Zum Inhalt springen

Referenz für ultralytics/engine/results.py

Hinweis

Diese Datei ist verfügbar unter https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/engine/results .py. Wenn du ein Problem entdeckst, hilf bitte mit, es zu beheben, indem du einen Pull Request 🛠️ einreichst. Vielen Dank 🙏!



ultralytics.engine.results.BaseTensor

Basen: SimpleClass

Basisklasse tensor mit zusätzlichen Methoden für einfache Manipulation und Gerätehandhabung.

Quellcode in ultralytics/engine/results.py
class BaseTensor(SimpleClass):
    """Base tensor class with additional methods for easy manipulation and device handling."""

    def __init__(self, data, orig_shape) -> None:
        """
        Initialize BaseTensor with data and original shape.

        Args:
            data (torch.Tensor | np.ndarray): Predictions, such as bboxes, masks and keypoints.
            orig_shape (tuple): Original shape of image.
        """
        assert isinstance(data, (torch.Tensor, np.ndarray))
        self.data = data
        self.orig_shape = orig_shape

    @property
    def shape(self):
        """Return the shape of the data tensor."""
        return self.data.shape

    def cpu(self):
        """Return a copy of the tensor on CPU memory."""
        return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape)

    def numpy(self):
        """Return a copy of the tensor as a numpy array."""
        return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape)

    def cuda(self):
        """Return a copy of the tensor on GPU memory."""
        return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape)

    def to(self, *args, **kwargs):
        """Return a copy of the tensor with the specified device and dtype."""
        return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape)

    def __len__(self):  # override len(results)
        """Return the length of the data tensor."""
        return len(self.data)

    def __getitem__(self, idx):
        """Return a BaseTensor with the specified index of the data tensor."""
        return self.__class__(self.data[idx], self.orig_shape)

shape property

Gib die Form der Daten zurück tensor.

__getitem__(idx)

Gib einen BaseTensor mit dem angegebenen Index der Daten tensor zurück.

Quellcode in ultralytics/engine/results.py
def __getitem__(self, idx):
    """Return a BaseTensor with the specified index of the data tensor."""
    return self.__class__(self.data[idx], self.orig_shape)

__init__(data, orig_shape)

Initialisiere BaseTensor mit Daten und der ursprünglichen Form.

Parameter:

Name Typ Beschreibung Standard
data Tensor | ndarray

Vorhersagen, wie bboxes, Masken und Keypoints.

erforderlich
orig_shape tuple

Ursprüngliche Form des Bildes.

erforderlich
Quellcode in ultralytics/engine/results.py
def __init__(self, data, orig_shape) -> None:
    """
    Initialize BaseTensor with data and original shape.

    Args:
        data (torch.Tensor | np.ndarray): Predictions, such as bboxes, masks and keypoints.
        orig_shape (tuple): Original shape of image.
    """
    assert isinstance(data, (torch.Tensor, np.ndarray))
    self.data = data
    self.orig_shape = orig_shape

__len__()

Gib die Länge der Daten zurück tensor.

Quellcode in ultralytics/engine/results.py
def __len__(self):  # override len(results)
    """Return the length of the data tensor."""
    return len(self.data)

cpu()

Gib eine Kopie der tensor im CPU-Speicher zurück.

Quellcode in ultralytics/engine/results.py
def cpu(self):
    """Return a copy of the tensor on CPU memory."""
    return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape)

cuda()

Gibt eine Kopie der tensor im GPU-Speicher zurück.

Quellcode in ultralytics/engine/results.py
def cuda(self):
    """Return a copy of the tensor on GPU memory."""
    return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape)

numpy()

Gib eine Kopie von tensor als Numpy-Array zurück.

Quellcode in ultralytics/engine/results.py
def numpy(self):
    """Return a copy of the tensor as a numpy array."""
    return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape)

to(*args, **kwargs)

Gibt eine Kopie von tensor mit dem angegebenen Gerät und dtype zurück.

Quellcode in ultralytics/engine/results.py
def to(self, *args, **kwargs):
    """Return a copy of the tensor with the specified device and dtype."""
    return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape)



ultralytics.engine.results.Results

Basen: SimpleClass

Eine Klasse zum Speichern und Verarbeiten von Inferenzergebnissen.

Attribute:

Name Typ Beschreibung
orig_img ndarray

Das Originalbild als Numpy-Array.

orig_shape tuple

Ursprüngliche Bildform im Format (Höhe, Breite).

boxes Boxes

Objekt, das die Boundingboxen der Erkennung enthält.

masks Masks

Objekt, das Erkennungsmasken enthält.

probs Probs

Objekt mit Klassenwahrscheinlichkeiten für Klassifizierungsaufgaben.

keypoints Keypoints

Objekt, das die erkannten Keypoints für jedes Objekt enthält.

speed dict

Wörterbuch der Vorverarbeitungs-, Ableitungs- und Nachverarbeitungsgeschwindigkeiten (ms/Bild).

names dict

Wörterbuch der Klassennamen.

path str

Pfad zur Bilddatei.

Methoden:

Name Beschreibung
update

Aktualisiert die Objektattribute mit neuen Erkennungsergebnissen.

cpu

Gibt eine Kopie des Results-Objekts mit allen Tensoren im CPU-Speicher zurück.

numpy

Gibt eine Kopie des Results-Objekts mit allen Tensoren als Numpy-Arrays zurück.

cuda

Gibt eine Kopie des Results-Objekts mit allen Tensoren im GPU-Speicher zurück.

to

Gibt eine Kopie des Results-Objekts mit Tensoren auf einem bestimmten Gerät und dtype zurück.

new

Gibt ein neues Ergebnisobjekt mit demselben Bild, Pfad und Namen zurück.

plot

Stellt die Erkennungsergebnisse auf einem Eingabebild dar und gibt ein kommentiertes Bild zurück.

show

Zeige kommentierte Ergebnisse auf dem Bildschirm an.

save

Speichere die kommentierten Ergebnisse in einer Datei.

verbose

Gibt für jede Aufgabe einen Log-String zurück, in dem die Erkennungen und Klassifizierungen aufgeführt sind.

save_txt

Speichert die Erkennungsergebnisse in einer Textdatei.

save_crop

Speichert beschnittene Erkennungsbilder.

tojson

Konvertiert die Erkennungsergebnisse in das JSON-Format.

Quellcode in ultralytics/engine/results.py
class Results(SimpleClass):
    """
    A class for storing and manipulating inference results.

    Attributes:
        orig_img (numpy.ndarray): Original image as a numpy array.
        orig_shape (tuple): Original image shape in (height, width) format.
        boxes (Boxes, optional): Object containing detection bounding boxes.
        masks (Masks, optional): Object containing detection masks.
        probs (Probs, optional): Object containing class probabilities for classification tasks.
        keypoints (Keypoints, optional): Object containing detected keypoints for each object.
        speed (dict): Dictionary of preprocess, inference, and postprocess speeds (ms/image).
        names (dict): Dictionary of class names.
        path (str): Path to the image file.

