MNN 导出YOLO11 模型和部署
MNN
MNN是一个高效、轻量级的深度学习框架。它支持深度学习模型的推理和训练,在设备上进行推理和训练时具有业界领先的性能。目前,MNN 已集成到阿里巴巴旗下的淘宝、天猫、优酷、丁说、鲜鱼等 30 多款应用中,覆盖直播、短视频抓拍、搜索推荐、商品图片搜索、互动营销、股权分销、安全风控等 70 多个使用场景。此外,MNN 还应用于物联网等嵌入式设备。
导出到 MNN:转换YOLO11 模型
您可以通过将YOLO11 模型转换为 MNN 格式来扩展模型兼容性和部署灵活性。
安装
要安装所需的软件包,请运行
使用方法
在了解使用说明之前,需要注意的是,虽然Ultralytics YOLO11 的所有 型号都可以导出,但您可以在此确保您选择的型号支持导出功能。
使用方法
from ultralytics import YOLO
# Load the YOLO11 model
model = YOLO("yolo11n.pt")
# Export the model to MNN format
model.export(format="mnn") # creates 'yolo11n.mnn'
# Load the exported MNN model
mnn_model = YOLO("yolo11n.mnn")
# Run inference
results = mnn_model("https://ultralytics.com/images/bus.jpg")
有关支持的导出选项的详细信息,请访问Ultralytics 部署选项文档页面。
仅 MNN 推断
YOLO11 推断和预处理完全依赖 MNN 实现,提供Python 和 C++ 版本,便于在任何情况下部署。
MNN
import argparse
import MNN
import MNN.cv as cv2
import MNN.numpy as np
def inference(model, img, precision, backend, thread):
config = {}
config["precision"] = precision
config["backend"] = backend
config["numThread"] = thread
rt = MNN.nn.create_runtime_manager((config,))
# net = MNN.nn.load_module_from_file(model, ['images'], ['output0'], runtime_manager=rt)
net = MNN.nn.load_module_from_file(model, [], [], runtime_manager=rt)
original_image = cv2.imread(img)
ih, iw, _ = original_image.shape
length = max((ih, iw))
scale = length / 640
image = np.pad(original_image, [[0, length - ih], [0, length - iw], [0, 0]], "constant")
image = cv2.resize(
image, (640, 640), 0.0, 0.0, cv2.INTER_LINEAR, -1, [0.0, 0.0, 0.0], [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0]
)
input_var = np.expand_dims(image, 0)
input_var = MNN.expr.convert(input_var, MNN.expr.NC4HW4)
output_var = net.forward(input_var)
output_var = MNN.expr.convert(output_var, MNN.expr.NCHW)
output_var = output_var.squeeze()
# output_var shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
cx = output_var[0]
cy = output_var[1]
w = output_var[2]
h = output_var[3]
probs = output_var[4:]
# [cx, cy, w, h] -> [y0, x0, y1, x1]
x0 = cx - w * 0.5
y0 = cy - h * 0.5
x1 = cx + w * 0.5
y1 = cy + h * 0.5
boxes = np.stack([x0, y0, x1, y1], axis=1)
# get max prob and idx
scores = np.max(probs, 0)
class_ids = np.argmax(probs, 0)
result_ids = MNN.expr.nms(boxes, scores, 100, 0.45, 0.25)
print(result_ids.shape)
# nms result box, score, ids
result_boxes = boxes[result_ids]
result_scores = scores[result_ids]
result_class_ids = class_ids[result_ids]
for i in range(len(result_boxes)):
x0, y0, x1, y1 = result_boxes[i].read_as_tuple()
y0 = int(y0 * scale)
y1 = int(y1 * scale)
x0 = int(x0 * scale)
x1 = int(x1 * scale)
print(result_class_ids[i])
cv2.rectangle(original_image, (x0, y0), (x1, y1), (0, 0, 255), 2)
cv2.imwrite("res.jpg", original_image)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=True, help="the yolo11 model path")
parser.add_argument("--img", type=str, required=True, help="the input image path")
parser.add_argument("--precision", type=str, default="normal", help="inference precision: normal, low, high, lowBF")
parser.add_argument(
"--backend",
type=str,
default="CPU",
help="inference backend: CPU, OPENCL, OPENGL, NN, VULKAN, METAL, TRT, CUDA, HIAI",
)
parser.add_argument("--thread", type=int, default=4, help="inference using thread: int")
args = parser.parse_args()
inference(args.model, args.img, args.precision, args.backend, args.thread)
#include <stdio.h>
#include <MNN/ImageProcess.hpp>
#include <MNN/expr/Module.hpp>
#include <MNN/expr/Executor.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/expr/Executor.hpp>
#include <cv/cv.hpp>
using namespace MNN;
using namespace MNN::Express;
using namespace MNN::CV;
int main(int argc, const char* argv[]) {
if (argc < 3) {
MNN_PRINT("Usage: ./yolo11_demo.out model.mnn input.jpg [forwardType] [precision] [thread]\n");
return 0;
}
int thread = 4;
int precision = 0;
int forwardType = MNN_FORWARD_CPU;
if (argc >= 4) {
forwardType = atoi(argv[3]);
}
if (argc >= 5) {
precision = atoi(argv[4]);
}
if (argc >= 6) {
thread = atoi(argv[5]);
}
MNN::ScheduleConfig sConfig;
sConfig.type = static_cast<MNNForwardType>(forwardType);
