Zum Inhalt springen

Referenz fĂŒr ultralytics/utils/instance.py

Hinweis

Diese Datei ist verfĂŒgbar unter https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/utils/instance .py. Wenn du ein Problem entdeckst, hilf bitte mit, es zu beheben, indem du einen Pull Request đŸ› ïž einreichst. Vielen Dank 🙏!



ultralytics.utils.instance.Bboxes

Eine Klasse fĂŒr den Umgang mit Begrenzungsrahmen.

Die Klasse unterstĂŒtzt verschiedene Bounding-Box-Formate wie 'xyxy', 'xywh' und 'ltwh'. Die Bounding-Box-Daten sollten in Numpy-Arrays bereitgestellt werden.

Attribute:

Name Typ Beschreibung
bboxes ndarray

Die Bounding Boxes werden in einem 2D-Numpy-Array gespeichert.

format str

Das Format der Begrenzungsrahmen ("xyxy", "xywh" oder "ltwh").

Hinweis

Diese Klasse kann keine Normalisierung oder Denormalisierung von Boundingboxen vornehmen.

Quellcode in ultralytics/utils/instance.py
class Bboxes:
    """
    A class for handling bounding boxes.

    The class supports various bounding box formats like 'xyxy', 'xywh', and 'ltwh'.
    Bounding box data should be provided in numpy arrays.

    Attributes:
        bboxes (numpy.ndarray): The bounding boxes stored in a 2D numpy array.
        format (str): The format of the bounding boxes ('xyxy', 'xywh', or 'ltwh').

    Note:
        This class does not handle normalization or denormalization of bounding boxes.
    """

    def __init__(self, bboxes, format="xyxy") -> None:
        """Initializes the Bboxes class with bounding box data in a specified format."""
        assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
        bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes
        assert bboxes.ndim == 2
        assert bboxes.shape[1] == 4
        self.bboxes = bboxes
        self.format = format
        # self.normalized = normalized

    def convert(self, format):
        """Converts bounding box format from one type to another."""
        assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
        if self.format == format:
            return
        elif self.format == "xyxy":
            func = xyxy2xywh if format == "xywh" else xyxy2ltwh
        elif self.format == "xywh":
            func = xywh2xyxy if format == "xyxy" else xywh2ltwh
        else:
            func = ltwh2xyxy if format == "xyxy" else ltwh2xywh
        self.bboxes = func(self.bboxes)
        self.format = format

    def areas(self):
        """Return box areas."""
        return (
            (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1])  # format xyxy
            if self.format == "xyxy"
            else self.bboxes[:, 3] * self.bboxes[:, 2]  # format xywh or ltwh
        )

    # def denormalize(self, w, h):
    #    if not self.normalized:
    #         return
    #     assert (self.bboxes <= 1.0).all()
    #     self.bboxes[:, 0::2] *= w
    #     self.bboxes[:, 1::2] *= h
    #     self.normalized = False
    #
    # def normalize(self, w, h):
    #     if self.normalized:
    #         return
    #     assert (self.bboxes > 1.0).any()
    #     self.bboxes[:, 0::2] /= w
    #     self.bboxes[:, 1::2] /= h
    #     self.normalized = True

    def mul(self, scale):
        """
        Args:
            scale (tuple | list | int): the scale for four coords.
        """
        if isinstance(scale, Number):
            scale = to_4tuple(scale)
        assert isinstance(scale, (tuple, list))
        assert len(scale) == 4
        self.bboxes[:, 0] *= scale[0]
        self.bboxes[:, 1] *= scale[1]
        self.bboxes[:, 2] *= scale[2]
        self.bboxes[:, 3] *= scale[3]

    def add(self, offset):
        """
        Args:
            offset (tuple | list | int): the offset for four coords.
        """
        if isinstance(offset, Number):
            offset = to_4tuple(offset)
        assert isinstance(offset, (tuple, list))
        assert len(offset) == 4
        self.bboxes[:, 0] += offset[0]
        self.bboxes[:, 1] += offset[1]
        self.bboxes[:, 2] += offset[2]
        self.bboxes[:, 3] += offset[3]

    def __len__(self):
        """Return the number of boxes."""
        return len(self.bboxes)

    @classmethod
    def concatenate(cls, boxes_list: List["Bboxes"], axis=0) -> "Bboxes":
        """
        Concatenate a list of Bboxes objects into a single Bboxes object.

