跳至内容

A Step-by-Step Guide to Training YOLO11 Models with IBM Watsonx

如今,可扩展的计算机视觉解决方案正变得越来越普遍,并改变着我们处理视觉数据的方式。IBM Watsonx 就是一个很好的例子,它是一个先进的人工智能和数据平台,可以简化人工智能模型的开发、部署和管理。它为整个人工智能生命周期提供了一个完整的套件,并与 IBM 云服务实现了无缝集成。

You can train Ultralytics YOLO11 models using IBM Watsonx. It's a good option for enterprises interested in efficient model training, fine-tuning for specific tasks, and improving model performance with robust tools and a user-friendly setup. In this guide, we'll walk you through the process of training YOLO11 with IBM Watsonx, covering everything from setting up your environment to evaluating your trained models. Let's get started!

什么是 IBM Watsonx?

Watsonx is IBM's cloud-based platform designed for commercial generative AI and scientific data. IBM Watsonx's three components - watsonx.ai, watsonx.data, and watsonx.governance - come together to create an end-to-end, trustworthy AI platform that can accelerate AI projects aimed at solving business problems. It provides powerful tools for building, training, and deploying machine learning models and makes it easy to connect with various data sources.

IBM Watsonx 概览

Its user-friendly interface and collaborative capabilities streamline the development process and help with efficient model management and deployment. Whether for computer vision, predictive analytics, natural language processing, or other AI applications, IBM Watsonx provides the tools and support needed to drive innovation.

IBM Watsonx 的主要功能

IBM Watsonx 由三个主要组件组成:watsonx.ai、watsonx.data 和 watsonx.governance。每个组件都针对人工智能和数据管理的不同方面提供功能。让我们来详细了解一下它们。

Watsonx.ai

Watsonx.ai 为人工智能开发提供了强大的工具,可访问 IBM 支持的自定义模型、第三方模型(如Llama 3)以及 IBM 自己的 Granite 模型。它包括用于实验人工智能提示的提示实验室(Prompt Lab)、用于利用标注数据提高模型性能的调整工作室(Tuning Studio)以及用于简化生成式人工智能应用开发的流程引擎(Flows Engine)。此外,它还提供了用于实现人工智能模型生命周期自动化以及连接各种 API 和库的综合工具。

Watsonx.data

Watsonx.data 通过 IBM Storage Fusion HCI 集成支持云和内部部署。其用户友好型控制台提供跨环境的集中数据访问,并通过普通 SQL 使数据探索变得简单。它利用 Presto 和 Spark 等高效查询引擎优化工作负载,利用人工智能驱动的语义层加速数据洞察,包括一个用于人工智能相关性的向量数据库,并支持开放数据格式以轻松共享分析和人工智能数据。

Watsonx.governance

Watsonx.governance 可自动识别监管变化并执行政策,使合规变得更容易。它将要求与内部风险数据联系起来,并提供最新的人工智能情况说明书。该平台通过警报和工具来检测偏差和漂移等问题,从而帮助管理风险。它还能自动监控和记录人工智能生命周期,通过模型清单组织人工智能开发,并通过用户友好的仪表板和报告工具加强协作。

How to Train YOLO11 Using IBM Watsonx

You can use IBM Watsonx to accelerate your YOLO11 model training workflow.

先决条件

创建watsonx.ai项目需要IBM Cloud 帐户,加载数据集也需要Kaggle帐户。

步骤 1:设置环境

首先,您需要设置一个 IBM 帐户来使用 Jupyter Notebook。使用您的 IBM 云帐户登录watsonx.ai

然后,创建一个watsonx.ai 项目和一个Jupyter Notebook

完成此操作后,笔记本环境就会打开,供您加载数据集。您可以使用本教程中的代码来完成一个简单的物体检测模型训练任务。

第 2 步:安装并导入相关库

接下来,您可以安装并导入必要的Python 库。

安装

# Install the required packages
pip install torch torchvision torchaudio
pip install opencv-contrib-python-headless
pip install ultralytics==8.0.196

For detailed instructions and best practices related to the installation process, check our Ultralytics Installation guide. While installing the required packages for YOLO11, if you encounter any difficulties, consult our Common Issues guide for solutions and tips.

