跳至内容

快速入门

安装Ultralytics

Ultralytics 提供了多种安装方法,包括 pip、conda 和 Docker。YOLO 通过 ultralytics pip 软件包的最新稳定版本,或通过克隆 Ultralytics GitHub 存储库 获取最新版本。可以使用 Docker 在隔离的容器中执行软件包,避免本地安装。



观看: Ultralytics YOLO 快速入门指南

安装

PyPI -Python 版本

安装 ultralytics 软件包,或通过运行 pip install -U ultralytics.请访问Python Package Index (PyPI),了解更多有关 ultralytics 包装 https://pypi.org/project/ultralytics/.

PyPI - 版本 下载

# Install the ultralytics package from PyPI
pip install ultralytics

您还可以安装 ultralytics 直接从 GitHub 知识库.如果您需要最新的开发版本,这可能会很有用。确保在系统中安装了 Git 命令行工具。Git 命令行工具 @main 命令安装 main 分支,并可修改为另一个分支,即 @my-branch或完全删除,默认为 main 分支。

# Install the ultralytics package from GitHub
pip install git+https://github.com/ultralytics/ultralytics.git@main

Conda 是 pip 的替代软件包管理器,也可用于安装。更多详情请访问 Anaconda:https://anaconda.org/conda-forge/ultralytics 。Ultralytics 用于更新 conda 软件包的 feedstock 资源库位于https://github.com/conda-forge/ultralytics-feedstock/。

康达版本 康达下载 康达食谱 Conda 平台

# Install the ultralytics package using conda
conda install -c conda-forge ultralytics

备注

如果在CUDA 环境中安装,最佳做法是安装 ultralytics, pytorchpytorch-cuda 在同一命令中允许 conda 软件包管理器解决任何冲突,或者安装 pytorch-cuda 最后,允许它覆盖CPU-specific pytorch 如有必要,请将该程序包添加到"... "中。

# Install all packages together using conda
conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8 ultralytics

Conda Docker 映像

Ultralytics Conda Docker 映像还可从 DockerHub.这些图像基于 迷你世界3 是开始使用 ultralytics 在 Conda 环境中。

# Set image name as a variable
t=ultralytics/ultralytics:latest-conda

# Pull the latest ultralytics image from Docker Hub
sudo docker pull $t

# Run the ultralytics image in a container with GPU support
sudo docker run -it --ipc=host --gpus all $t  # all GPUs
sudo docker run -it --ipc=host --gpus '"device=2,3"' $t  # specify GPUs

克隆 ultralytics 如果你有兴趣参与开发,或希望使用最新的源代码进行实验,请访问软件仓库。克隆后,导航到目录,以可编辑模式安装软件包 -e 使用 pip。

GitHub 最后提交 GitHub 提交活动

# Clone the ultralytics repository
git clone https://github.com/ultralytics/ultralytics

# Navigate to the cloned directory
cd ultralytics

# Install the package in editable mode for development
pip install -e .

利用 Docker 轻松执行 ultralytics 软件包在一个隔离的容器中,确保在各种环境中都能实现一致、流畅的性能。通过选择官方 ultralytics 图片来自 Docker HubUltralytics 提供 5 种主要支持的 Docker 镜像,每种镜像都为不同平台和用例提供高兼容性和高效性:

Docker 映像版本 Docker 拉动

  • Dockerfile:推荐用于培训的GPU 镜像。
  • Dockerfile-arm64:针对 ARM64 架构进行了优化,可在 Raspberry Pi 等设备和其他基于 ARM64 的平台上部署。
  • Dockerfile-cpu :基于 Ubuntu 的CPU- 仅适用于推理和无 GPU 环境的版本。
  • Dockerfile-jetson:专为NVIDIA Jetson 设备定制,集成了针对这些平台优化的GPU 支持。
  • Dockerfile-python :仅包含Python 和必要依赖项的最小镜像,是轻量级应用和开发的理想选择。
  • Dockerfile-conda:基于 Miniconda3,使用 conda 安装ultralytics 软件包。

下面是获取并执行最新映像的命令:

# Set image name as a variable
t=ultralytics/ultralytics:latest

# Pull the latest ultralytics image from Docker Hub
sudo docker pull $t

# Run the ultralytics image in a container with GPU support
sudo docker run -it --ipc=host --gpus all $t  # all GPUs
sudo docker run -it --ipc=host --gpus '"device=2,3"' $t  # specify GPUs