sConfig.numThread = thread;
BackendConfig bConfig;
bConfig.precision = static_cast<BackendConfig::PrecisionMode>(precision);
sConfig.backendConfig = &bConfig;
std::shared_ptr<Executor::RuntimeManager> rtmgr = std::shared_ptr<Executor::RuntimeManager>(Executor::RuntimeManager::createRuntimeManager(sConfig));
if(rtmgr == nullptr) {
MNN_ERROR("Empty RuntimeManger\n");
return 0;
}
rtmgr->setCache(".cachefile");
std::shared_ptr<Module> net(Module::load(std::vector<std::string>{}, std::vector<std::string>{}, argv[1], rtmgr));
auto original_image = imread(argv[2]);
auto dims = original_image->getInfo()->dim;
int ih = dims[0];
int iw = dims[1];
int len = ih > iw ? ih : iw;
float scale = len / 640.0;
std::vector<int> padvals { 0, len - ih, 0, len - iw, 0, 0 };
auto pads = _Const(static_cast<void*>(padvals.data()), {3, 2}, NCHW, halide_type_of<int>());
auto image = _Pad(original_image, pads, CONSTANT);
image = resize(image, Size(640, 640), 0, 0, INTER_LINEAR, -1, {0., 0., 0.}, {1./255., 1./255., 1./255.});
auto input = _Unsqueeze(image, {0});
input = _Convert(input, NC4HW4);
auto outputs = net->onForward({input});
auto output = _Convert(outputs[0], NCHW);
output = _Squeeze(output);
// output shape: [84, 8400]; 84 means: [cx, cy, w, h, prob * 80]
auto cx = _Gather(output, _Scalar<int>(0));
auto cy = _Gather(output, _Scalar<int>(1));
auto w = _Gather(output, _Scalar<int>(2));
auto h = _Gather(output, _Scalar<int>(3));
std::vector<int> startvals { 4, 0 };
auto start = _Const(static_cast<void*>(startvals.data()), {2}, NCHW, halide_type_of<int>());
std::vector<int> sizevals { -1, -1 };
auto size = _Const(static_cast<void*>(sizevals.data()), {2}, NCHW, halide_type_of<int>());
auto probs = _Slice(output, start, size);
// [cx, cy, w, h] -> [y0, x0, y1, x1]
auto x0 = cx - w * _Const(0.5);
auto y0 = cy - h * _Const(0.5);
auto x1 = cx + w * _Const(0.5);
auto y1 = cy + h * _Const(0.5);
auto boxes = _Stack({x0, y0, x1, y1}, 1);
auto scores = _ReduceMax(probs, {0});
auto ids = _ArgMax(probs, 0);
auto result_ids = _Nms(boxes, scores, 100, 0.45, 0.25);
auto result_ptr = result_ids->readMap<int>();
auto box_ptr = boxes->readMap<float>();
auto ids_ptr = ids->readMap<int>();
auto score_ptr = scores->readMap<float>();
for (int i = 0; i < 100; i++) {
auto idx = result_ptr[i];
if (idx < 0) break;
auto x0 = box_ptr[idx * 4 + 0] * scale;
auto y0 = box_ptr[idx * 4 + 1] * scale;
auto x1 = box_ptr[idx * 4 + 2] * scale;
auto y1 = box_ptr[idx * 4 + 3] * scale;
auto class_idx = ids_ptr[idx];
auto score = score_ptr[idx];
rectangle(original_image, {x0, y0}, {x1, y1}, {0, 0, 255}, 2);
}
if (imwrite("res.jpg", original_image)) {
MNN_PRINT("result image write to `res.jpg`.\n");
}
rtmgr->updateCache();
return 0;
}
摘要
在本指南中,我们将介绍如何将Ultralytics YOLO11 模型导出到 MNN 并使用 MNN 进行推理。
有关更多用法,请参阅MNN 文档。
常见问题
如何将Ultralytics YOLO11 模型导出为 MNN 格式?
要将Ultralytics YOLO11 模型导出为 MNN 格式,请按照以下步骤操作:
出口
from ultralytics import YOLO
# Load the YOLO11 model
model = YOLO("yolo11n.pt")
# Export to MNN format
model.export(format="mnn") # creates 'yolo11n.mnn' with fp32 weight
model.export(format="mnn", half=True) # creates 'yolo11n.mnn' with fp16 weight
model.export(format="mnn", int8=True) # creates 'yolo11n.mnn' with int8 weight
有关详细的导出选项,请查看文档中的导出页面。
如何使用导出的YOLO11 MNN 模型进行预测?
要使用导出的YOLO11 MNN 模型进行预测,请使用 predict
YOLO 函数。
预测
from ultralytics import YOLO
# Load the YOLO11 MNN model
model = YOLO("yolo11n.mnn")
# Export to MNN format
results = mnn_model("https://ultralytics.com/images/bus.jpg") # predict with `fp32`
results = mnn_model("https://ultralytics.com/images/bus.jpg", half=True) # predict with `fp16` if device support
for result in results:
result.show() # display to screen
result.save(filename="result.jpg") # save to disk
MNN 支持哪些平台?
MNN 功能多样,支持各种平台:
- 手机:Android,iOS, Harmony.
- 嵌入式系统和物联网设备:Raspberry Pi 和NVIDIA Jetson 等设备。
- 台式机和服务器:Linux、Windows 和 macOS。
如何在移动设备上部署Ultralytics YOLO11 MNN 模型?
要在移动设备上部署YOLO11 模型:
- 为Android 而建:遵循MNNAndroid 。
- 为iOS 而建:遵循MNNiOS 。
- 构建和谐:遵循MNN 和谐。
📅创建于 1 个月前
✏️已更新 1 个月