    Methods:
        update(boxes=None, masks=None, probs=None, obb=None): Updates object attributes with new detection results.
        cpu(): Returns a copy of the Results object with all tensors on CPU memory.
        numpy(): Returns a copy of the Results object with all tensors as numpy arrays.
        cuda(): Returns a copy of the Results object with all tensors on GPU memory.
        to(*args, **kwargs): Returns a copy of the Results object with tensors on a specified device and dtype.
        new(): Returns a new Results object with the same image, path, and names.
        plot(...): Plots detection results on an input image, returning an annotated image.
        show(): Show annotated results to screen.
        save(filename): Save annotated results to file.
        verbose(): Returns a log string for each task, detailing detections and classifications.
        save_txt(txt_file, save_conf=False): Saves detection results to a text file.
        save_crop(save_dir, file_name=Path("im.jpg")): Saves cropped detection images.
        tojson(normalize=False): Converts detection results to JSON format.
    """

    def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None, obb=None) -> None:
        """
        Initialize the Results class.

        Args:
            orig_img (numpy.ndarray): The original image as a numpy array.
            path (str): The path to the image file.
            names (dict): A dictionary of class names.
            boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
            masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
            probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
            keypoints (torch.tensor, optional): A 2D tensor of keypoint coordinates for each detection.
            obb (torch.tensor, optional): A 2D tensor of oriented bounding box coordinates for each detection.
        """
        self.orig_img = orig_img
        self.orig_shape = orig_img.shape[:2]
        self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None  # native size boxes
        self.masks = Masks(masks, self.orig_shape) if masks is not None else None  # native size or imgsz masks
        self.probs = Probs(probs) if probs is not None else None
        self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None
        self.obb = OBB(obb, self.orig_shape) if obb is not None else None
        self.speed = {"preprocess": None, "inference": None, "postprocess": None}  # milliseconds per image
        self.names = names
        self.path = path
        self.save_dir = None
        self._keys = "boxes", "masks", "probs", "keypoints", "obb"

    def __getitem__(self, idx):
        """Return a Results object for the specified index."""
        return self._apply("__getitem__", idx)

    def __len__(self):
        """Return the number of detections in the Results object."""
        for k in self._keys:
            v = getattr(self, k)
            if v is not None:
                return len(v)

    def update(self, boxes=None, masks=None, probs=None, obb=None):
        """Update the boxes, masks, and probs attributes of the Results object."""
        if boxes is not None:
            self.boxes = Boxes(ops.clip_boxes(boxes, self.orig_shape), self.orig_shape)
        if masks is not None:
            self.masks = Masks(masks, self.orig_shape)
        if probs is not None:
            self.probs = probs
        if obb is not None:
            self.obb = OBB(obb, self.orig_shape)

    def _apply(self, fn, *args, **kwargs):
        """
        Applies a function to all non-empty attributes and returns a new Results object with modified attributes. This
        function is internally called by methods like .to(), .cuda(), .cpu(), etc.

        Args:
            fn (str): The name of the function to apply.
            *args: Variable length argument list to pass to the function.
            **kwargs: Arbitrary keyword arguments to pass to the function.

        Returns:
            Results: A new Results object with attributes modified by the applied function.
        """
        r = self.new()
        for k in self._keys:
            v = getattr(self, k)
            if v is not None:
                setattr(r, k, getattr(v, fn)(*args, **kwargs))
        return r

    def cpu(self):
        """Return a copy of the Results object with all tensors on CPU memory."""
        return self._apply("cpu")

    def numpy(self):
        """Return a copy of the Results object with all tensors as numpy arrays."""
        return self._apply("numpy")

    def cuda(self):
        """Return a copy of the Results object with all tensors on GPU memory."""
        return self._apply("cuda")

    def to(self, *args, **kwargs):
        """Return a copy of the Results object with tensors on the specified device and dtype."""
        return self._apply("to", *args, **kwargs)

    def new(self):
        """Return a new Results object with the same image, path, and names."""
        return Results(orig_img=self.orig_img, path=self.path, names=self.names)

    def plot(
        self,
        conf=True,
        line_width=None,
        font_size=None,
        font="Arial.ttf",
        pil=False,
        img=None,
        im_gpu=None,
        kpt_radius=5,
        kpt_line=True,
        labels=True,
        boxes=True,
        masks=True,
        probs=True,
        show=False,
        save=False,
        filename=None,
    ):
        """
        Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.

        Args:
            conf (bool): Whether to plot the detection confidence score.
            line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size.
            font_size (float, optional): The font size of the text. If None, it is scaled to the image size.
            font (str): The font to use for the text.
            pil (bool): Whether to return the image as a PIL Image.
            img (numpy.ndarray): Plot to another image. if not, plot to original image.
            im_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting.
            kpt_radius (int, optional): Radius of the drawn keypoints. Default is 5.
            kpt_line (bool): Whether to draw lines connecting keypoints.
            labels (bool): Whether to plot the label of bounding boxes.
            boxes (bool): Whether to plot the bounding boxes.
            masks (bool): Whether to plot the masks.
            probs (bool): Whether to plot classification probability
            show (bool): Whether to display the annotated image directly.
            save (bool): Whether to save the annotated image to `filename`.
            filename (str): Filename to save image to if save is True.

        Returns:
            (numpy.ndarray): A numpy array of the annotated image.

        Example:
            ```python
            from PIL import Image
            from ultralytics import YOLO

            model = YOLO('yolov8n.pt')
            results = model('bus.jpg')  # results list
            for r in results:
                im_array = r.plot()  # plot a BGR numpy array of predictions
                im = Image.fromarray(im_array[..., ::-1])  # RGB PIL image
                im.show()  # show image
                im.save('results.jpg')  # save image
            ```
        """
        if img is None and isinstance(self.orig_img, torch.Tensor):
            img = (self.orig_img[0].detach().permute(1, 2, 0).contiguous() * 255).to(torch.uint8).cpu().numpy()

        names = self.names
        is_obb = self.obb is not None
        pred_boxes, show_boxes = self.obb if is_obb else self.boxes, boxes
        pred_masks, show_masks = self.masks, masks
        pred_probs, show_probs = self.probs, probs
        annotator = Annotator(
            deepcopy(self.orig_img if img is None else img),
            line_width,
            font_size,
            font,
            pil or (pred_probs is not None and show_probs),  # Classify tasks default to pil=True
            example=names,
        )

        # Plot Segment results
        if pred_masks and show_masks:
            if im_gpu is None:
                img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
                im_gpu = (
                    torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device)
                    .permute(2, 0, 1)
                    .flip(0)
                    .contiguous()
                    / 255
                )
            idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
            annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)

        # Plot Detect results
        if pred_boxes is not None and show_boxes:
            for d in reversed(pred_boxes):
                c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
                name = ("" if id is None else f"id:{id} ") + names[c]
                label = (f"{name} {conf:.2f}" if conf else name) if labels else None
                box = d.xyxyxyxy.reshape(-1, 4, 2).squeeze() if is_obb else d.xyxy.squeeze()
                annotator.box_label(box, label, color=colors(c, True), rotated=is_obb)

        # Plot Classify results
        if pred_probs is not None and show_probs:
            text = ",\n".join(f"{names[j] if names else j} {pred_probs.data[j]:.2f}" for j in pred_probs.top5)
            x = round(self.orig_shape[0] * 0.03)
            annotator.text([x, x], text, txt_color=(255, 255, 255))  # TODO: allow setting colors

        # Plot Pose results
        if self.keypoints is not None:
            for k in reversed(self.keypoints.data):
                annotator.kpts(k, self.orig_shape, radius=kpt_radius, kpt_line=kpt_line)

        # Show results
        if show:
            annotator.show(self.path)

        # Save results
        if save:
            annotator.save(filename)

        return annotator.result()

    def show(self, *args, **kwargs):
        """Show annotated results image."""
        self.plot(show=True, *args, **kwargs)

    def save(self, filename=None, *args, **kwargs):
        """Save annotated results image."""
        if not filename:
            filename = f"results_{Path(self.path).name}"
        self.plot(save=True, filename=filename, *args, **kwargs)
        return filename

    def verbose(self):
        """Return log string for each task."""
        log_string = ""
        probs = self.probs
        boxes = self.boxes
        if len(self) == 0:
            return log_string if probs is not None else f"{log_string}(no detections), "
        if probs is not None:
            log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
        if boxes:
            for c in boxes.cls.unique():
                n = (boxes.cls == c).sum()  # detections per class
                log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
        return log_string

    def save_txt(self, txt_file, save_conf=False):
        """
        Save predictions into txt file.

