Zum Inhalt springen

Conda Schnellstartanleitung für Ultralytics

Ultralytics Conda Paket Visual

Dieser Leitfaden bietet eine umfassende Einführung in die Einrichtung einer Conda-Umgebung für deine Ultralytics Projekte. Conda ist ein Open-Source-Paket- und Umgebungsverwaltungssystem, das eine hervorragende Alternative zu pip für die Installation von Paketen und Abhängigkeiten darstellt. Mit seinen isolierten Umgebungen eignet es sich besonders gut für Data Science und maschinelles Lernen. Weitere Informationen findest du im Ultralytics Conda-Paket auf Anaconda und im Ultralytics feedstock-Repository für Paketaktualisierungen auf GitHub.

Conda Version Conda Downloads Conda-Rezept Conda-Plattformen

Was du lernen wirst

  • Einrichten einer Conda-Umgebung
  • Installation von Ultralytics über Conda
  • Initialisierung von Ultralytics in deiner Umgebung
  • Verwendung von Ultralytics Docker-Images mit Conda

Voraussetzungen

  • Du solltest Anaconda oder Miniconda auf deinem System installiert haben. Wenn nicht, lade es von Anaconda oder Miniconda herunter und installiere es.

Einrichten einer Conda-Umgebung

Zuerst erstellen wir eine neue Conda-Umgebung. Öffne dein Terminal und führe den folgenden Befehl aus:

conda create --name ultralytics-env python=3.8 -y

Aktiviere die neue Umgebung:

conda activate ultralytics-env

Installieren von Ultralytics

Du kannst das Paket Ultralytics aus dem conda-forge-Kanal installieren. Führe den folgenden Befehl aus:

conda install -c conda-forge ultralytics

Hinweis auf CUDA Umwelt

Wenn du in einer CUDA-fähigen Umgebung arbeitest, ist es eine gute Praxis, die ultralytics, pytorch, und pytorch-cuda gemeinsam, um Konflikte zu lösen:

conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8 ultralytics

Mit Ultralytics

Wenn du Ultralytics installiert hast, kannst du seine robusten Funktionen für die Objekterkennung, Instanzsegmentierung und mehr nutzen. Um zum Beispiel ein Bild vorherzusagen, kannst du Folgendes ausführen:

from ultralytics import YOLO

model = YOLO("yolov8n.pt")  # initialize model
results = model("path/to/image.jpg")  # perform inference
results[0].show()  # display results for the first image

Ultralytics Conda Docker Image

Wenn du lieber Docker verwendest, bietet Ultralytics Docker-Images an, die eine Conda-Umgebung enthalten. Du kannst diese Images von DockerHub beziehen.

Ziehe das neueste Ultralytics Image:

# Set image name as a variable
t=ultralytics/ultralytics:latest-conda

# Pull the latest Ultralytics image from Docker Hub
sudo docker pull $t

Führe das Bild aus:

# Run the Ultralytics image in a container with GPU support
sudo docker run -it --ipc=host --gpus all $t  # all GPUs
sudo docker run -it --ipc=host --gpus '"device=2,3"' $t  # specify GPUs

Beschleunigung der Installation mit Libmamba

Wenn du auf der Suche nach die Paketinstallation zu beschleunigen Prozesses in Conda kannst du dich für die Verwendung von libmambaist ein schneller, plattformübergreifender und abhängigkeitssensibler Paketmanager, der als Alternative zum Standard-Solver von Conda dient.

So aktivierst du Libmamba

Um zu ermöglichen libmamba als Solver für Conda zu verwenden, kannst du die folgenden Schritte durchführen:

  1. Installiere zunächst die conda-libmamba-solver Paket. Dies kann übersprungen werden, wenn deine Conda-Version 4.11 oder höher ist, da libmamba ist standardmäßig enthalten.

    conda install conda-libmamba-solver
    
  2. Als Nächstes konfigurierst du Conda so, dass es libmamba als Löser:

    conda config --set solver libmamba
    

Und das war's! Deine Conda-Installation verwendet nun libmamba als Solver, was zu einer schnelleren Paketinstallation führen sollte.