        Args:
            boxes_list (List[Bboxes]): A list of Bboxes objects to concatenate.
            axis (int, optional): The axis along which to concatenate the bounding boxes.
                                   Defaults to 0.

        Returns:
            Bboxes: A new Bboxes object containing the concatenated bounding boxes.

        Note:
            The input should be a list or tuple of Bboxes objects.
        """
        assert isinstance(boxes_list, (list, tuple))
        if not boxes_list:
            return cls(np.empty(0))
        assert all(isinstance(box, Bboxes) for box in boxes_list)

        if len(boxes_list) == 1:
            return boxes_list[0]
        return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis))

    def __getitem__(self, index) -> "Bboxes":
        """
        Retrieve a specific bounding box or a set of bounding boxes using indexing.

        Args:
            index (int, slice, or np.ndarray): The index, slice, or boolean array to select
                                               the desired bounding boxes.

        Returns:
            Bboxes: A new Bboxes object containing the selected bounding boxes.

        Raises:
            AssertionError: If the indexed bounding boxes do not form a 2-dimensional matrix.

        Note:
            When using boolean indexing, make sure to provide a boolean array with the same
            length as the number of bounding boxes.
        """
        if isinstance(index, int):
            return Bboxes(self.bboxes[index].view(1, -1))
        b = self.bboxes[index]
        assert b.ndim == 2, f"Indexing on Bboxes with {index} failed to return a matrix!"
        return Bboxes(b)

__getitem__(index)

Rufe ein bestimmtes Begrenzungsrechteck oder einen Satz von Begrenzungsrechtecken mithilfe der Indizierung ab.

Parameter:

Name Typ Beschreibung Standard
index int, slice, or np.ndarray

Der Index, das Slice oder das boolesche Array zur Auswahl die gewĂŒnschten Bounding Boxes auszuwĂ€hlen.

erforderlich

Retouren:

Name Typ Beschreibung
Bboxes Bboxes

Ein neues Bboxes-Objekt, das die ausgewÀhlten Begrenzungsrahmen enthÀlt.

Erhöht:

Typ Beschreibung
AssertionError

Wenn die indizierten Bounding Boxes keine 2-dimensionale Matrix bilden.

Hinweis

Wenn du die boolesche Indizierung verwendest, musst du ein boolesches Array mit der gleichen der gleichen LĂ€nge wie die Anzahl der Bounding Boxes.

Quellcode in ultralytics/utils/instance.py
def __getitem__(self, index) -> "Bboxes":
    """
    Retrieve a specific bounding box or a set of bounding boxes using indexing.

    Args:
        index (int, slice, or np.ndarray): The index, slice, or boolean array to select
                                           the desired bounding boxes.

    Returns:
        Bboxes: A new Bboxes object containing the selected bounding boxes.

    Raises:
        AssertionError: If the indexed bounding boxes do not form a 2-dimensional matrix.

    Note:
        When using boolean indexing, make sure to provide a boolean array with the same
        length as the number of bounding boxes.
    """
    if isinstance(index, int):
        return Bboxes(self.bboxes[index].view(1, -1))
    b = self.bboxes[index]
    assert b.ndim == 2, f"Indexing on Bboxes with {index} failed to return a matrix!"
    return Bboxes(b)

__init__(bboxes, format='xyxy')

Initialisiert die Klasse Bboxes mit Bounding-Box-Daten in einem bestimmten Format.

Quellcode in ultralytics/utils/instance.py
def __init__(self, bboxes, format="xyxy") -> None:
    """Initializes the Bboxes class with bounding box data in a specified format."""
    assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
    bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes
    assert bboxes.ndim == 2
    assert bboxes.shape[1] == 4
    self.bboxes = bboxes
    self.format = format

__len__()

Gib die Anzahl der Kisten zurĂŒck.