        Args:
            txt_file (str): txt file path.
            save_conf (bool): save confidence score or not.
        """
        is_obb = self.obb is not None
        boxes = self.obb if is_obb else self.boxes
        masks = self.masks
        probs = self.probs
        kpts = self.keypoints
        texts = []
        if probs is not None:
            # Classify
            [texts.append(f"{probs.data[j]:.2f} {self.names[j]}") for j in probs.top5]
        elif boxes:
            # Detect/segment/pose
            for j, d in enumerate(boxes):
                c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
                line = (c, *(d.xyxyxyxyn.view(-1) if is_obb else d.xywhn.view(-1)))
                if masks:
                    seg = masks[j].xyn[0].copy().reshape(-1)  # reversed mask.xyn, (n,2) to (n*2)
                    line = (c, *seg)
                if kpts is not None:
                    kpt = torch.cat((kpts[j].xyn, kpts[j].conf[..., None]), 2) if kpts[j].has_visible else kpts[j].xyn
                    line += (*kpt.reshape(-1).tolist(),)
                line += (conf,) * save_conf + (() if id is None else (id,))
                texts.append(("%g " * len(line)).rstrip() % line)

        if texts:
            Path(txt_file).parent.mkdir(parents=True, exist_ok=True)  # make directory
            with open(txt_file, "a") as f:
                f.writelines(text + "\n" for text in texts)

    def save_crop(self, save_dir, file_name=Path("im.jpg")):
        """
        Save cropped predictions to `save_dir/cls/file_name.jpg`.

        Args:
            save_dir (str | pathlib.Path): Save path.
            file_name (str | pathlib.Path): File name.
        """
        if self.probs is not None:
            LOGGER.warning("WARNING ⚠️ Classify task do not support `save_crop`.")
            return
        if self.obb is not None:
            LOGGER.warning("WARNING ⚠️ OBB task do not support `save_crop`.")
            return
        for d in self.boxes:
            save_one_box(
                d.xyxy,
                self.orig_img.copy(),
                file=Path(save_dir) / self.names[int(d.cls)] / f"{Path(file_name)}.jpg",
                BGR=True,
            )

    def tojson(self, normalize=False):
        """Convert the object to JSON format."""
        if self.probs is not None:
            LOGGER.warning("Warning: Classify task do not support `tojson` yet.")
            return

        import json

        # Create list of detection dictionaries
        results = []
        data = self.boxes.data.cpu().tolist()
        h, w = self.orig_shape if normalize else (1, 1)
        for i, row in enumerate(data):  # xyxy, track_id if tracking, conf, class_id
            box = {"x1": row[0] / w, "y1": row[1] / h, "x2": row[2] / w, "y2": row[3] / h}
            conf = row[-2]
            class_id = int(row[-1])
            name = self.names[class_id]
            result = {"name": name, "class": class_id, "confidence": conf, "box": box}
            if self.boxes.is_track:
                result["track_id"] = int(row[-3])  # track ID
            if self.masks:
                x, y = self.masks.xy[i][:, 0], self.masks.xy[i][:, 1]  # numpy array
                result["segments"] = {"x": (x / w).tolist(), "y": (y / h).tolist()}
            if self.keypoints is not None:
                x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1)  # torch Tensor
                result["keypoints"] = {"x": (x / w).tolist(), "y": (y / h).tolist(), "visible": visible.tolist()}
            results.append(result)

        # Convert detections to JSON
        return json.dumps(results, indent=2)

__getitem__(idx)

Gibt ein Ergebnisobjekt für den angegebenen Index zurück.

Quellcode in ultralytics/engine/results.py
def __getitem__(self, idx):
    """Return a Results object for the specified index."""
    return self._apply("__getitem__", idx)

__init__(orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None, obb=None)

Initialisiere die Klasse Results.

Parameter:

Name Typ Beschreibung Standard
orig_img ndarray

Das Originalbild als Numpy-Array.

erforderlich
path str

Der Pfad zur Bilddatei.

erforderlich
names dict

Ein Wörterbuch mit Klassennamen.

erforderlich
boxes tensor

Eine 2D tensor von Bounding-Box-Koordinaten für jede Erkennung.

None
masks tensor

Ein 3D tensor von Erkennungsmasken, wobei jede Maske ein Binärbild ist.

None
probs tensor

Eine 1D tensor der Wahrscheinlichkeiten jeder Klasse für die Klassifizierungsaufgabe.

None
keypoints tensor

Eine 2D tensor von Keypoint-Koordinaten für jede Erkennung.

None
obb tensor

Eine 2D tensor von orientierten Bounding-Box-Koordinaten für jede Erkennung.

None
Quellcode in ultralytics/engine/results.py
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None, obb=None) -> None:
    """
    Initialize the Results class.

    Args:
        orig_img (numpy.ndarray): The original image as a numpy array.
        path (str): The path to the image file.
        names (dict): A dictionary of class names.
        boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
        masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
        probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
        keypoints (torch.tensor, optional): A 2D tensor of keypoint coordinates for each detection.
        obb (torch.tensor, optional): A 2D tensor of oriented bounding box coordinates for each detection.
    """
    self.orig_img = orig_img
    self.orig_shape = orig_img.shape[:2]
    self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None  # native size boxes
    self.masks = Masks(masks, self.orig_shape) if masks is not None else None  # native size or imgsz masks
    self.probs = Probs(probs) if probs is not None else None
    self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None
    self.obb = OBB(obb, self.orig_shape) if obb is not None else None
    self.speed = {"preprocess": None, "inference": None, "postprocess": None}  # milliseconds per image
    self.names = names
    self.path = path
    self.save_dir = None
    self._keys = "boxes", "masks", "probs", "keypoints", "obb"

__len__()

Gibt die Anzahl der Entdeckungen im Ergebnisobjekt zurück.

Quellcode in ultralytics/engine/results.py
def __len__(self):
    """Return the number of detections in the Results object."""
    for k in self._keys:
        v = getattr(self, k)
        if v is not None:
            return len(v)

cpu()

Gibt eine Kopie des Ergebnisobjekts mit allen Tensoren im CPU-Speicher zurück.

Quellcode in ultralytics/engine/results.py
def cpu(self):
    """Return a copy of the Results object with all tensors on CPU memory."""
    return self._apply("cpu")

cuda()

Gibt eine Kopie des Results-Objekts mit allen Tensoren im GPU-Speicher zurück.

Quellcode in ultralytics/engine/results.py
def cuda(self):
    """Return a copy of the Results object with all tensors on GPU memory."""
    return self._apply("cuda")

new()

Gibt ein neues Ergebnisobjekt mit demselben Bild, Pfad und Namen zurück.

