انتقل إلى المحتوى

مجموعة نموذجية

📚 يشرح هذا الدليل كيفية الاستخدام YOLOv5 🚀 تجميع النموذج أثناء الاختبار والاستدلال لتحسين mAP والاستدعاء.

من https://en.wikipedia.org/wiki/Ensemble_learning:

نمذجة المجموعة هي عملية يتم فيها إنشاء نماذج متنوعة متعددة للتنبؤ بالنتيجة ، إما باستخدام العديد من خوارزميات النمذجة المختلفة أو باستخدام مجموعات بيانات تدريب مختلفة. ثم يقوم نموذج المجموعة بتجميع التنبؤ بكل نموذج أساسي وينتج عنه تنبؤ نهائي مرة واحدة للبيانات غير المرئية. الدافع لاستخدام نماذج المجموعة هو تقليل خطأ التعميم في التنبؤ. طالما أن النماذج الأساسية متنوعة ومستقلة ، فإن خطأ التنبؤ في النموذج ينخفض عند استخدام نهج المجموعة. يسعى النهج إلى حكمة الحشود في التنبؤ. على الرغم من أن نموذج المجموعة يحتوي على نماذج أساسية متعددة داخل النموذج ، إلا أنه يعمل ويعمل كنموذج واحد.

قبل البدء

استنساخ الريبو ومتطلبات التثبيت .txt في ملف Python>=3.8.0 بيئة، بما في ذلك PyTorch>=1.8. يتم تنزيل النماذج ومجموعات البيانات تلقائيا من الأحدث YOLOv5 إطلاق سراح.

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

اختبار بشكل طبيعي

قبل التجميع ، نريد إنشاء الأداء الأساسي لنموذج واحد. يختبر هذا الأمر YOLOv5x على COCO val2017 بحجم الصورة 640 بكسل. yolov5x.pt هو النموذج الأكبر والأكثر دقة المتاح. الخيارات الأخرى هي yolov5s.pt, yolov5m.pt و yolov5l.pt، أو كنت تملك نقطة تفتيش من تدريب مجموعة بيانات مخصصة ./weights/best.pt. للحصول على تفاصيل حول جميع الموديلات المتاحة ، يرجى الاطلاع على README الخاص بنا جدول.

python val.py --weights yolov5x.pt --data coco.yaml --img 640 --half

الناتج:

val: data=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True
YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Fusing layers...
Model Summary: 476 layers, 87730285 parameters, 0 gradients

val: Scanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2846.03it/s]
val: New cache created: ../datasets/coco/val2017.cache
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [02:30<00:00,  1.05it/s]
                 all       5000      36335      0.746      0.626       0.68       0.49
Speed: 0.1ms pre-process, 22.4ms inference, 1.4ms NMS per image at shape (32, 3, 640, 640)  # <--- baseline speed

Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.504  # <--- baseline mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.688
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.546
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.351
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.644
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.628
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.681  # <--- baseline mAR
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.826

اختبار الفرقة

يمكن تجميع نماذج متعددة تم تدريبها مسبقا معا في وقت الاختبار والاستدلال ببساطة عن طريق إلحاق نماذج إضافية ب --weights وسيطة في أي أمر val.py أو detect.py موجود. يختبر هذا المثال مجموعة من 2 نماذج معا:

  • YOLOv5x
  • YOLOv5l6
python val.py --weights yolov5x.pt yolov5l6.pt --data coco.yaml --img 640 --half

الناتج:

val: data=./data/coco.yaml, weights=['yolov5x.pt', 'yolov5l6.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True
YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Fusing layers...
Model Summary: 476 layers, 87730285 parameters, 0 gradients  # Model 1
Fusing layers...
Model Summary: 501 layers, 77218620 parameters, 0 gradients  # Model 2
Ensemble created with ['yolov5x.pt', 'yolov5l6.pt']  # Ensemble notice

val: Scanning '../datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:00<00:00, 49695545.02it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [03:58<00:00,  1.52s/it]
                 all       5000      36335      0.747      0.637      0.692      0.502
Speed: 0.1ms pre-process, 39.5ms inference, 2.0ms NMS per image at shape (32, 3, 640, 640)  # <--- ensemble speed

Evaluating pycocotools mAP... saving runs/val/exp3/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.515  # <--- ensemble mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.699
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.557
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.356
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.563
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.668
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.387
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.638
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.689  # <--- ensemble mAR
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.743
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844

استدلال الفرقة

إلحاق نماذج إضافية ب --weights حجة لتشغيل الاستدلال الجماعي:

python detect.py --weights yolov5x.pt yolov5l6.pt --img 640 --source data/images

الناتج:

YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Fusing layers...
Model Summary: 476 layers, 87730285 parameters, 0 gradients
Fusing layers...
Model Summary: 501 layers, 77218620 parameters, 0 gradients
Ensemble created with ['yolov5x.pt', 'yolov5l6.pt']

image 1/2 /content/yolov5/data/images/bus.jpg: 640x512 4 persons, 1 bus, 1 tie, Done. (0.063s)
image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 3 persons, 2 ties, Done. (0.056s)
Results saved to runs/detect/exp2
Done. (0.223s)

YOLO نتيجة الاستدلال

البيئات المدعومة

Ultralytics يوفر مجموعة من البيئات الجاهزة للاستخدام ، كل منها مثبت مسبقا مع تبعيات أساسية مثل CUDA و CUDNN ، Pythonو PyTorch، لبدء مشاريعك.

حالة المشروع

YOLOv5 سي آي

تشير هذه الشارة إلى أن جميع YOLOv5 اجتياز اختبارات التكامل المستمر (CI) لإجراءات GitHub بنجاح. تتحقق اختبارات CI هذه بدقة من وظائف وأداءYOLOv5 عبر جوانب رئيسية مختلفة: التدريب ، والتحقق من الصحة ، والاستدلال ، والتصدير ، والمعايير. إنها تضمن التشغيل المتسق والموثوق به على macOS و Windows و Ubuntu ، مع إجراء الاختبارات كل 24 ساعة وعند كل التزام جديد.



تم النشر في 2023-11-12, اخر تحديث 2024-01-07
المؤلفون: جلين جوشر (5) ، سيرجيواكسمان (1)

التعليقات