انتقل إلى المحتوى

برنامج تعليمي للتشذيب / التناثر

📚 يشرح هذا الدليل كيفية تطبيق التقليم على YOLOv5 🚀 نماذج.

قبل البدء

استنساخ الريبو ومتطلبات التثبيت .txt في ملف Python>=3.8.0 بيئة، بما في ذلك PyTorch>=1.8. يتم تنزيل النماذج ومجموعات البيانات تلقائيا من الأحدث YOLOv5 إطلاق سراح.

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

اختبار بشكل طبيعي

قبل التقليم ، نريد إنشاء أداء أساسي للمقارنة به. يختبر هذا الأمر YOLOv5x على COCO val2017 بحجم الصورة 640 بكسل. yolov5x.pt هو النموذج الأكبر والأكثر دقة المتاح. الخيارات الأخرى هي yolov5s.pt, yolov5m.pt و yolov5l.pt، أو كنت تملك نقطة تفتيش من تدريب مجموعة بيانات مخصصة ./weights/best.pt. للحصول على تفاصيل حول جميع الموديلات المتاحة ، يرجى الاطلاع على README الخاص بنا جدول.

python val.py --weights yolov5x.pt --data coco.yaml --img 640 --half

الناتج:

val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)

Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [01:12<00:00,  2.16it/s]
                 all       5000      36335      0.732      0.628      0.683      0.496
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640)  # <--- base speed

Evaluating pycocotools mAP... saving runs/val/exp2/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.507  # <--- base mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.689
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.552
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.381
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.630
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.682
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.731
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829
Results saved to runs/val/exp

اختبار YOLOv5x على COCO (0.30 تناثر)

نكرر الاختبار أعلاه بنموذج مشذب باستخدام torch_utils.prune() أمر. نحن نقوم بالتحديث val.py لتقليم YOLOv5x إلى 0.3 تناثر:

لقطة شاشة 2022-02-02 الساعة 22 54 18

30٪ إخراج مشذب:

val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)

Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
Pruning model...  0.3 global sparsity
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [01:11<00:00,  2.19it/s]
                 all       5000      36335      0.724      0.614      0.671      0.478
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640)  # <--- prune mAP

Evaluating pycocotools mAP... saving runs/val/exp3/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.489  # <--- prune mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.677
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.537
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.334
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.542
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.635
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.370
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.612
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.664
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.496
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.722
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.803
Results saved to runs/val/exp3

في النتائج يمكننا أن نلاحظ أننا حققنا أ تناثر 30٪ في نموذجنا بعد التقليم ، مما يعني أن 30٪ من معلمات وزن النموذج في nn.Conv2d الطبقات تساوي 0. وقت الاستدلال لم يتغير بشكل أساسي، في حين أن النموذج درجات AP و AR منخفضة قليلا.

البيئات المدعومة

Ultralytics يوفر مجموعة من البيئات الجاهزة للاستخدام ، كل منها مثبت مسبقا مع تبعيات أساسية مثل CUDA و CUDNN ، Pythonو PyTorch، لبدء مشاريعك.

حالة المشروع

YOLOv5 سي آي

تشير هذه الشارة إلى أن جميع YOLOv5 اجتياز اختبارات التكامل المستمر (CI) لإجراءات GitHub بنجاح. تتحقق اختبارات CI هذه بدقة من وظائف وأداءYOLOv5 عبر جوانب رئيسية مختلفة: التدريب ، والتحقق من الصحة ، والاستدلال ، والتصدير ، والمعايير. إنها تضمن التشغيل المتسق والموثوق به على macOS و Windows و Ubuntu ، مع إجراء الاختبارات كل 24 ساعة وعند كل التزام جديد.



تم إنشاؤه في 2023-11-12, اخر تحديث 2023-12-03
المؤلفون: جلين جوشر (2)

التعليقات