Quellcode in ultralytics/engine/results.py
def new(self):
    """Return a new Results object with the same image, path, and names."""
    return Results(orig_img=self.orig_img, path=self.path, names=self.names)

numpy()

Gibt eine Kopie des Results-Objekts mit allen Tensoren als Numpy-Arrays zurück.

Quellcode in ultralytics/engine/results.py
def numpy(self):
    """Return a copy of the Results object with all tensors as numpy arrays."""
    return self._apply("numpy")

plot(conf=True, line_width=None, font_size=None, font='Arial.ttf', pil=False, img=None, im_gpu=None, kpt_radius=5, kpt_line=True, labels=True, boxes=True, masks=True, probs=True, show=False, save=False, filename=None)

Stellt die Erkennungsergebnisse auf einem RGB-Eingabebild dar. Akzeptiert ein Numpy-Array (cv2) oder ein PIL-Bild.

Parameter:

Name Typ Beschreibung Standard
conf bool

Ob die Erkennungswahrscheinlichkeit dargestellt werden soll.

True
line_width float

Die Linienbreite der Begrenzungsrahmen. Wenn keine, wird sie auf die Bildgröße skaliert.

None
font_size float

Die Schriftgröße des Textes. Wenn keine, wird sie auf die Bildgröße skaliert.

None
font str

Die Schriftart, die für den Text verwendet werden soll.

'Arial.ttf'
pil bool

Ob das Bild als PIL-Bild zurückgegeben werden soll.

False
img ndarray

Plotte ein anderes Bild. Wenn nicht, plotte das Originalbild.

None
im_gpu Tensor

Normalisiertes Bild in gpu mit der Form (1, 3, 640, 640), damit die Maske schneller geplottet werden kann.

None
kpt_radius int

Radius der gezeichneten Keypoints. Standard ist 5.

5
kpt_line bool

Ob Linien gezeichnet werden sollen, die Keypoints verbinden.

True
labels bool

Ob die Beschriftung der Begrenzungsrahmen gezeichnet werden soll.

True
boxes bool

Ob die Begrenzungsrahmen gezeichnet werden sollen.

True
masks bool

Ob die Masken geplottet werden sollen.

True
probs bool

Ob die Klassifizierungswahrscheinlichkeit gezeichnet werden soll

True
show bool

Ob das kommentierte Bild direkt angezeigt werden soll.

False
save bool

Ob das mit Anmerkungen versehene Bild gespeichert werden soll filename.

False
filename str

Dateiname, unter dem das Bild gespeichert werden soll, wenn Speichern auf True steht.

None

Retouren:

Typ Beschreibung
ndarray

Ein Numpy-Array mit dem kommentierten Bild.

Beispiel
from PIL import Image
from ultralytics import YOLO

model = YOLO('yolov8n.pt')
results = model('bus.jpg')  # results list
for r in results:
    im_array = r.plot()  # plot a BGR numpy array of predictions
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL image
    im.show()  # show image
    im.save('results.jpg')  # save image
Quellcode in ultralytics/engine/results.py
def plot(
    self,
    conf=True,
    line_width=None,
    font_size=None,
    font="Arial.ttf",
    pil=False,
    img=None,
    im_gpu=None,
    kpt_radius=5,
    kpt_line=True,
    labels=True,
    boxes=True,
    masks=True,
    probs=True,
    show=False,
    save=False,
    filename=None,
):
    """
    Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.

    Args:
        conf (bool): Whether to plot the detection confidence score.
        line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size.
        font_size (float, optional): The font size of the text. If None, it is scaled to the image size.
        font (str): The font to use for the text.
        pil (bool): Whether to return the image as a PIL Image.
        img (numpy.ndarray): Plot to another image. if not, plot to original image.
        im_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting.
        kpt_radius (int, optional): Radius of the drawn keypoints. Default is 5.
        kpt_line (bool): Whether to draw lines connecting keypoints.
        labels (bool): Whether to plot the label of bounding boxes.
        boxes (bool): Whether to plot the bounding boxes.
        masks (bool): Whether to plot the masks.
        probs (bool): Whether to plot classification probability
        show (bool): Whether to display the annotated image directly.
        save (bool): Whether to save the annotated image to `filename`.
        filename (str): Filename to save image to if save is True.

    Returns:
        (numpy.ndarray): A numpy array of the annotated image.

    Example:
        ```python
        from PIL import Image
        from ultralytics import YOLO

        model = YOLO('yolov8n.pt')
        results = model('bus.jpg')  # results list
        for r in results:
            im_array = r.plot()  # plot a BGR numpy array of predictions
            im = Image.fromarray(im_array[..., ::-1])  # RGB PIL image
            im.show()  # show image
            im.save('results.jpg')  # save image
        ```
    """
    if img is None and isinstance(self.orig_img, torch.Tensor):
        img = (self.orig_img[0].detach().permute(1, 2, 0).contiguous() * 255).to(torch.uint8).cpu().numpy()

    names = self.names
    is_obb = self.obb is not None
    pred_boxes, show_boxes = self.obb if is_obb else self.boxes, boxes
    pred_masks, show_masks = self.masks, masks
    pred_probs, show_probs = self.probs, probs
    annotator = Annotator(
        deepcopy(self.orig_img if img is None else img),
        line_width,
        font_size,
        font,
        pil or (pred_probs is not None and show_probs),  # Classify tasks default to pil=True
        example=names,
    )

    # Plot Segment results
    if pred_masks and show_masks:
        if im_gpu is None:
            img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
            im_gpu = (
                torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device)
                .permute(2, 0, 1)
                .flip(0)
                .contiguous()
                / 255
            )
        idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
        annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)

    # Plot Detect results
    if pred_boxes is not None and show_boxes:
        for d in reversed(pred_boxes):
            c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
            name = ("" if id is None else f"id:{id} ") + names[c]
            label = (f"{name} {conf:.2f}" if conf else name) if labels else None
            box = d.xyxyxyxy.reshape(-1, 4, 2).squeeze() if is_obb else d.xyxy.squeeze()
            annotator.box_label(box, label, color=colors(c, True), rotated=is_obb)

    # Plot Classify results
    if pred_probs is not None and show_probs:
        text = ",\n".join(f"{names[j] if names else j} {pred_probs.data[j]:.2f}" for j in pred_probs.top5)
        x = round(self.orig_shape[0] * 0.03)
        annotator.text([x, x], text, txt_color=(255, 255, 255))  # TODO: allow setting colors

    # Plot Pose results
    if self.keypoints is not None:
        for k in reversed(self.keypoints.data):
            annotator.kpts(k, self.orig_shape, radius=kpt_radius, kpt_line=kpt_line)

    # Show results
    if show:
        annotator.show(self.path)

    # Save results
    if save:
        annotator.save(filename)

    return annotator.result()

save(filename=None, *args, **kwargs)

Speichere das Bild mit den kommentierten Ergebnissen.

Quellcode in ultralytics/engine/results.py
def save(self, filename=None, *args, **kwargs):
    """Save annotated results image."""
    if not filename:
        filename = f"results_{Path(self.path).name}"
    self.plot(save=True, filename=filename, *args, **kwargs)
    return filename

save_crop(save_dir, file_name=Path('im.jpg'))

Ausgeschnittene Vorhersagen speichern in save_dir/cls/file_name.jpg.