Quellcode in ultralytics/utils/instance.py
def __len__(self):
    """Return the number of boxes."""
    return len(self.bboxes)

add(offset)

Parameter:

Name Typ Beschreibung Standard
offset tuple | list | int

den Versatz fĂŒr vier Koordinaten.

erforderlich
Quellcode in ultralytics/utils/instance.py
def add(self, offset):
    """
    Args:
        offset (tuple | list | int): the offset for four coords.
    """
    if isinstance(offset, Number):
        offset = to_4tuple(offset)
    assert isinstance(offset, (tuple, list))
    assert len(offset) == 4
    self.bboxes[:, 0] += offset[0]
    self.bboxes[:, 1] += offset[1]
    self.bboxes[:, 2] += offset[2]
    self.bboxes[:, 3] += offset[3]

areas()

Bereiche der RĂŒckgabeboxen.

Quellcode in ultralytics/utils/instance.py
def areas(self):
    """Return box areas."""
    return (
        (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1])  # format xyxy
        if self.format == "xyxy"
        else self.bboxes[:, 3] * self.bboxes[:, 2]  # format xywh or ltwh
    )

concatenate(boxes_list, axis=0) classmethod

Verkette eine Liste von Bboxes-Objekten zu einem einzigen Bboxes-Objekt.

Parameter:

Name Typ Beschreibung Standard
boxes_list List[Bboxes]

Eine Liste von Bboxes-Objekten, die verkettet werden sollen.

erforderlich
axis int

Die Achse, entlang derer die Begrenzungsrahmen verkettet werden sollen. Der Standardwert ist 0.

0

Retouren:

Name Typ Beschreibung
Bboxes Bboxes

Ein neues Bboxes-Objekt, das die verketteten Boundingboxen enthÀlt.

Hinweis

Die Eingabe sollte eine Liste oder ein Tupel von Bboxes-Objekten sein.

Quellcode in ultralytics/utils/instance.py
@classmethod
def concatenate(cls, boxes_list: List["Bboxes"], axis=0) -> "Bboxes":
    """
    Concatenate a list of Bboxes objects into a single Bboxes object.

    Args:
        boxes_list (List[Bboxes]): A list of Bboxes objects to concatenate.
        axis (int, optional): The axis along which to concatenate the bounding boxes.
                               Defaults to 0.

    Returns:
        Bboxes: A new Bboxes object containing the concatenated bounding boxes.

    Note:
        The input should be a list or tuple of Bboxes objects.
    """
    assert isinstance(boxes_list, (list, tuple))
    if not boxes_list:
        return cls(np.empty(0))
    assert all(isinstance(box, Bboxes) for box in boxes_list)

    if len(boxes_list) == 1:
        return boxes_list[0]
    return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis))

convert(format)

Konvertiert das Bounding-Box-Format von einem Typ in einen anderen.

Quellcode in ultralytics/utils/instance.py
def convert(self, format):
    """Converts bounding box format from one type to another."""
    assert format in _formats, f"Invalid bounding box format: {format}, format must be one of {_formats}"
    if self.format == format:
        return
    elif self.format == "xyxy":
        func = xyxy2xywh if format == "xywh" else xyxy2ltwh
    elif self.format == "xywh":
        func = xywh2xyxy if format == "xyxy" else xywh2ltwh
    else:
        func = ltwh2xyxy if format == "xyxy" else ltwh2xywh
    self.bboxes = func(self.bboxes)
    self.format = format

mul(scale)

Parameter:

Name Typ Beschreibung Standard
scale tuple | list | int

die Skala fĂŒr vier Koordinaten.

erforderlich
Quellcode in ultralytics/utils/instance.py
def mul(self, scale):
    """
    Args:
        scale (tuple | list | int): the scale for four coords.
    """
    if isinstance(scale, Number):
        scale = to_4tuple(scale)
    assert isinstance(scale, (tuple, list))
    assert len(scale) == 4
    self.bboxes[:, 0] *= scale[0]
    self.bboxes[:, 1] *= scale[1]
    self.bboxes[:, 2] *= scale[2]
    self.bboxes[:, 3] *= scale[3]



ultralytics.utils.instance.Instances

Container fĂŒr Bounding Boxes, Segmente und Keypoints von erkannten Objekten in einem Bild.

