Ir al contenido

Tutorial de poda/espaciosidad

馃摎 Esta gu铆a explica c贸mo aplicar la poda a los modelos YOLOv5 馃殌.

Antes de empezar

Clonar repo e instalar requirements.txt en a Python>=3.8.0 incluyendo PyTorch>=1.8. Los modelos y conjuntos de datos se descargan autom谩ticamente de la 煤ltimaversi贸n de YOLOv5 .

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Prueba normalmente

Antes de proceder a la poda, queremos establecer un rendimiento de referencia con el que comparar. Este comando prueba YOLOv5x en COCO val2017 con un tama帽o de imagen de 640 p铆xeles. yolov5x.pt es el modelo m谩s grande y preciso disponible. Otras opciones son yolov5s.pt, yolov5m.pt y yolov5l.pto su propio punto de control del entrenamiento de un conjunto de datos personalizado ./weights/best.pt. Para m谩s informaci贸n sobre todos los modelos disponibles, consulte nuestro L脡AME tabla.

python val.py --weights yolov5x.pt --data coco.yaml --img 640 --half

Salida:

val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 馃殌 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)

Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [01:12<00:00,  2.16it/s]
                 all       5000      36335      0.732      0.628      0.683      0.496
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640)  # <--- base speed

Evaluating pycocotools mAP... saving runs/val/exp2/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.507  # <--- base mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.689
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.552
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.381
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.630
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.682
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.731
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829
Results saved to runs/val/exp

Prueba de YOLOv5x en COCO (dispersi贸n 0,30)

Repetimos la prueba anterior con un modelo podado utilizando la funci贸n torch_utils.prune() mando. Actualizamos val.py para reducir YOLOv5x a 0,3 de dispersi贸n:

Captura de pantalla 2022-02-02 a las 22 54 18

30% de producci贸n podada:

val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 馃殌 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)

Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
Pruning model...  0.3 global sparsity
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [01:11<00:00,  2.19it/s]
                 all       5000      36335      0.724      0.614      0.671      0.478
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640)  # <--- prune mAP

Evaluating pycocotools mAP... saving runs/val/exp3/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.489  # <--- prune mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.677
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.537
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.334
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.542
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.635
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.370
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.612
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.664
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.496
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.722
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.803
Results saved to runs/val/exp3

En los resultados podemos observar que hemos conseguido un escasez del 30% en nuestro modelo despu茅s de la poda, lo que significa que el 30% de los par谩metros de peso del modelo en nn.Conv2d son iguales a 0. El tiempo de inferencia es pr谩cticamente el mismomientras que el modelo Las puntuaciones AP y AR se reducen ligeramente.

Entornos compatibles

Ultralytics proporciona una serie de entornos listos para usar, cada uno de ellos preinstalado con dependencias esenciales como CUDACUDNN, Pythony PyTorchpara poner en marcha sus proyectos.

Estado del proyecto

YOLOv5 CI

Este distintivo indica que todas las pruebas de integraci贸n continua (IC) deYOLOv5 GitHub Actions se han superado con 茅xito. Estas pruebas de IC comprueban rigurosamente la funcionalidad y el rendimiento de YOLOv5 en varios aspectos clave: formaci贸n, validaci贸n, inferencia, exportaci贸n y puntos de referencia. Garantizan un funcionamiento coherente y fiable en macOS, Windows y Ubuntu, con pruebas realizadas cada 24 horas y en cada nueva confirmaci贸n.

Creado hace 1 a帽o 鉁忥笍 Actualizado hace 2 meses

Comentarios