Parameter:

Name Typ Beschreibung Standard
save_dir str | Path

Pfad speichern.

erforderlich
file_name str | Path

Dateiname.

Path('im.jpg')
Quellcode in ultralytics/engine/results.py
def save_crop(self, save_dir, file_name=Path("im.jpg")):
    """
    Save cropped predictions to `save_dir/cls/file_name.jpg`.

    Args:
        save_dir (str | pathlib.Path): Save path.
        file_name (str | pathlib.Path): File name.
    """
    if self.probs is not None:
        LOGGER.warning("WARNING ⚠️ Classify task do not support `save_crop`.")
        return
    if self.obb is not None:
        LOGGER.warning("WARNING ⚠️ OBB task do not support `save_crop`.")
        return
    for d in self.boxes:
        save_one_box(
            d.xyxy,
            self.orig_img.copy(),
            file=Path(save_dir) / self.names[int(d.cls)] / f"{Path(file_name)}.jpg",
            BGR=True,
        )

save_txt(txt_file, save_conf=False)

Speichere die Vorhersagen in einer txt-Datei.

Parameter:

Name Typ Beschreibung Standard
txt_file str

txt-Dateipfad.

erforderlich
save_conf bool

Vertrauenspunkte speichern oder nicht.

False
Quellcode in ultralytics/engine/results.py
def save_txt(self, txt_file, save_conf=False):
    """
    Save predictions into txt file.

    Args:
        txt_file (str): txt file path.
        save_conf (bool): save confidence score or not.
    """
    is_obb = self.obb is not None
    boxes = self.obb if is_obb else self.boxes
    masks = self.masks
    probs = self.probs
    kpts = self.keypoints
    texts = []
    if probs is not None:
        # Classify
        [texts.append(f"{probs.data[j]:.2f} {self.names[j]}") for j in probs.top5]
    elif boxes:
        # Detect/segment/pose
        for j, d in enumerate(boxes):
            c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
            line = (c, *(d.xyxyxyxyn.view(-1) if is_obb else d.xywhn.view(-1)))
            if masks:
                seg = masks[j].xyn[0].copy().reshape(-1)  # reversed mask.xyn, (n,2) to (n*2)
                line = (c, *seg)
            if kpts is not None:
                kpt = torch.cat((kpts[j].xyn, kpts[j].conf[..., None]), 2) if kpts[j].has_visible else kpts[j].xyn
                line += (*kpt.reshape(-1).tolist(),)
            line += (conf,) * save_conf + (() if id is None else (id,))
            texts.append(("%g " * len(line)).rstrip() % line)

    if texts:
        Path(txt_file).parent.mkdir(parents=True, exist_ok=True)  # make directory
        with open(txt_file, "a") as f:
            f.writelines(text + "\n" for text in texts)

show(*args, **kwargs)

Zeige ein kommentiertes Ergebnisbild.

Quellcode in ultralytics/engine/results.py
def show(self, *args, **kwargs):
    """Show annotated results image."""
    self.plot(show=True, *args, **kwargs)

to(*args, **kwargs)

Gibt eine Kopie des Results-Objekts mit Tensoren auf dem angegebenen Gerät und dtype zurück.

Quellcode in ultralytics/engine/results.py
def to(self, *args, **kwargs):
    """Return a copy of the Results object with tensors on the specified device and dtype."""
    return self._apply("to", *args, **kwargs)

tojson(normalize=False)

Konvertiere das Objekt in das JSON-Format.

Quellcode in ultralytics/engine/results.py
def tojson(self, normalize=False):
    """Convert the object to JSON format."""
    if self.probs is not None:
        LOGGER.warning("Warning: Classify task do not support `tojson` yet.")
        return

    import json

    # Create list of detection dictionaries
    results = []
    data = self.boxes.data.cpu().tolist()
    h, w = self.orig_shape if normalize else (1, 1)
    for i, row in enumerate(data):  # xyxy, track_id if tracking, conf, class_id
        box = {"x1": row[0] / w, "y1": row[1] / h, "x2": row[2] / w, "y2": row[3] / h}
        conf = row[-2]
        class_id = int(row[-1])
        name = self.names[class_id]
        result = {"name": name, "class": class_id, "confidence": conf, "box": box}
        if self.boxes.is_track:
            result["track_id"] = int(row[-3])  # track ID
        if self.masks:
            x, y = self.masks.xy[i][:, 0], self.masks.xy[i][:, 1]  # numpy array
            result["segments"] = {"x": (x / w).tolist(), "y": (y / h).tolist()}
        if self.keypoints is not None:
            x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1)  # torch Tensor
            result["keypoints"] = {"x": (x / w).tolist(), "y": (y / h).tolist(), "visible": visible.tolist()}
        results.append(result)

    # Convert detections to JSON
    return json.dumps(results, indent=2)

update(boxes=None, masks=None, probs=None, obb=None)

Aktualisiere die Boxen, Masken und Probs-Attribute des Ergebnisobjekts.

Quellcode in ultralytics/engine/results.py
def update(self, boxes=None, masks=None, probs=None, obb=None):
    """Update the boxes, masks, and probs attributes of the Results object."""
    if boxes is not None:
        self.boxes = Boxes(ops.clip_boxes(boxes, self.orig_shape), self.orig_shape)
    if masks is not None:
        self.masks = Masks(masks, self.orig_shape)
    if probs is not None:
        self.probs = probs
    if obb is not None:
        self.obb = OBB(obb, self.orig_shape)

verbose()

Gib für jede Aufgabe einen Log-String zurück.

Quellcode in ultralytics/engine/results.py
def verbose(self):
    """Return log string for each task."""
    log_string = ""
    probs = self.probs
    boxes = self.boxes
    if len(self) == 0:
        return log_string if probs is not None else f"{log_string}(no detections), "
    if probs is not None:
        log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
    if boxes:
        for c in boxes.cls.unique():
            n = (boxes.cls == c).sum()  # detections per class
            log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
    return log_string



ultralytics.engine.results.Boxes

Basen: BaseTensor

Verwaltet die Erkennungsfelder und ermöglicht den einfachen Zugriff auf und die Bearbeitung von Feldkoordinaten, Konfidenzwerten, Klassen Identifikatoren und optionalen Tracking-IDs. Unterstützt mehrere Formate für Feldkoordinaten, darunter absolute und normalisierte Formen.

Attribute:

Name Typ Beschreibung
data Tensor

Die Rohdaten tensor enthalten die Erkennungsfelder und die dazugehörigen Daten.

orig_shape tuple

Die ursprüngliche Bildgröße als Tupel (Höhe, Breite), die für die Normalisierung verwendet wird.

is_track bool

Gibt an, ob Tracking-IDs in den Box-Daten enthalten sind.

Eigenschaften

xyxy (torch.Tensor | numpy.ndarray): Boxen im Format [x1, y1, x2, y2]. conf (torch.Tensor | numpy.ndarray): Konfidenzwerte für jede Box. cls (torch.Tensor | numpy.ndarray): Klassenbezeichnungen für jede Box. id (torch.Tensor | numpy.ndarray, optional): Tracking-IDs für jede Box, falls vorhanden. xywh (torch.Tensor | numpy.ndarray): Boxen im Format [x, y, Breite, Höhe], die bei Bedarf berechnet werden. xyxyn (torch.Tensor | numpy.ndarray): Normalisierte [x1, y1, x2, y2] Boxen, relativ zu orig_shape. xywhn (torch.Tensor | numpy.ndarray): Normalisierte [x, y, Breite, Höhe] Boxen, relativ zu orig_shape.