Herzlichen Glückwunsch! Du hast erfolgreich eine Conda-Umgebung eingerichtet, das Paket Ultralytics installiert und bist nun bereit, seine vielfältigen Funktionen zu erkunden. In der Dokumentation vonUltralytics findest du weitere Tutorials und Beispiele für Fortgeschrittene.

FAQ

Wie richte ich eine Conda-Umgebung für Ultralytics Projekte ein?

Das Einrichten einer Conda-Umgebung für Ultralytics Projekte ist einfach und sorgt für eine reibungslose Paketverwaltung. Erstelle zunächst eine neue Conda-Umgebung mit dem folgenden Befehl:

conda create --name ultralytics-env python=3.8 -y

Aktiviere dann die neue Umgebung mit:

conda activate ultralytics-env

Schließlich installierst du Ultralytics aus dem conda-forge-Kanal:

conda install -c conda-forge ultralytics

Warum sollte ich Conda statt pip für die Verwaltung von Abhängigkeiten in Ultralytics Projekten verwenden?

Conda ist ein robustes Paket- und Umgebungsverwaltungssystem, das mehrere Vorteile gegenüber pip bietet. Es verwaltet Abhängigkeiten effizient und stellt sicher, dass alle benötigten Bibliotheken kompatibel sind. Die isolierten Umgebungen von Conda verhindern Konflikte zwischen Paketen, was bei Data Science- und Machine Learning-Projekten entscheidend ist. Außerdem unterstützt Conda die Verteilung von Binärpaketen und beschleunigt so den Installationsprozess.

Kann ich Ultralytics YOLO in einer CUDA-fähigen Umgebung für eine schnellere Leistung verwenden?

Ja, du kannst die Leistung steigern, indem du eine CUDA-fähige Umgebung verwendest. Stelle sicher, dass du die ultralytics, pytorch, und pytorch-cuda zusammen, um Konflikte zu vermeiden:

conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8 ultralytics

Dieses Setup ermöglicht die GPU Beschleunigung, die für intensive Aufgaben wie das Training von Deep-Learning-Modellen und Inferenzen entscheidend ist. Weitere Informationen findest du in der Ultralytics Installationsanleitung.

Welche Vorteile hat die Verwendung von Ultralytics Docker-Images in einer Conda-Umgebung?

Die Verwendung von Ultralytics Docker-Images sorgt für eine konsistente und reproduzierbare Umgebung, die das Problem "das funktioniert auf meinem Rechner" beseitigt. Diese Images enthalten eine vorkonfigurierte Conda-Umgebung, die den Einrichtungsprozess vereinfacht. Mit den folgenden Befehlen kannst du das neueste Ultralytics Docker-Image herunterladen und ausführen:

sudo docker pull ultralytics/ultralytics:latest-conda
sudo docker run -it --ipc=host --gpus all ultralytics/ultralytics:latest-conda

Dieser Ansatz ist ideal, um Anwendungen in der Produktion einzusetzen oder komplexe Workflows ohne manuelle Konfiguration auszuführen. Erfahre mehr über Ultralytics Conda Docker Image.

Wie kann ich die Installation von Conda-Paketen in meiner Ultralytics Umgebung beschleunigen?

Du kannst den Paketinstallationsprozess beschleunigen, indem du libmamba, ein schneller Abhängigkeitslöser für Conda. Installiere zunächst die conda-libmamba-solver Paket:

conda install conda-libmamba-solver

Dann konfigurieren Sie Conda für die Verwendung von libmamba als Löser:

conda config --set solver libmamba

Dieses Setup ermöglicht eine schnellere und effizientere Paketverwaltung. Weitere Tipps zur Optimierung deiner Umgebung findest du in der Anleitung zur Installation von libmamba.


📅 Created 10 months ago ✏️ Updated 10 days ago

Kommentare