تخطي إلى المحتوى

TFLite, ONNX, CoreML, TensorRT التصدير

📚 يشرح هذا الدليل كيفية تصدير نموذج مدرب YOLOv5 🚀 من PyTorch إلى تنسيقات ONNX و TorchScript .

قبل أن تبدأ

استنساخ الريبو وتثبيت المتطلبات.txt في Python>=3.8.0 بما في ذلك PyTorch>=1.8. يتم تنزيل النماذج ومجموعات البيانات تلقائيًا من أحدثإصدار YOLOv5 .

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

بالنسبة لـ TensorRT مثال على التصدير (يتطلب GPU) انظر كولاب (Colab) دفتر الملاحظات قسم التذييل. افتح في كولاب

التنسيقات

YOLOv5 الاستدلال مدعوم رسميًا في 11 تنسيقًا:

💡 ProTip: التصدير إلى ONNX أو OpenVINO لتسريع يصل إلى 3 أضعاف CPU . انظر CPU Benchmarks. 💡 ProTip: تصدير إلى TensorRT لتسريع يصل إلى 5 أضعاف GPU . انظر GPU Benchmarks.

التنسيق export.py --include الطراز
PyTorch - yolov5s.pt
TorchScript torchscript yolov5s.torchscript
ONNX onnx yolov5s.onnx
OpenVINO openvino yolov5s_openvino_model/
TensorRT engine yolov5s.engine
CoreML coreml yolov5s.mlmodel
TensorFlow SavedModel saved_model yolov5s_saved_model/
TensorFlow GraphDef pb yolov5s.pb
TensorFlow لايت tflite yolov5s.tflite
TensorFlow إيدج TPU edgetpu yolov5s_edgetpu.tflite
TensorFlow.js tfjs yolov5s_web_model/
PaddlePaddle paddle yolov5s_paddle_model/

المعايير

يتم تشغيل المعايير أدناه على جهاز Colab Pro مع الكمبيوتر الدفتري التعليمي YOLOv5 افتح في كولاب. لإعادة الإنتاج:

python benchmarks.py --weights yolov5s.pt --imgsz 640 --device 0

كولاب برو V100 GPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=0, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 46.7/166.8 GB disk)

Benchmarks complete (458.07s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623                10.19
1             TorchScript        0.4623                 6.85
2                    ONNX        0.4623                14.63
3                OpenVINO           NaN                  NaN
4                TensorRT        0.4617                 1.89
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623                21.28
7     TensorFlow GraphDef        0.4623                21.22
8         TensorFlow Lite           NaN                  NaN
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

كولاب برو CPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=cpu, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CPU
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 41.5/166.8 GB disk)

Benchmarks complete (241.20s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623               127.61
1             TorchScript        0.4623               131.23
2                    ONNX        0.4623                69.34
3                OpenVINO        0.4623                66.52
4                TensorRT           NaN                  NaN
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623               123.79
7     TensorFlow GraphDef        0.4623               121.57
8         TensorFlow Lite        0.4623               316.61
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

تصدير نموذج YOLOv5 مدرب

يقوم هذا الأمر بتصدير نموذج YOLOv5s المدرب مسبقًا إلى تنسيقات TorchScript و ONNX . yolov5s.pt هو الطراز "الصغير"، وهو ثاني أصغر طراز متاح. الخيارات الأخرى هي yolov5n.pt, yolov5m.pt, yolov5l.pt و yolov5x.ptإلى جانب نظرائهم في P6 أي yolov5s6.pt أو نقطة فحص التدريب المخصصة، أي runs/exp/weights/best.pt. للحصول على تفاصيل حول جميع الطرازات المتاحة، يُرجى الاطلاع على README الجدول.

python export.py --weights yolov5s.pt --include torchscript onnx

💡 نصيحة احترافية: إضافة --half لتصدير النماذج في النصف FP16 الدقة لأحجام الملفات الأصغر

المخرجات:

export: data=data/coco128.yaml, weights=['yolov5s.pt'], imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx']
YOLOv5 🚀 v6.2-104-ge3e5122 Python-3.8.0 torch-1.12.1+cu113 CPU

Downloading https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 274MB/s]

Fusing layers...
YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients

PyTorch: starting from yolov5s.pt with output shape (1, 25200, 85) (14.1 MB)