Attribute:

Name Typ Beschreibung
_bboxes Bboxes

Internes Objekt zur Handhabung von Bounding-Box-Operationen.

keypoints ndarray

keypoints(x, y, visible) mit der Form [N, 17, 3]. Die Voreinstellung ist Keine.

normalized bool

Flagge, die angibt, ob die Bounding-Box-Koordinaten normalisiert sind.

segments ndarray

Segmente mit der Form [N, 1000, 2] nach dem Resampling.

Parameter:

Name Typ Beschreibung Standard
bboxes ndarray

Eine Reihe von Bounding Boxes mit der Form [N, 4].

erforderlich
segments list | ndarray

Eine Liste oder ein Array von Objektsegmenten. Die Voreinstellung ist Keine.

None
keypoints ndarray

Ein Array von Keypoints mit der Form [N, 17, 3]. Die Voreinstellung ist Keine.

None
bbox_format str

Das Format der Begrenzungsrahmen ('xywh' oder 'xyxy'). Die Vorgabe ist 'xywh'.

'xywh'
normalized bool

Ob die Koordinaten des Begrenzungsrahmens normalisiert werden. Standard ist True.

True

Beispiele:

# Create an Instances object
instances = Instances(
    bboxes=np.array([[10, 10, 30, 30], [20, 20, 40, 40]]),
    segments=[np.array([[5, 5], [10, 10]]), np.array([[15, 15], [20, 20]])],
    keypoints=np.array([[[5, 5, 1], [10, 10, 1]], [[15, 15, 1], [20, 20, 1]]])
)
Hinweis

Das Format des Begrenzungsrahmens ist entweder 'xywh' oder 'xyxy' und wird durch die Option bbox_format Argument. Diese Klasse fĂŒhrt keine EingabeĂŒberprĂŒfung durch und geht davon aus, dass die Eingaben wohlgeformt sind.

Quellcode in ultralytics/utils/instance.py
class Instances:
    """
    Container for bounding boxes, segments, and keypoints of detected objects in an image.

    Attributes:
        _bboxes (Bboxes): Internal object for handling bounding box operations.
        keypoints (ndarray): keypoints(x, y, visible) with shape [N, 17, 3]. Default is None.
        normalized (bool): Flag indicating whether the bounding box coordinates are normalized.
        segments (ndarray): Segments array with shape [N, 1000, 2] after resampling.

    Args:
        bboxes (ndarray): An array of bounding boxes with shape [N, 4].
        segments (list | ndarray, optional): A list or array of object segments. Default is None.
        keypoints (ndarray, optional): An array of keypoints with shape [N, 17, 3]. Default is None.
        bbox_format (str, optional): The format of bounding boxes ('xywh' or 'xyxy'). Default is 'xywh'.
        normalized (bool, optional): Whether the bounding box coordinates are normalized. Default is True.

    Examples:
        ```python
        # Create an Instances object
        instances = Instances(
            bboxes=np.array([[10, 10, 30, 30], [20, 20, 40, 40]]),
            segments=[np.array([[5, 5], [10, 10]]), np.array([[15, 15], [20, 20]])],
            keypoints=np.array([[[5, 5, 1], [10, 10, 1]], [[15, 15, 1], [20, 20, 1]]])
        )
        ```

    Note:
        The bounding box format is either 'xywh' or 'xyxy', and is determined by the `bbox_format` argument.
        This class does not perform input validation, and it assumes the inputs are well-formed.
    """

    def __init__(self, bboxes, segments=None, keypoints=None, bbox_format="xywh", normalized=True) -> None:
        """
        Args:
            bboxes (ndarray): bboxes with shape [N, 4].
            segments (list | ndarray): segments.
            keypoints (ndarray): keypoints(x, y, visible) with shape [N, 17, 3].
        """
        self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
        self.keypoints = keypoints
        self.normalized = normalized
        self.segments = segments

    def convert_bbox(self, format):
        """Convert bounding box format."""
        self._bboxes.convert(format=format)