然后,就可以导入所需的软件包了。

导入相关库

# Import ultralytics
import ultralytics

ultralytics.checks()

# Import packages to retrieve and display image files

步骤 3:加载数据

For this tutorial, we will use a marine litter dataset available on Kaggle. With this dataset, we will custom-train a YOLO11 model to detect and classify litter and biological objects in underwater images.

我们可以使用 Kaggle API 将数据集直接加载到笔记本中。首先,创建一个免费的 Kaggle 账户。创建账户后,您需要生成一个 API 密钥。在Kaggle API 文档的 "API 凭据 "部分可以找到生成密钥的方法。

将你的 Kaggle 用户名和 API 密钥复制并粘贴到以下代码中。然后运行代码,安装 API 并将数据集加载到 Watsonx 中。

安装

# Install kaggle
pip install kaggle

安装 Kaggle 后,我们就可以将数据集加载到 Watsonx 中。

加载数据

# Replace "username" string with your username
os.environ["KAGGLE_USERNAME"] = "username"
# Replace "apiKey" string with your key
os.environ["KAGGLE_KEY"] = "apiKey"

# Load dataset
os.system("kaggle datasets download atiqishrak/trash-dataset-icra19 --unzip")

# Store working directory path as work_dir
work_dir = os.getcwd()

# Print work_dir path
print(os.getcwd())

# Print work_dir contents
print(os.listdir(f"{work_dir}"))

# Print trash_ICRA19 subdirectory contents
print(os.listdir(f"{work_dir}/trash_ICRA19"))

加载数据集后,我们打印并保存了工作目录。我们还打印了工作目录的内容,以确认 "trash_ICRA19 "数据集已正确加载。

如果在目录内容中看到 "trash_ICRA19",则表示加载成功。你应该看到三个文件/文件夹:a config.yaml 文件,一个 videos_for_testing 目录,以及一个 dataset 目录。我们将忽略 videos_for_testing 目录,所以请随意删除它。

We will use the config.yaml file and the contents of the dataset directory to train our object detection model. Here is a sample image from our marine litter data set.

带边箱的海洋垃圾

步骤 4:预处理数据

幸运的是,海洋垃圾数据集中的所有标签都已经格式化为YOLO .txt 文件。不过,我们需要重新安排图像和标签目录的结构,以帮助我们的模型处理图像和标签。现在,我们加载的数据集目录是这样的结构:

加载的数据集目录

但是,YOLO 模型默认情况下需要将图像和标签分别放在 train/val/test 分割的子目录中。我们需要将目录重组为以下结构:

Yolo 目录结构

要重组数据集目录,我们可以运行以下脚本:

预处理数据

# Function to reorganize dir
def organize_files(directory):
    for subdir in ["train", "test", "val"]:
        subdir_path = os.path.join(directory, subdir)
        if not os.path.exists(subdir_path):
            continue

        images_dir = os.path.join(subdir_path, "images")
        labels_dir = os.path.join(subdir_path, "labels")

        # Create image and label subdirs if non-existent
        os.makedirs(images_dir, exist_ok=True)
        os.makedirs(labels_dir, exist_ok=True)

        # Move images and labels to respective subdirs
        for filename in os.listdir(subdir_path):
            if filename.endswith(".txt"):
                shutil.move(os.path.join(subdir_path, filename), os.path.join(labels_dir, filename))
            elif filename.endswith(".jpg") or filename.endswith(".png") or filename.endswith(".jpeg"):
                shutil.move(os.path.join(subdir_path, filename), os.path.join(images_dir, filename))
            # Delete .xml files
            elif filename.endswith(".xml"):
                os.remove(os.path.join(subdir_path, filename))


if __name__ == "__main__":
    directory = f"{work_dir}/trash_ICRA19/dataset"
    organize_files(directory)

接下来,我们需要修改数据集的 .yaml 文件。这是我们将在 .yaml 文件中使用的设置。类 ID 编号从 0 开始:

path: /path/to/dataset/directory # root directory for dataset
train: train/images # train images subdirectory
val: train/images # validation images subdirectory
test: test/images # test images subdirectory

# Classes
names:
    0: plastic
    1: bio
    2: rov

运行以下脚本删除 config.yaml 的当前内容,并用上述内容替换,以反映新的数据集目录结构。请务必将第 4 行根目录路径中的 work_dir 部分替换为我们之前获取的工作目录路径。保留 train、val 和 test 子目录定义。此外,不要更改代码第 23 行中的 {work_dir}。