TorchScript: starting export with torch 1.12.1+cu113...
TorchScript: export success  1.7s, saved as yolov5s.torchscript (28.1 MB)

ONNX: starting export with onnx 1.12.0...
ONNX: export success  2.3s, saved as yolov5s.onnx (28.0 MB)

Export complete (5.5s)
Results saved to /content/yolov5
Detect:          python detect.py --weights yolov5s.onnx
Validate:        python val.py --weights yolov5s.onnx
PyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.onnx')
Visualize:       https://netron.app/

سيتم حفظ النماذج الثلاثة المصدرة إلى جانب النموذج الأصلي PyTorch :

YOLO مواقع التصدير

يوصى باستخدام Netron Viewer لتصور النماذج المصدرة:

YOLO تصور النموذج

أمثلة على استخدام النماذج المصدرة

detect.py يدير الاستدلال على النماذج المصدرة:

python detect.py --weights yolov5s.pt                 # PyTorch
                           yolov5s.torchscript        # TorchScript
                           yolov5s.onnx               # ONNX Runtime or OpenCV DNN with dnn=True
                           yolov5s_openvino_model     # OpenVINO
                           yolov5s.engine             # TensorRT
                           yolov5s.mlmodel            # CoreML (macOS only)
                           yolov5s_saved_model        # TensorFlow SavedModel
                           yolov5s.pb                 # TensorFlow GraphDef
                           yolov5s.tflite             # TensorFlow Lite
                           yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
                           yolov5s_paddle_model       # PaddlePaddle

val.py تشغيل التحقق من صحة النماذج المصدرة:

python val.py --weights yolov5s.pt                 # PyTorch
                        yolov5s.torchscript        # TorchScript
                        yolov5s.onnx               # ONNX Runtime or OpenCV DNN with dnn=True
                        yolov5s_openvino_model     # OpenVINO
                        yolov5s.engine             # TensorRT
                        yolov5s.mlmodel            # CoreML (macOS Only)
                        yolov5s_saved_model        # TensorFlow SavedModel
                        yolov5s.pb                 # TensorFlow GraphDef
                        yolov5s.tflite             # TensorFlow Lite
                        yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
                        yolov5s_paddle_model       # PaddlePaddle

استخدم PyTorch Hub مع النماذج YOLOv5 المصدرة :

import torch

# Model
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pt")
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.torchscript ")  # TorchScript
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.onnx")  # ONNX Runtime
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_openvino_model")  # OpenVINO
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.engine")  # TensorRT
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.mlmodel")  # CoreML (macOS Only)
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_saved_model")  # TensorFlow SavedModel
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pb")  # TensorFlow GraphDef
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.tflite")  # TensorFlow Lite
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_edgetpu.tflite")  # TensorFlow Edge TPU
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_paddle_model")  # PaddlePaddle

# Images
img = "https://ultralytics.com/images/zidane.jpg"  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

استدلال OpenCV DNN

استدلال OpenCV مع نماذج ONNX :

python export.py --weights yolov5s.pt --include onnx

python detect.py --weights yolov5s.onnx --dnn  # detect
python val.py --weights yolov5s.onnx --dnn  # validate

استدلال C+++C الاستدلال

YOLOv5 OpenCV DNN C++ inference on exported ONNX model examples:

YOLOv5 OpenVINO C++ inference examples:

TensorFlowاستدلال متصفح الويب .js

البيئات المدعومة

Ultralytics مجموعة من البيئات الجاهزة للاستخدام، كل منها مثبت مسبقًا مع التبعيات الأساسية مثل CUDA، CUDNN, Pythonو PyTorchلبدء مشاريعك.

حالة المشروع

YOLOv5 CI

تشير هذه الشارة إلى اجتياز جميع اختبارات التكامل المستمر (CI) لإجراءات GitHub YOLOv5 بنجاح. تتحقق اختبارات التكامل المستمر هذه بدقة من وظائف وأداء YOLOv5 عبر مختلف الجوانب الرئيسية: التدريب والتحقق من الصحة والاستدلال والتصدير والمعايير. وهي تضمن تشغيلًا متسقًا وموثوقًا على أنظمة macOS وWindows وUbuntu، مع إجراء الاختبارات كل 24 ساعة وعند كل التزام جديد.

📅 تم إنشاؤها منذ 1 سنة مضت ✏️ تم التحديث منذ 3 أيام

التعليقات