    @property
    def bbox_areas(self):
        """Calculate the area of bounding boxes."""
        return self._bboxes.areas()

    def scale(self, scale_w, scale_h, bbox_only=False):
        """This might be similar with denormalize func but without normalized sign."""
        self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h))
        if bbox_only:
            return
        self.segments[..., 0] *= scale_w
        self.segments[..., 1] *= scale_h
        if self.keypoints is not None:
            self.keypoints[..., 0] *= scale_w
            self.keypoints[..., 1] *= scale_h

    def denormalize(self, w, h):
        """Denormalizes boxes, segments, and keypoints from normalized coordinates."""
        if not self.normalized:
            return
        self._bboxes.mul(scale=(w, h, w, h))
        self.segments[..., 0] *= w
        self.segments[..., 1] *= h
        if self.keypoints is not None:
            self.keypoints[..., 0] *= w
            self.keypoints[..., 1] *= h
        self.normalized = False

    def normalize(self, w, h):
        """Normalize bounding boxes, segments, and keypoints to image dimensions."""
        if self.normalized:
            return
        self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h))
        self.segments[..., 0] /= w
        self.segments[..., 1] /= h
        if self.keypoints is not None:
            self.keypoints[..., 0] /= w
            self.keypoints[..., 1] /= h
        self.normalized = True

    def add_padding(self, padw, padh):
        """Handle rect and mosaic situation."""
        assert not self.normalized, "you should add padding with absolute coordinates."
        self._bboxes.add(offset=(padw, padh, padw, padh))
        self.segments[..., 0] += padw
        self.segments[..., 1] += padh
        if self.keypoints is not None:
            self.keypoints[..., 0] += padw
            self.keypoints[..., 1] += padh

    def __getitem__(self, index) -> "Instances":
        """
        Retrieve a specific instance or a set of instances using indexing.

        Args:
            index (int, slice, or np.ndarray): The index, slice, or boolean array to select
                                               the desired instances.

        Returns:
            Instances: A new Instances object containing the selected bounding boxes,
                       segments, and keypoints if present.

        Note:
            When using boolean indexing, make sure to provide a boolean array with the same
            length as the number of instances.
        """
        segments = self.segments[index] if len(self.segments) else self.segments
        keypoints = self.keypoints[index] if self.keypoints is not None else None
        bboxes = self.bboxes[index]
        bbox_format = self._bboxes.format
        return Instances(
            bboxes=bboxes,
            segments=segments,
            keypoints=keypoints,
            bbox_format=bbox_format,
            normalized=self.normalized,
        )

    def flipud(self, h):
        """Flips the coordinates of bounding boxes, segments, and keypoints vertically."""
        if self._bboxes.format == "xyxy":
            y1 = self.bboxes[:, 1].copy()
            y2 = self.bboxes[:, 3].copy()
            self.bboxes[:, 1] = h - y2
            self.bboxes[:, 3] = h - y1
        else:
            self.bboxes[:, 1] = h - self.bboxes[:, 1]
        self.segments[..., 1] = h - self.segments[..., 1]
        if self.keypoints is not None:
            self.keypoints[..., 1] = h - self.keypoints[..., 1]

    def fliplr(self, w):
        """Reverses the order of the bounding boxes and segments horizontally."""
        if self._bboxes.format == "xyxy":
            x1 = self.bboxes[:, 0].copy()
            x2 = self.bboxes[:, 2].copy()
            self.bboxes[:, 0] = w - x2
            self.bboxes[:, 2] = w - x1
        else:
            self.bboxes[:, 0] = w - self.bboxes[:, 0]
        self.segments[..., 0] = w - self.segments[..., 0]
        if self.keypoints is not None:
            self.keypoints[..., 0] = w - self.keypoints[..., 0]

    def clip(self, w, h):
        """Clips bounding boxes, segments, and keypoints values to stay within image boundaries."""
        ori_format = self._bboxes.format
        self.convert_bbox(format="xyxy")
        self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w)
        self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h)
        if ori_format != "xyxy":
            self.convert_bbox(format=ori_format)
        self.segments[..., 0] = self.segments[..., 0].clip(0, w)
        self.segments[..., 1] = self.segments[..., 1].clip(0, h)
        if self.keypoints is not None:
            self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w)
            self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h)

    def remove_zero_area_boxes(self):
        """Remove zero-area boxes, i.e. after clipping some boxes may have zero width or height."""
        good = self.bbox_areas > 0
        if not all(good):
            self._bboxes = self._bboxes[good]
            if len(self.segments):
                self.segments = self.segments[good]
            if self.keypoints is not None:
                self.keypoints = self.keypoints[good]
        return good

    def update(self, bboxes, segments=None, keypoints=None):
        """Updates instance variables."""
        self._bboxes = Bboxes(bboxes, format=self._bboxes.format)
        if segments is not None:
            self.segments = segments
        if keypoints is not None:
            self.keypoints = keypoints

    def __len__(self):
        """Return the length of the instance list."""
        return len(self.bboxes)

    @classmethod
    def concatenate(cls, instances_list: List["Instances"], axis=0) -> "Instances":
        """
        Concatenates a list of Instances objects into a single Instances object.