上述命令使用最新的 ultralytics 图像图像 -it 标记会分配一个伪 TTY 并保持 stdin 开启,以便与容器进行交互。标记 --ipc=host 标记将 IPC(进程间通信)命名空间设置为主机命名空间,这对进程间共享内存至关重要。进程间通信 --gpus all flag 可以访问容器内所有可用的 GPU,这对于需要GPU 计算的任务至关重要。

注意:要在容器中处理本地机器上的文件,请使用 Docker 卷将本地目录挂载到容器中:

# Mount local directory to a directory inside the container
sudo docker run -it --ipc=host --gpus all -v /path/on/host:/path/in/container $t

改变 /path/on/host 的目录路径,以及 /path/in/container 与 Docker 容器内的所需路径一致,以便访问。

有关 Docker 的高级用法,请访问Ultralytics Docker 指南

参见 ultralytics pyproject.toml 文件中的依赖项列表。请注意,上述所有示例都安装了所有必需的依赖项。

提示

PyTorch要求因操作系统和CUDA 要求而异,因此建议首先按照https://pytorch.org/get-started/locally 上的说明安装PyTorch 。

PyTorch 安装说明

将Ultralytics 与CLI

Ultralytics 命令行界面 (CLI) 允许使用简单的单行命令,而无需Python 环境。CLI 不需要定制或Python 代码。您只需使用 yolo 指挥部。查看 CLI 指南 了解从命令行使用YOLO 的更多信息。

示例

Ultralytics yolo 命令使用以下语法:

yolo TASK MODE ARGS

查看全部 ARGS 在充分 配置指南 或使用 yolo cfg CLI 指挥。

训练检测模型 10,初始学习率为 0.01

yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01

在图像大小为 320 时,使用预训练的分割模型预测 YouTube 视频:

yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320

在批量大小为 1、图像大小为 640 时,验证预先训练的检测模型:

yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640

将 yolo11n 分类模型导出为ONNX 格式,图像大小为 224 x 128(无需 TASK)

yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128

运行特殊命令可查看版本、查看设置、运行检查等:

yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg

警告

参数必须以 arg=val 对,用等号分割 = 符号,每对之间用空格分隔。请勿使用 -- 参数 , 参数之间。

  • yolo predict model=yolo11n.pt imgsz=640 conf=0.25
  • yolo predict model yolo11n.pt imgsz 640 conf 0.25 ❌(缺失 =)
  • yolo predict model=yolo11n.pt, imgsz=640, conf=0.25 ❌(不要使用 ,)
  • yolo predict --model yolo11n.pt --imgsz 640 --conf 0.25 ❌(不要使用 --)

CLI 指南

将Ultralytics 与Python

YOLO Python 界面可无缝集成到您的 项目中,从而轻松加载、运行和处理模型输出。 界面的设计以简单易用为宗旨,用户可以在自己的项目中快速实现Python Python 对象检测、分割和分类。这使得 的 界面成为任何希望将这些功能纳入其 项目的人的宝贵工具。YOLO Python Python

例如,用户只需几行代码就可以加载模型、训练模型、评估模型在验证集上的性能,甚至将模型导出为ONNX 格式。查看Python 指南,了解在Python 项目中使用YOLO 的更多信息。

示例

from ultralytics import YOLO

# Create a new YOLO model from scratch
model = YOLO("yolo11n.yaml")

# Load a pretrained YOLO model (recommended for training)
model = YOLO("yolo11n.pt")

# Train the model using the 'coco8.yaml' dataset for 3 epochs
results = model.train(data="coco8.yaml", epochs=3)

# Evaluate the model's performance on the validation set
results = model.val()

# Perform object detection on an image using the model
results = model("https://ultralytics.com/images/bus.jpg")

# Export the model to ONNX format
success = model.export(format="onnx")

Python 指南

Ultralytics 设置

Ultralytics 库提供了一个功能强大的设置管理系统,可对实验进行精细控制。通过使用 SettingsManager 设在 ultralytics.utils 用户可以通过 "用户配置 "模块随时访问和修改自己的设置。这些设置存储在环境用户配置目录下的 JSON 文件中,可直接在Python 环境中或通过命令行界面 (CLI) 查看或修改。

检查设置

要深入了解设置的当前配置,可以直接查看:

查看设置

您可以使用Python 查看您的设置。首先导入 settings 对象的 ultralytics 模块。使用以下命令打印并返回设置:

from ultralytics import settings

# View all settings
print(settings)

# Return a specific setting
value = settings["runs_dir"]

此外,命令行界面也允许您使用简单的命令检查设置:

yolo settings

修改设置

Ultralytics 允许用户轻松修改设置。可以通过以下方式进行更改:

更新设置

在Python 环境中,调用 update 上的 settings 对象来更改设置:

from ultralytics import settings

# Update a setting
settings.update({"runs_dir": "/path/to/runs"})

# Update multiple settings
settings.update({"runs_dir": "/path/to/runs", "tensorboard": False})

# Reset settings to default values
settings.reset()

如果您喜欢使用命令行界面,可以使用以下命令修改设置:

# Update a setting
yolo settings runs_dir='/path/to/runs'

# Update multiple settings
yolo settings runs_dir='/path/to/runs' tensorboard=False

# Reset settings to default values
yolo settings reset

了解设置

下表概述了Ultralytics 中可供调整的设置。每项设置都附有示例值、数据类型和简要说明。

名称示例值数据类型说明
settings_version'0.0.4'strUltralytics 设置版本(与Ultralytics pip版本不同)
datasets_dir'/path/to/datasets'str存储数据集的目录
weights_dir'/path/to/weights'str存储模型权重的目录
runs_dir'/path/to/runs'str存储实验运行的目录
uuid'a1b2c3d4'str当前设置的唯一标识符
syncTruebool是否将分析和崩溃同步到 HUB
api_key''strUltralytics HUBAPI 密钥
clearmlTruebool是否使用 ClearML记录
cometTruebool是否使用Comet ML 进行实验跟踪和可视化
dvcTruebool是否使用DVC 进行实验跟踪和版本控制
hubTruebool是否使用Ultralytics HUB 集成
mlflowTruebool是否使用MLFlow进行实验跟踪
neptuneTruebool是否使用 Neptune用于实验跟踪
raytuneTruebool是否使用Ray Tune进行超参数调整
tensorboardTruebool是否使用TensorBoard进行可视化
wandbTruebool是否使用 Weights & Biases记录
vscode_msgTruebool检测到 VS Code 终端时,启用下载Ultralytics-Snippets 扩展的提示。

当您浏览项目或实验时,请务必重新查看这些设置,以确保它们的最佳配置符合您的需求。

常见问题

如何使用 pip 安装Ultralytics ?

要使用 pip 安装Ultralytics ,请执行以下命令:

pip install ultralytics

对于最新的稳定版,这将安装 ultralytics 软件包直接从Python Package Index (PyPI) 获取。有关详细信息,请访问 ultralytics 软件包.

或者,您也可以直接从 GitHub 安装最新的开发版本:

pip install git+https://github.com/ultralytics/ultralytics.git

确保在系统中安装了 Git 命令行工具。

可以使用 conda 安装Ultralytics YOLO 吗?

是的,您可以通过运行 conda 安装Ultralytics YOLO :

conda install -c conda-forge ultralytics

这种方法是 pip 的最佳替代方案,可确保与环境中的其他软件包兼容。对于CUDA 环境,最好安装 ultralytics, pytorchpytorch-cuda 同时解决任何冲突:

conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8 ultralytics

更多说明,请访问Conda 快速入门指南

使用 Docker 运行Ultralytics YOLO 有哪些优势?

使用 Docker 运行Ultralytics YOLO 可提供一个隔离和一致的环境,确保不同系统间的流畅运行。它还消除了本地安装的复杂性。Ultralytics 的官方 Docker 映像可在Docker Hub 上获取,其中有为GPU 、CPU 、ARM64、NVIDIA Jetson 和 Conda 环境定制的不同变体。下面是提取和运行最新映像的命令:

# Pull the latest ultralytics image from Docker Hub
sudo docker pull ultralytics/ultralytics:latest

# Run the ultralytics image in a container with GPU support
sudo docker run -it --ipc=host --gpus all ultralytics/ultralytics:latest

有关更详细的 Docker 说明,请查看Docker 快速入门指南

如何克隆Ultralytics 仓库进行开发?

要克隆Ultralytics 仓库并建立开发环境,请使用以下步骤:

# Clone the ultralytics repository
git clone https://github.com/ultralytics/ultralytics

# Navigate to the cloned directory
cd ultralytics

# Install the package in editable mode for development
pip install -e .

通过这种方式,您可以为项目做出贡献,或使用最新的源代码进行实验。更多详情,请访问Ultralytics GitHub 代码库

为什么要使用Ultralytics YOLO CLI ?

Ultralytics YOLO 命令行界面 (CLI) 简化了运行对象检测任务的过程,无需Python 代码。您可以直接从终端执行单行命令来完成训练、验证和预测等任务。基本语法为 yolo 命令是

yolo TASK MODE ARGS

例如,使用指定参数训练检测模型:

yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01

查看CLI 指南全文,了解更多命令和使用示例。

📅创建于 1 年前 ✏️已更新 13 天前

评论