Poda de modelos y dispersión en YOLOv5
📚 Esta guía explica cómo aplicar la poda a los modelos YOLOv5 🚀 para crear redes más eficientes manteniendo el rendimiento.
¿Qué es la poda modelo?
La poda de modelos es una técnica utilizada para reducir el tamaño y la complejidad de las redes neuronales eliminando los parámetros menos importantes (pesos y conexiones). Este proceso crea un modelo más eficiente con varias ventajas:
- Modelo de tamaño reducido para facilitar la implantación en dispositivos con recursos limitados.
- Mayor velocidad de inferencia con un impacto mínimo en la precisión
- Menor uso de memoria y consumo de energía
- Mejora de la eficacia global de las aplicaciones en tiempo real
La poda consiste en identificar y eliminar los parámetros que contribuyen mínimamente al rendimiento del modelo, lo que da lugar a un modelo más ligero con una precisión similar.
Antes de empezar
Clonar repo e instalar requirements.txt en a Python>=3.8.0 incluyendo PyTorch>=1.8. Los modelos y conjuntos de datos se descargan automáticamente de la últimaversión de YOLOv5 .
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
Prueba de rendimiento de referencia
Antes de podar, establezca un rendimiento de referencia con el que comparar. Este comando prueba YOLOv5x en COCO val2017 con un tamaño de imagen de 640 píxeles. yolov5x.pt
es el modelo más grande y preciso disponible. Otras opciones son yolov5s.pt
, yolov5m.pt
y yolov5l.pt
o su propio punto de control a partir del entrenamiento de un conjunto de datos personalizado ./weights/best.pt
. Para más información sobre todos los modelos disponibles, consulte el archivo README tabla.
Salida:
val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:12<00:00, 2.16it/s]
all 5000 36335 0.732 0.628 0.683 0.496
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640) # <--- base speed
Evaluating pycocotools mAP... saving runs/val/exp2/yolov5x_predictions.json...
...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.507 # <--- base mAP
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.689
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.552
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.381
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.630
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.682
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.731
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829
Results saved to runs/val/exp
Aplicar poda a YOLOv5x (30% de dispersión)
Podemos aplicar la poda al modelo utilizando la función torch_utils.prune()
comando. Para probar un modelo podado, actualizamos val.py
para reducir YOLOv5x a una dispersión de 0,3 (30% de los pesos a cero):
30% de producción podada:
val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
Pruning model... 0.3 global sparsity
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:11<00:00, 2.19it/s]
all 5000 36335 0.724 0.614 0.671 0.478
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640) # <--- prune speed
Evaluating pycocotools mAP... saving runs/val/exp3/yolov5x_predictions.json...
...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.489 # <--- prune mAP
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.677
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.537
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.334
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.542
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.635
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.370
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.612
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.664
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.496
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.722
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.803
Results saved to runs/val/exp3
Análisis de resultados
A partir de los resultados, podemos observar:
- 30% de dispersión alcanzada: 30% de los parámetros de peso del modelo en
nn.Conv2d
capas son ahora cero - El tiempo de inferencia no cambia: A pesar de la poda, la velocidad de procesamiento es esencialmente la misma
- Impacto mínimo en el rendimiento: el mAP se redujo ligeramente de 0,507 a 0,489 (sólo un 3,6% de reducción).
- Reducción del tamaño del modelo: El modelo podado requiere menos memoria para su almacenamiento
Esto demuestra que la poda puede reducir significativamente la complejidad del modelo con un impacto menor en el rendimiento, lo que la convierte en una técnica de optimización eficaz para su despliegue en entornos con recursos limitados.
Ajuste de los modelos podados
Para obtener mejores resultados, los modelos podados deben afinarse después de la poda para recuperar la precisión. Para ello:
- Aplicación de la poda con el nivel de dispersión deseado
- Entrenamiento del modelo podado durante unas pocas épocas con una tasa de aprendizaje más baja.
- Evaluación del modelo podado y ajustado frente al modelo de referencia
Este proceso ayuda a los parámetros restantes a adaptarse para compensar las conexiones eliminadas, recuperando a menudo la mayor parte o la totalidad de la precisión original.
Entornos compatibles
Ultralytics proporciona una serie de entornos listos para usar, cada uno de ellos preinstalado con dependencias esenciales como CUDACUDNN, Pythony PyTorchpara poner en marcha sus proyectos.
- Cuadernos gratuitos GPU:
- Google Nube: Guía de inicio rápido de GCP
- Amazon: Guía de inicio rápido de AWS
- Azure: Guía de inicio rápido de AzureML
- Docker: Guía de inicio rápido de Docker
Estado del proyecto
Este distintivo indica que todas las pruebas de integración continua (IC) deYOLOv5 GitHub Actions se han superado con éxito. Estas pruebas de IC comprueban rigurosamente la funcionalidad y el rendimiento de YOLOv5 en varios aspectos clave: formación, validación, inferencia, exportación y puntos de referencia. Garantizan un funcionamiento coherente y fiable en macOS, Windows y Ubuntu, con pruebas realizadas cada 24 horas y en cada nueva confirmación.