        Args:
            instances_list (List[Instances]): A list of Instances objects to concatenate.
            axis (int, optional): The axis along which the arrays will be concatenated. Defaults to 0.

        Returns:
            Instances: A new Instances object containing the concatenated bounding boxes,
                       segments, and keypoints if present.

        Note:
            The `Instances` objects in the list should have the same properties, such as
            the format of the bounding boxes, whether keypoints are present, and if the
            coordinates are normalized.
        """
        assert isinstance(instances_list, (list, tuple))
        if not instances_list:
            return cls(np.empty(0))
        assert all(isinstance(instance, Instances) for instance in instances_list)

        if len(instances_list) == 1:
            return instances_list[0]

        use_keypoint = instances_list[0].keypoints is not None
        bbox_format = instances_list[0]._bboxes.format
        normalized = instances_list[0].normalized

        cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis)
        cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis)
        cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None
        return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized)

    @property
    def bboxes(self):
        """Return bounding boxes."""
        return self._bboxes.bboxes

bbox_areas property

Berechne die FlÀche von Begrenzungsrahmen.

bboxes property

Begrenzungsrahmen zurĂŒckgeben.

__getitem__(index)

Rufe eine bestimmte Instanz oder eine Reihe von Instanzen mithilfe der Indizierung ab.

Parameter:

Name Typ Beschreibung Standard
index int, slice, or np.ndarray

Der Index, das Slice oder das boolesche Array zur Auswahl die gewĂŒnschten Instanzen.

erforderlich

Retouren:

Name Typ Beschreibung
Instances Instances

Ein neues Instances-Objekt, das die ausgewÀhlten Bounding Boxes enthÀlt, Segmente und Keypoints, falls vorhanden.

Hinweis

Wenn du eine boolesche Indizierung verwendest, musst du ein boolesches Array mit der gleichen der gleichen LĂ€nge wie die Anzahl der Instanzen.

Quellcode in ultralytics/utils/instance.py
def __getitem__(self, index) -> "Instances":
    """
    Retrieve a specific instance or a set of instances using indexing.

    Args:
        index (int, slice, or np.ndarray): The index, slice, or boolean array to select
                                           the desired instances.

    Returns:
        Instances: A new Instances object containing the selected bounding boxes,
                   segments, and keypoints if present.

    Note:
        When using boolean indexing, make sure to provide a boolean array with the same
        length as the number of instances.
    """
    segments = self.segments[index] if len(self.segments) else self.segments
    keypoints = self.keypoints[index] if self.keypoints is not None else None
    bboxes = self.bboxes[index]
    bbox_format = self._bboxes.format
    return Instances(
        bboxes=bboxes,
        segments=segments,
        keypoints=keypoints,
        bbox_format=bbox_format,
        normalized=self.normalized,
    )

__init__(bboxes, segments=None, keypoints=None, bbox_format='xywh', normalized=True)

Parameter:

Name Typ Beschreibung Standard
bboxes ndarray

bboxes mit der Form [N, 4].

erforderlich
segments list | ndarray

Segmente.

None
keypoints ndarray

keypoints(x, y, visible) mit der Form [N, 17, 3].

None
Quellcode in ultralytics/utils/instance.py
def __init__(self, bboxes, segments=None, keypoints=None, bbox_format="xywh", normalized=True) -> None:
    """
    Args:
        bboxes (ndarray): bboxes with shape [N, 4].
        segments (list | ndarray): segments.
        keypoints (ndarray): keypoints(x, y, visible) with shape [N, 17, 3].
    """
    self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
    self.keypoints = keypoints
    self.normalized = normalized
    self.segments = segments

__len__()

Gibt die LĂ€nge der Instanzliste zurĂŒck.

