/ultralytics/blob/main/ultralytics/Mô hình/yolo/segment/train.py. Nếu bạn phát hiện ra một vấn đề, vui lòng giúp khắc phục nó bằng cách đóng góp Yêu cầu 🛠️ kéo. Cảm ơn bạn 🙏 !



ultralytics.models.yolo.segment.train.SegmentationTrainer

Căn cứ: DetectionTrainer

Một lớp mở rộng lớp DetectionTrainer để đào tạo dựa trên mô hình phân đoạn.

Ví dụ
from ultralytics.models.yolo.segment import SegmentationTrainer

args = dict(model='yolov8n-seg.pt', data='coco8-seg.yaml', epochs=3)
trainer = SegmentationTrainer(overrides=args)
trainer.train()
Mã nguồn trong ultralytics/models/yolo/segment/train.py
class SegmentationTrainer(yolo.detect.DetectionTrainer):
    """
    A class extending the DetectionTrainer class for training based on a segmentation model.

    Example:
        ```python
        from ultralytics.models.yolo.segment import SegmentationTrainer

        args = dict(model='yolov8n-seg.pt', data='coco8-seg.yaml', epochs=3)
        trainer = SegmentationTrainer(overrides=args)
        trainer.train()
        ```
    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """Initialize a SegmentationTrainer object with given arguments."""
        if overrides is None:
            overrides = {}
        overrides["task"] = "segment"
        super().__init__(cfg, overrides, _callbacks)

    def get_model(self, cfg=None, weights=None, verbose=True):
        """Return SegmentationModel initialized with specified config and weights."""
        model = SegmentationModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose and RANK == -1)
        if weights:
            model.load(weights)

        return model

    def get_validator(self):
        """Return an instance of SegmentationValidator for validation of YOLO model."""
        self.loss_names = "box_loss", "seg_loss", "cls_loss", "dfl_loss"
        return yolo.segment.SegmentationValidator(
            self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
        )

    def plot_training_samples(self, batch, ni):
        """Creates a plot of training sample images with labels and box coordinates."""
        plot_images(
            batch["img"],
            batch["batch_idx"],
            batch["cls"].squeeze(-1),
            batch["bboxes"],
            masks=batch["masks"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

    def plot_metrics(self):
        """Plots training/val metrics."""
        plot_results(file=self.csv, segment=True, on_plot=self.on_plot)  # save results.png

__init__(cfg=DEFAULT_CFG, overrides=None, _callbacks=None)

Khởi tạo một đối tượng SegmentationTrainer với các đối số đã cho.

Mã nguồn trong ultralytics/models/yolo/segment/train.py
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
    """Initialize a SegmentationTrainer object with given arguments."""
    if overrides is None:
        overrides = {}
    overrides["task"] = "segment"
    super().__init__(cfg, overrides, _callbacks)

get_model(cfg=None, weights=None, verbose=True)

Return SegmentationModel được khởi tạo với cấu hình và trọng số được chỉ định.

Mã nguồn trong ultralytics/models/yolo/segment/train.py
def get_model(self, cfg=None, weights=None, verbose=True):
    """Return SegmentationModel initialized with specified config and weights."""
    model = SegmentationModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose and RANK == -1)
    if weights:
        model.load(weights)

    return model

get_validator()

Trả về một phiên bản của SegmentationValidator để xác thực YOLO mẫu.

Mã nguồn trong ultralytics/models/yolo/segment/train.py
def get_validator(self):
    """Return an instance of SegmentationValidator for validation of YOLO model."""
    self.loss_names = "box_loss", "seg_loss", "cls_loss", "dfl_loss"
    return yolo.segment.SegmentationValidator(
        self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
    )

plot_metrics()

Biểu đồ số liệu đào tạo / val.

Mã nguồn trong ultralytics/models/yolo/segment/train.py
def plot_metrics(self):
    """Plots training/val metrics."""
    plot_results(file=self.csv, segment=True, on_plot=self.on_plot)  # save results.png

plot_training_samples(batch, ni)

Tạo một sơ đồ hình ảnh mẫu đào tạo với nhãn và tọa độ hộp.

Mã nguồn trong ultralytics/models/yolo/segment/train.py
def plot_training_samples(self, batch, ni):
    """Creates a plot of training sample images with labels and box coordinates."""
    plot_images(
        batch["img"],
        batch["batch_idx"],
        batch["cls"].squeeze(-1),
        batch["bboxes"],
        masks=batch["masks"],
        paths=batch["im_file"],
        fname=self.save_dir / f"train_batch{ni}.jpg",
        on_plot=self.on_plot,
    )





Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (5), Burhan-Q (1)