编辑 .yaml 文件

# Contents of new confg.yaml file
def update_yaml_file(file_path):
    data = {
        "path": "work_dir/trash_ICRA19/dataset",
        "train": "train/images",
        "val": "train/images",
        "test": "test/images",
        "names": {0: "plastic", 1: "bio", 2: "rov"},
    }

    # Ensures the "names" list appears after the sub/directories
    names_data = data.pop("names")
    with open(file_path, "w") as yaml_file:
        yaml.dump(data, yaml_file)
        yaml_file.write("\n")
        yaml.dump({"names": names_data}, yaml_file)


if __name__ == "__main__":
    file_path = f"{work_dir}/trash_ICRA19/config.yaml"  # .yaml file path
    update_yaml_file(file_path)
    print(f"{file_path} updated successfully.")

Step 5: Train the YOLO11 model

Run the following command-line code to fine tune a pretrained default YOLO11 model.

Train the YOLO11 model

!yolo task=detect mode=train data={work_dir}/trash_ICRA19/config.yaml model=yolo11n.pt epochs=2 batch=32 lr0=.04 plots=True

下面我们来看看模型训练命令中的参数:

  • task: It specifies the computer vision task for which you are using the specified YOLO model and data set.
  • 模式:表示加载指定模型和数据的目的。由于我们正在训练一个模型,因此将其设置为 "训练"。之后,当我们测试模型的性能时,将其设置为 "预测"。
  • epochs: This delimits the number of times YOLO11 will pass through our entire data set.
  • batch: The numerical value stipulates the training batch sizes. Batches are the number of images a model processes before it updates its parameters.
  • lr0: Specifies the model's initial learning rate.
  • plots:指示YOLO 生成并保存模型的训练和评估指标图。

For a detailed understanding of the model training process and best practices, refer to the YOLO11 Model Training guide. This guide will help you get the most out of your experiments and ensure you're using YOLO11 effectively.

步骤 6:测试模型

现在,我们可以运行推理来测试微调模型的性能:

Test the YOLO11 model

!yolo task=detect mode=predict source={work_dir}/trash_ICRA19/dataset/test/images model={work_dir}/runs/detect/train/weights/best.pt conf=0.5 iou=.5 save=True save_txt=True

This brief script generates predicted labels for each image in our test set, as well as new output image files that overlay the predicted bounding box atop the original image.

每幅图像的预测 .txt 标签通过 save_txt=True 参数,并通过 save=True 争论。
参数 conf=0.5 通知模型忽略置信度低于 50% 的所有预测。

最后、 iou=.5 指示模型忽略重叠 50% 或更多的同类方框。这有助于减少同一对象可能产生的重复方框。
我们可以加载带有预测边界框叠加的图像,以查看我们的模型在少量图像上的表现。

显示屏预测

# Show the first ten images from the preceding prediction task
for pred_dir in glob.glob(f"{work_dir}/runs/detect/predict/*.jpg")[:10]:
    img = Image.open(pred_dir)
    display(img)

上面的代码显示了测试集中的十张图片及其预测边界框,并附有类别名称标签和置信度。

步骤 7:评估模型

We can produce visualizations of the model's precision and recall for each class. These visualizations are saved in the home directory, under the train folder. The precision score is displayed in the P_curve.png:

精度置信度曲线

The graph shows an exponential increase in precision as the model's confidence level for predictions increases. However, the model precision has not yet leveled out at a certain confidence level after two epochs.

The recall graph (R_curve.png) displays an inverse trend:

召回置信度曲线

与精确度不同的是,召回率的变化方向正好相反,低置信度实例的召回率更高,而高置信度实例的召回率更低。这恰好说明了分类模型在精确度和召回率之间的权衡。

Step 8: Calculating Intersection Over Union

You can measure the prediction accuracy by calculating the IoU between a predicted bounding box and a ground truth bounding box for the same object. Check out IBM's tutorial on training YOLO11 for more details.

摘要

We explored IBM Watsonx key features, and how to train a YOLO11 model using IBM Watsonx. We also saw how IBM Watsonx can enhance your AI workflows with advanced tools for model building, data management, and compliance.

有关使用的更多详情,请访问IBM Watsonx 官方文档

此外,请务必查看Ultralytics 集成指南页面,了解更多不同的精彩集成。

常见问题

How do I train a YOLO11 model using IBM Watsonx?