Quellcode in ultralytics/utils/instance.py
def __len__(self):
    """Return the length of the instance list."""
    return len(self.bboxes)

add_padding(padw, padh)

Behandle die Situation mit Rekt und Mosaik.

Quellcode in ultralytics/utils/instance.py
def add_padding(self, padw, padh):
    """Handle rect and mosaic situation."""
    assert not self.normalized, "you should add padding with absolute coordinates."
    self._bboxes.add(offset=(padw, padh, padw, padh))
    self.segments[..., 0] += padw
    self.segments[..., 1] += padh
    if self.keypoints is not None:
        self.keypoints[..., 0] += padw
        self.keypoints[..., 1] += padh

clip(w, h)

Beschneidet Begrenzungsrahmen, Segmente und Keypoint-Werte, um innerhalb der Bildgrenzen zu bleiben.

Quellcode in ultralytics/utils/instance.py
def clip(self, w, h):
    """Clips bounding boxes, segments, and keypoints values to stay within image boundaries."""
    ori_format = self._bboxes.format
    self.convert_bbox(format="xyxy")
    self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w)
    self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h)
    if ori_format != "xyxy":
        self.convert_bbox(format=ori_format)
    self.segments[..., 0] = self.segments[..., 0].clip(0, w)
    self.segments[..., 1] = self.segments[..., 1].clip(0, h)
    if self.keypoints is not None:
        self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w)
        self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h)

concatenate(instances_list, axis=0) classmethod

Verkettet eine Liste von Instances-Objekten zu einem einzigen Instances-Objekt.

Parameter:

Name Typ Beschreibung Standard
instances_list List[Instances]

Eine Liste von Instances-Objekten, die verkettet werden sollen.

erforderlich
axis int

Die Achse, entlang derer die Arrays verkettet werden sollen. Der Standardwert ist 0.

0

Retouren:

Name Typ Beschreibung
Instances Instances

Ein neues Instances-Objekt, das die verketteten Boundingboxen enthÀlt, Segmente und Keypoints, falls vorhanden.

Hinweis

Die Instances Objekte in der Liste sollten die gleichen Eigenschaften haben, wie z. B. das Format der Bounding Boxes, ob Keypoints vorhanden sind und ob die Koordinaten normalisiert sind.

Quellcode in ultralytics/utils/instance.py
@classmethod
def concatenate(cls, instances_list: List["Instances"], axis=0) -> "Instances":
    """
    Concatenates a list of Instances objects into a single Instances object.

    Args:
        instances_list (List[Instances]): A list of Instances objects to concatenate.
        axis (int, optional): The axis along which the arrays will be concatenated. Defaults to 0.

    Returns:
        Instances: A new Instances object containing the concatenated bounding boxes,
                   segments, and keypoints if present.

    Note:
        The `Instances` objects in the list should have the same properties, such as
        the format of the bounding boxes, whether keypoints are present, and if the
        coordinates are normalized.
    """
    assert isinstance(instances_list, (list, tuple))
    if not instances_list:
        return cls(np.empty(0))
    assert all(isinstance(instance, Instances) for instance in instances_list)

    if len(instances_list) == 1:
        return instances_list[0]

    use_keypoint = instances_list[0].keypoints is not None
    bbox_format = instances_list[0]._bboxes.format
    normalized = instances_list[0].normalized

    cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis)
    cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis)
    cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None
    return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized)

convert_bbox(format)

Konvertiere das Bounding-Box-Format.

Quellcode in ultralytics/utils/instance.py
def convert_bbox(self, format):
    """Convert bounding box format."""
    self._bboxes.convert(format=format)

denormalize(w, h)

Denormalisiert Boxen, Segmente und Keypoints aus normalisierten Koordinaten.

Quellcode in ultralytics/utils/instance.py
def denormalize(self, w, h):
    """Denormalizes boxes, segments, and keypoints from normalized coordinates."""
    if not self.normalized:
        return
    self._bboxes.mul(scale=(w, h, w, h))
    self.segments[..., 0] *= w
    self.segments[..., 1] *= h
    if self.keypoints is not None:
        self.keypoints[..., 0] *= w
        self.keypoints[..., 1] *= h
    self.normalized = False

fliplr(w)

Kehrt die Reihenfolge der Begrenzungsrahmen und Segmente horizontal um.