Methoden:

Name Beschreibung
cpu

Verschiebt die Boxen in den CPU-Speicher.

numpy

Konvertiert die Boxen in ein Numpy-Array-Format.

cuda

Verschiebt die Boxen in den CUDA (GPU) Speicher.

to

Verschiebt die Boxen auf das angegebene Gerät.

Quellcode in ultralytics/engine/results.py
class Boxes(BaseTensor):
    """
    Manages detection boxes, providing easy access and manipulation of box coordinates, confidence scores, class
    identifiers, and optional tracking IDs. Supports multiple formats for box coordinates, including both absolute and
    normalized forms.

    Attributes:
        data (torch.Tensor): The raw tensor containing detection boxes and their associated data.
        orig_shape (tuple): The original image size as a tuple (height, width), used for normalization.
        is_track (bool): Indicates whether tracking IDs are included in the box data.

    Properties:
        xyxy (torch.Tensor | numpy.ndarray): Boxes in [x1, y1, x2, y2] format.
        conf (torch.Tensor | numpy.ndarray): Confidence scores for each box.
        cls (torch.Tensor | numpy.ndarray): Class labels for each box.
        id (torch.Tensor | numpy.ndarray, optional): Tracking IDs for each box, if available.
        xywh (torch.Tensor | numpy.ndarray): Boxes in [x, y, width, height] format, calculated on demand.
        xyxyn (torch.Tensor | numpy.ndarray): Normalized [x1, y1, x2, y2] boxes, relative to `orig_shape`.
        xywhn (torch.Tensor | numpy.ndarray): Normalized [x, y, width, height] boxes, relative to `orig_shape`.

    Methods:
        cpu(): Moves the boxes to CPU memory.
        numpy(): Converts the boxes to a numpy array format.
        cuda(): Moves the boxes to CUDA (GPU) memory.
        to(device, dtype=None): Moves the boxes to the specified device.
    """

    def __init__(self, boxes, orig_shape) -> None:
        """
        Initialize the Boxes class.

        Args:
            boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes, with
                shape (num_boxes, 6) or (num_boxes, 7). The last two columns contain confidence and class values.
                If present, the third last column contains track IDs.
            orig_shape (tuple): Original image size, in the format (height, width).
        """
        if boxes.ndim == 1:
            boxes = boxes[None, :]
        n = boxes.shape[-1]
        assert n in (6, 7), f"expected 6 or 7 values but got {n}"  # xyxy, track_id, conf, cls
        super().__init__(boxes, orig_shape)
        self.is_track = n == 7
        self.orig_shape = orig_shape

    @property
    def xyxy(self):
        """Return the boxes in xyxy format."""
        return self.data[:, :4]

    @property
    def conf(self):
        """Return the confidence values of the boxes."""
        return self.data[:, -2]

    @property
    def cls(self):
        """Return the class values of the boxes."""
        return self.data[:, -1]

    @property
    def id(self):
        """Return the track IDs of the boxes (if available)."""
        return self.data[:, -3] if self.is_track else None

    @property
    @lru_cache(maxsize=2)  # maxsize 1 should suffice
    def xywh(self):
        """Return the boxes in xywh format."""
        return ops.xyxy2xywh(self.xyxy)

    @property
    @lru_cache(maxsize=2)
    def xyxyn(self):
        """Return the boxes in xyxy format normalized by original image size."""
        xyxy = self.xyxy.clone() if isinstance(self.xyxy, torch.Tensor) else np.copy(self.xyxy)
        xyxy[..., [0, 2]] /= self.orig_shape[1]
        xyxy[..., [1, 3]] /= self.orig_shape[0]
        return xyxy

    @property
    @lru_cache(maxsize=2)
    def xywhn(self):
        """Return the boxes in xywh format normalized by original image size."""
        xywh = ops.xyxy2xywh(self.xyxy)
        xywh[..., [0, 2]] /= self.orig_shape[1]
        xywh[..., [1, 3]] /= self.orig_shape[0]
        return xywh

cls property

Gib die Klassenwerte der Boxen zurück.

conf property

Gib die Konfidenzwerte der Boxen zurück.

id property

Gib die Track-IDs der Boxen zurück (falls verfügbar).

xywh cached property

Gib die Boxen im xywh-Format zurück.

xywhn cached property

Gibt die Boxen im xywh-Format zurück, normalisiert auf die ursprüngliche Bildgröße.

xyxy property

Gib die Felder im xyxy-Format zurück.

xyxyn cached property

Gibt die Boxen im xyxy-Format zurück, normalisiert auf die ursprüngliche Bildgröße.

__init__(boxes, orig_shape)

Initialisiere die Klasse Boxen.

Parameter:

Name Typ Beschreibung Standard
boxes Tensor | ndarray

Ein tensor oder Numpy-Array, das die Erkennungsboxen enthält, mit Form (num_boxes, 6) oder (num_boxes, 7). Die letzten beiden Spalten enthalten Konfidenz- und Klassenwerte. Falls vorhanden, enthält die drittletzte Spalte die Track-IDs.

erforderlich
orig_shape tuple

Originalgröße des Bildes, im Format (Höhe, Breite).

erforderlich
Quellcode in ultralytics/engine/results.py
def __init__(self, boxes, orig_shape) -> None:
    """
    Initialize the Boxes class.

    Args:
        boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes, with
            shape (num_boxes, 6) or (num_boxes, 7). The last two columns contain confidence and class values.
            If present, the third last column contains track IDs.
        orig_shape (tuple): Original image size, in the format (height, width).
    """
    if boxes.ndim == 1:
        boxes = boxes[None, :]
    n = boxes.shape[-1]
    assert n in (6, 7), f"expected 6 or 7 values but got {n}"  # xyxy, track_id, conf, cls
    super().__init__(boxes, orig_shape)
    self.is_track = n == 7
    self.orig_shape = orig_shape



ultralytics.engine.results.Masks

Basen: BaseTensor

Eine Klasse zum Speichern und Bearbeiten von Erkennungsmasken.

Attribute:

Name Typ Beschreibung
xy list

Eine Liste von Segmenten in Pixelkoordinaten.

xyn list

Eine Liste von normalisierten Segmenten.

Methoden:

Name Beschreibung
cpu

Gibt die Masken tensor im CPU-Speicher zurück.

numpy

Gibt die Masken tensor als Numpy-Array zurück.

cuda

Gibt die Masken tensor im GPU-Speicher zurück.

to

Gibt die Masken tensor mit dem angegebenen Gerät und dtype zurück.

Quellcode in ultralytics/engine/results.py
class Masks(BaseTensor):
    """
    A class for storing and manipulating detection masks.

    Attributes:
        xy (list): A list of segments in pixel coordinates.
        xyn (list): A list of normalized segments.