To train a YOLO11 model using IBM Watsonx, follow these steps:

  1. 设置环境:创建一个 IBM 云账户并设置一个 Watsonx.ai 项目。使用 Jupyter Notebook 作为您的编码环境。
  2. 安装图书馆:安装必要的库,如 torch, opencvultralytics.
  3. 加载数据:使用 Kaggle API 将数据集载入 Watsonx。
  4. 预处理数据:将数据集组织到所需的目录结构中,并更新 .yaml 配置文件。
  5. 培训模型:使用YOLO 命令行界面使用特定参数训练模型,例如 epochs, batch sizelearning rate.
  6. 测试和评估:运行推理以测试模型,并使用精度和召回率等指标评估其性能。

For detailed instructions, refer to our YOLO11 Model Training guide.

用于人工智能模型训练的 IBM Watsonx 有哪些主要功能?

IBM Watsonx 为人工智能模型训练提供了几项关键功能:

  • Watsonx.ai:提供人工智能开发工具,包括访问 IBM 支持的自定义模型和第三方模型(如 Llama 3)。它包括用于全面人工智能生命周期管理的 Prompt Lab、Tuning Studio 和 Flows Engine。
  • Watsonx.data支持云和内部部署,提供集中式数据访问、Presto 和 Spark 等高效查询引擎以及人工智能驱动的语义层。
  • Watsonx.governance:自动合规、通过警报管理风险,并提供检测偏差和漂移等问题的工具。它还包括用于协作的仪表盘和报告工具。

更多信息,请访问IBM Watsonx 官方文档

Why should I use IBM Watsonx for training Ultralytics YOLO11 models?

IBM Watsonx is an excellent choice for training Ultralytics YOLO11 models due to its comprehensive suite of tools that streamline the AI lifecycle. Key benefits include:

  • 可扩展性:利用 IBM 云服务轻松扩展模型培训。
  • 集成:与各种数据源和应用程序接口无缝集成。
  • 用户友好界面:协作式直观界面:简化开发流程。
  • 高级工具:使用 Prompt Lab、Tuning Studio 和 Flows Engine 等功能强大的工具来提高模型性能。

Learn more about Ultralytics YOLO11 and how to train models using IBM Watsonx in our integration guide.

How can I preprocess my dataset for YOLO11 training on IBM Watsonx?

To preprocess your dataset for YOLO11 training on IBM Watsonx:

  1. 整理目录:确保数据集遵循YOLO 的目录结构,并在 train/val/test 分区中为图像和标签建立单独的子目录。
  2. 更新 .yaml 文件:修改 .yaml 配置文件,以反映新的目录结构和类名。
  3. 运行预处理脚本:使用Python 脚本重组数据集并更新 .yaml 文件。

下面是一个整理数据集的示例脚本:

import os
import shutil


def organize_files(directory):
    for subdir in ["train", "test", "val"]:
        subdir_path = os.path.join(directory, subdir)
        if not os.path.exists(subdir_path):
            continue

        images_dir = os.path.join(subdir_path, "images")
        labels_dir = os.path.join(subdir_path, "labels")

        os.makedirs(images_dir, exist_ok=True)
        os.makedirs(labels_dir, exist_ok=True)

        for filename in os.listdir(subdir_path):
            if filename.endswith(".txt"):
                shutil.move(os.path.join(subdir_path, filename), os.path.join(labels_dir, filename))
            elif filename.endswith(".jpg") or filename.endswith(".png") or filename.endswith(".jpeg"):
                shutil.move(os.path.join(subdir_path, filename), os.path.join(images_dir, filename))


if __name__ == "__main__":
    directory = f"{work_dir}/trash_ICRA19/dataset"
    organize_files(directory)

更多详情,请参阅我们的数据预处理指南

What are the prerequisites for training a YOLO11 model on IBM Watsonx?

Before you start training a YOLO11 model on IBM Watsonx, ensure you have the following prerequisites:

  • IBM 云帐户:在 IBM Cloud 上创建账户,以访问 Watsonx.ai。
  • Kaggle 账户:要加载数据集,您需要一个 Kaggle 账户和一个 API 密钥。
  • Jupyter Notebook:在 Watsonx.ai 中设置 Jupyter Notebook 环境,用于编码和模型训练。

有关设置环境的更多信息,请访问我们的Ultralytics 安装指南


📅 Created 2 months ago ✏️ Updated 12 days ago

评论