Quellcode in ultralytics/utils/instance.py
def fliplr(self, w):
    """Reverses the order of the bounding boxes and segments horizontally."""
    if self._bboxes.format == "xyxy":
        x1 = self.bboxes[:, 0].copy()
        x2 = self.bboxes[:, 2].copy()
        self.bboxes[:, 0] = w - x2
        self.bboxes[:, 2] = w - x1
    else:
        self.bboxes[:, 0] = w - self.bboxes[:, 0]
    self.segments[..., 0] = w - self.segments[..., 0]
    if self.keypoints is not None:
        self.keypoints[..., 0] = w - self.keypoints[..., 0]

flipud(h)

Dreht die Koordinaten von Begrenzungsrahmen, Segmenten und Keypoints vertikal.

Quellcode in ultralytics/utils/instance.py
def flipud(self, h):
    """Flips the coordinates of bounding boxes, segments, and keypoints vertically."""
    if self._bboxes.format == "xyxy":
        y1 = self.bboxes[:, 1].copy()
        y2 = self.bboxes[:, 3].copy()
        self.bboxes[:, 1] = h - y2
        self.bboxes[:, 3] = h - y1
    else:
        self.bboxes[:, 1] = h - self.bboxes[:, 1]
    self.segments[..., 1] = h - self.segments[..., 1]
    if self.keypoints is not None:
        self.keypoints[..., 1] = h - self.keypoints[..., 1]

normalize(w, h)

Normalisiere Bounding Boxes, Segmente und Keypoints auf die Bildmaße.

Quellcode in ultralytics/utils/instance.py
def normalize(self, w, h):
    """Normalize bounding boxes, segments, and keypoints to image dimensions."""
    if self.normalized:
        return
    self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h))
    self.segments[..., 0] /= w
    self.segments[..., 1] /= h
    if self.keypoints is not None:
        self.keypoints[..., 0] /= w
        self.keypoints[..., 1] /= h
    self.normalized = True

remove_zero_area_boxes()

Entferne KÀstchen mit Null-FlÀche, d.h. nach dem Beschneiden haben einige KÀstchen möglicherweise keine Breite oder Höhe.

Quellcode in ultralytics/utils/instance.py
def remove_zero_area_boxes(self):
    """Remove zero-area boxes, i.e. after clipping some boxes may have zero width or height."""
    good = self.bbox_areas > 0
    if not all(good):
        self._bboxes = self._bboxes[good]
        if len(self.segments):
            self.segments = self.segments[good]
        if self.keypoints is not None:
            self.keypoints = self.keypoints[good]
    return good

scale(scale_w, scale_h, bbox_only=False)

Das könnte Àhnlich sein wie bei denormalize func, aber ohne normalisiertes Vorzeichen.

Quellcode in ultralytics/utils/instance.py
def scale(self, scale_w, scale_h, bbox_only=False):
    """This might be similar with denormalize func but without normalized sign."""
    self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h))
    if bbox_only:
        return
    self.segments[..., 0] *= scale_w
    self.segments[..., 1] *= scale_h
    if self.keypoints is not None:
        self.keypoints[..., 0] *= scale_w
        self.keypoints[..., 1] *= scale_h

update(bboxes, segments=None, keypoints=None)

Aktualisiert die Instanzvariablen.

Quellcode in ultralytics/utils/instance.py
def update(self, bboxes, segments=None, keypoints=None):
    """Updates instance variables."""
    self._bboxes = Bboxes(bboxes, format=self._bboxes.format)
    if segments is not None:
        self.segments = segments
    if keypoints is not None:
        self.keypoints = keypoints



ultralytics.utils.instance._ntuple(n)

Von PyTorch internals.

Quellcode in ultralytics/utils/instance.py
def _ntuple(n):
    """From PyTorch internals."""

    def parse(x):
        """Parse bounding boxes format between XYWH and LTWH."""
        return x if isinstance(x, abc.Iterable) else tuple(repeat(x, n))

    return parse





Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (5), Burhan-Q (1), Laughing-q (1)