    Methods:
        cpu(): Returns the masks tensor on CPU memory.
        numpy(): Returns the masks tensor as a numpy array.
        cuda(): Returns the masks tensor on GPU memory.
        to(device, dtype): Returns the masks tensor with the specified device and dtype.
    """

    def __init__(self, masks, orig_shape) -> None:
        """Initialize the Masks class with the given masks tensor and original image shape."""
        if masks.ndim == 2:
            masks = masks[None, :]
        super().__init__(masks, orig_shape)

    @property
    @lru_cache(maxsize=1)
    def xyn(self):
        """Return normalized segments."""
        return [
            ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True)
            for x in ops.masks2segments(self.data)
        ]

    @property
    @lru_cache(maxsize=1)
    def xy(self):
        """Return segments in pixel coordinates."""
        return [
            ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False)
            for x in ops.masks2segments(self.data)
        ]

xy cached property

Gib die Segmente in Pixelkoordinaten zurück.

xyn cached property

Gib normalisierte Segmente zurück.

__init__(masks, orig_shape)

Initialisiere die Klasse "Masken" mit den angegebenen Masken tensor und der ursprünglichen Bildform.

Quellcode in ultralytics/engine/results.py
def __init__(self, masks, orig_shape) -> None:
    """Initialize the Masks class with the given masks tensor and original image shape."""
    if masks.ndim == 2:
        masks = masks[None, :]
    super().__init__(masks, orig_shape)



ultralytics.engine.results.Keypoints

Basen: BaseTensor

Eine Klasse zum Speichern und Bearbeiten von Erkennungsmerkmalen.

Attribute:

Name Typ Beschreibung
xy Tensor

Eine Sammlung von Keypoints, die x- und y-Koordinaten für jede Erkennung enthält.

xyn Tensor

Eine normalisierte Version von xy mit Koordinaten im Bereich [0, 1].

conf Tensor

Konfidenzwerte, die mit Keypoints verknüpft sind, falls vorhanden, sonst Keine.

Methoden:

Name Beschreibung
cpu

Gibt eine Kopie der Keypoints tensor im CPU-Speicher zurück.

numpy

Gibt eine Kopie der Keypoints tensor als Numpy-Array zurück.

cuda

Gibt eine Kopie der Keypoints tensor im GPU-Speicher zurück.

to

Gibt eine Kopie der Keypoints tensor mit dem angegebenen Gerät und dtype zurück.

Quellcode in ultralytics/engine/results.py
class Keypoints(BaseTensor):
    """
    A class for storing and manipulating detection keypoints.

    Attributes:
        xy (torch.Tensor): A collection of keypoints containing x, y coordinates for each detection.
        xyn (torch.Tensor): A normalized version of xy with coordinates in the range [0, 1].
        conf (torch.Tensor): Confidence values associated with keypoints if available, otherwise None.

    Methods:
        cpu(): Returns a copy of the keypoints tensor on CPU memory.
        numpy(): Returns a copy of the keypoints tensor as a numpy array.
        cuda(): Returns a copy of the keypoints tensor on GPU memory.
        to(device, dtype): Returns a copy of the keypoints tensor with the specified device and dtype.
    """

    @smart_inference_mode()  # avoid keypoints < conf in-place error
    def __init__(self, keypoints, orig_shape) -> None:
        """Initializes the Keypoints object with detection keypoints and original image size."""
        if keypoints.ndim == 2:
            keypoints = keypoints[None, :]
        if keypoints.shape[2] == 3:  # x, y, conf
            mask = keypoints[..., 2] < 0.5  # points with conf < 0.5 (not visible)
            keypoints[..., :2][mask] = 0
        super().__init__(keypoints, orig_shape)
        self.has_visible = self.data.shape[-1] == 3

    @property
    @lru_cache(maxsize=1)
    def xy(self):
        """Returns x, y coordinates of keypoints."""
        return self.data[..., :2]

    @property
    @lru_cache(maxsize=1)
    def xyn(self):
        """Returns normalized x, y coordinates of keypoints."""
        xy = self.xy.clone() if isinstance(self.xy, torch.Tensor) else np.copy(self.xy)
        xy[..., 0] /= self.orig_shape[1]
        xy[..., 1] /= self.orig_shape[0]
        return xy

    @property
    @lru_cache(maxsize=1)
    def conf(self):
        """Returns confidence values of keypoints if available, else None."""
        return self.data[..., 2] if self.has_visible else None

conf cached property

Gibt die Konfidenzwerte der Keypoints zurück, falls vorhanden, sonst keine.

xy cached property

Gibt die x- und y-Koordinaten der Keypoints zurück.

xyn cached property

Gibt die normalisierten x- und y-Koordinaten der Keypoints zurück.

__init__(keypoints, orig_shape)

Initialisiert das Keypoints-Objekt mit den Erkennungskeypunkten und der ursprünglichen Bildgröße.

Quellcode in ultralytics/engine/results.py
@smart_inference_mode()  # avoid keypoints < conf in-place error
def __init__(self, keypoints, orig_shape) -> None:
    """Initializes the Keypoints object with detection keypoints and original image size."""
    if keypoints.ndim == 2:
        keypoints = keypoints[None, :]
    if keypoints.shape[2] == 3:  # x, y, conf
        mask = keypoints[..., 2] < 0.5  # points with conf < 0.5 (not visible)
        keypoints[..., :2][mask] = 0
    super().__init__(keypoints, orig_shape)
    self.has_visible = self.data.shape[-1] == 3



ultralytics.engine.results.Probs

Basen: BaseTensor

Eine Klasse zum Speichern und Verarbeiten von Klassifizierungsvorhersagen.

Attribute:

Name Typ Beschreibung
top1 int

Index der Top 1 Klasse.

top5 list[int]

Indizes der Top 5 Klassen.

top1conf Tensor

Vertrauen in die Top 1 Klasse.

top5conf Tensor

Vertraulichkeiten der Top 5 Klassen.

Methoden:

Name Beschreibung
cpu

Gibt eine Kopie der Probs tensor im CPU-Speicher zurück.

numpy

Gibt eine Kopie der Probs tensor als Numpy-Array zurück.

cuda

Gibt eine Kopie der Probs tensor im GPU-Speicher zurück.

to

Gibt eine Kopie der probs tensor mit dem angegebenen Gerät und dtype zurück.

Quellcode in ultralytics/engine/results.py
class Probs(BaseTensor):
    """
    A class for storing and manipulating classification predictions.

    Attributes:
        top1 (int): Index of the top 1 class.
        top5 (list[int]): Indices of the top 5 classes.
        top1conf (torch.Tensor): Confidence of the top 1 class.
        top5conf (torch.Tensor): Confidences of the top 5 classes.

    Methods:
        cpu(): Returns a copy of the probs tensor on CPU memory.
        numpy(): Returns a copy of the probs tensor as a numpy array.
        cuda(): Returns a copy of the probs tensor on GPU memory.
        to(): Returns a copy of the probs tensor with the specified device and dtype.
    """

    def __init__(self, probs, orig_shape=None) -> None:
        """Initialize the Probs class with classification probabilities and optional original shape of the image."""
        super().__init__(probs, orig_shape)

    @property
    @lru_cache(maxsize=1)
    def top1(self):
        """Return the index of top 1."""
        return int(self.data.argmax())

    @property
    @lru_cache(maxsize=1)
    def top5(self):
        """Return the indices of top 5."""
        return (-self.data).argsort(0)[:5].tolist()  # this way works with both torch and numpy.

    @property
    @lru_cache(maxsize=1)
    def top1conf(self):
        """Return the confidence of top 1."""
        return self.data[self.top1]

    @property
    @lru_cache(maxsize=1)
    def top5conf(self):
        """Return the confidences of top 5."""
        return self.data[self.top5]

top1 cached property

Gibt den Index von Top 1 zurück.

top1conf cached property

Gib die Konfidenz von Top 1 zurück.

top5 cached property

Gib die Indizes der Top 5 zurück.

top5conf cached property

Gib die Vertraulichkeiten der Top 5 zurück.

__init__(probs, orig_shape=None)

Initialisiere die Klasse Probs mit Klassifizierungswahrscheinlichkeiten und der optionalen Originalform des Bildes.

Quellcode in ultralytics/engine/results.py
def __init__(self, probs, orig_shape=None) -> None:
    """Initialize the Probs class with classification probabilities and optional original shape of the image."""
    super().__init__(probs, orig_shape)



ultralytics.engine.results.OBB

Basen: BaseTensor

Eine Klasse zum Speichern und Bearbeiten von Oriented Bounding Boxes (OBB).

Parameter:

Name Typ Beschreibung Standard
boxes Tensor | ndarray

Ein tensor oder numpy-Array, das die Erkennungsboxen enthält, mit der Form (num_boxes, 7) oder (num_boxes, 8). Die letzten beiden Spalten enthalten Konfidenz- und Klassenwerte. Falls vorhanden, enthält die drittletzte Spalte die Track-IDs und die fünfte Spalte von links die Rotation.

erforderlich
orig_shape tuple

Originalgröße des Bildes, im Format (Höhe, Breite).

erforderlich

Attribute:

Name Typ Beschreibung
xywhr Tensor | ndarray

Die Boxen im Format [x_center, y_center, width, height, rotation].

conf Tensor | ndarray

Die Konfidenzwerte der Boxen.

cls Tensor | ndarray

Die Klassenwerte der Boxen.

id Tensor | ndarray

Die Track-IDs der Boxen (falls verfügbar).

xyxyxyxyn Tensor | ndarray

Die gedrehten Boxen im xyxyxyxy-Format, normalisiert auf die ursprüngliche Bildgröße.

xyxyxyxy Tensor | ndarray

Die gedrehten Boxen im xyxyxyxy-Format.

xyxy Tensor | ndarray

Die horizontalen Kästchen im Format xyxyxyxyxy.

data Tensor

Der Roh-OBB tensor (Alias für boxes).

Methoden:

Name Beschreibung
cpu

Verschiebe das Objekt in den CPU-Speicher.

numpy

Wandle das Objekt in ein Numpy-Array um.

cuda

Verschiebe das Objekt in den CUDA Speicher.

to

Verschiebe das Objekt an das angegebene Gerät.

Quellcode in ultralytics/engine/results.py
class OBB(BaseTensor):
    """
    A class for storing and manipulating Oriented Bounding Boxes (OBB).

    Args:
        boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
            with shape (num_boxes, 7) or (num_boxes, 8). The last two columns contain confidence and class values.
            If present, the third last column contains track IDs, and the fifth column from the left contains rotation.
        orig_shape (tuple): Original image size, in the format (height, width).

    Attributes:
        xywhr (torch.Tensor | numpy.ndarray): The boxes in [x_center, y_center, width, height, rotation] format.
        conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes.
        cls (torch.Tensor | numpy.ndarray): The class values of the boxes.
        id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available).
        xyxyxyxyn (torch.Tensor | numpy.ndarray): The rotated boxes in xyxyxyxy format normalized by orig image size.
        xyxyxyxy (torch.Tensor | numpy.ndarray): The rotated boxes in xyxyxyxy format.
        xyxy (torch.Tensor | numpy.ndarray): The horizontal boxes in xyxyxyxy format.
        data (torch.Tensor): The raw OBB tensor (alias for `boxes`).

    Methods:
        cpu(): Move the object to CPU memory.
        numpy(): Convert the object to a numpy array.
        cuda(): Move the object to CUDA memory.
        to(*args, **kwargs): Move the object to the specified device.
    """

    def __init__(self, boxes, orig_shape) -> None:
        """Initialize the Boxes class."""
        if boxes.ndim == 1:
            boxes = boxes[None, :]
        n = boxes.shape[-1]
        assert n in (7, 8), f"expected 7 or 8 values but got {n}"  # xywh, rotation, track_id, conf, cls
        super().__init__(boxes, orig_shape)
        self.is_track = n == 8
        self.orig_shape = orig_shape

    @property
    def xywhr(self):
        """Return the rotated boxes in xywhr format."""
        return self.data[:, :5]

    @property
    def conf(self):
        """Return the confidence values of the boxes."""
        return self.data[:, -2]

    @property
    def cls(self):
        """Return the class values of the boxes."""
        return self.data[:, -1]

    @property
    def id(self):
        """Return the track IDs of the boxes (if available)."""
        return self.data[:, -3] if self.is_track else None

    @property
    @lru_cache(maxsize=2)
    def xyxyxyxy(self):
        """Return the boxes in xyxyxyxy format, (N, 4, 2)."""
        return ops.xywhr2xyxyxyxy(self.xywhr)

    @property
    @lru_cache(maxsize=2)
    def xyxyxyxyn(self):
        """Return the boxes in xyxyxyxy format, (N, 4, 2)."""
        xyxyxyxyn = self.xyxyxyxy.clone() if isinstance(self.xyxyxyxy, torch.Tensor) else np.copy(self.xyxyxyxy)
        xyxyxyxyn[..., 0] /= self.orig_shape[1]
        xyxyxyxyn[..., 1] /= self.orig_shape[0]
        return xyxyxyxyn

    @property
    @lru_cache(maxsize=2)
    def xyxy(self):
        """
        Return the horizontal boxes in xyxy format, (N, 4).

        Accepts both torch and numpy boxes.
        """
        x1 = self.xyxyxyxy[..., 0].min(1).values
        x2 = self.xyxyxyxy[..., 0].max(1).values
        y1 = self.xyxyxyxy[..., 1].min(1).values
        y2 = self.xyxyxyxy[..., 1].max(1).values
        xyxy = [x1, y1, x2, y2]
        return np.stack(xyxy, axis=-1) if isinstance(self.data, np.ndarray) else torch.stack(xyxy, dim=-1)

cls property

Gib die Klassenwerte der Boxen zurück.

conf property

Gib die Konfidenzwerte der Boxen zurück.

id property

Gib die Track-IDs der Boxen zurück (falls verfügbar).

xywhr property

Gibt die gedrehten Boxen im xywhr-Format zurück.

xyxy cached property

Gib die horizontalen Kästchen im xyxy-Format zurück (N, 4).

Akzeptiert sowohl torch als auch Numpy-Boxen.

xyxyxyxy cached property

Gib die Kästchen im Format xyxyxyxy zurück, (N, 4, 2).

xyxyxyxyn cached property

Gib die Kästchen im Format xyxyxyxy zurück, (N, 4, 2).

__init__(boxes, orig_shape)

Initialisiere die Klasse Boxen.

Quellcode in ultralytics/engine/results.py
def __init__(self, boxes, orig_shape) -> None:
    """Initialize the Boxes class."""
    if boxes.ndim == 1:
        boxes = boxes[None, :]
    n = boxes.shape[-1]
    assert n in (7, 8), f"expected 7 or 8 values but got {n}"  # xywh, rotation, track_id, conf, cls
    super().__init__(boxes, orig_shape)
    self.is_track = n == 8
    self.orig_shape = orig_shape





Erstellt am 2023-11-12, Aktualisiert am 2024-01-05
Autoren: glenn-jocher (4), Laughing-q (1)