Esercitazione su potatura/parsimonia
📚 Questa guida spiega come applicare la potatura ai modelli YOLOv5 🚀.
Prima di iniziare
Clona il repo e installa il file requirements.txt in un file di tipo Python>=3.8.0 con l'inclusione di PyTorch>=1.8. I modelli e i dataset vengono scaricati automaticamente dall'ultimarelease di YOLOv5 .
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
Prova normalmente
Prima di procedere alla potatura, vogliamo stabilire una performance di base con cui confrontarci. Questo comando testa YOLOv5x su COCO val2017 con un'immagine di 640 pixel. yolov5x.pt
è il modello più grande e accurato disponibile. Le altre opzioni sono yolov5s.pt
, yolov5m.pt
e yolov5l.pt
oppure il tuo checkpoint dall'addestramento di un set di dati personalizzato ./weights/best.pt
. Per maggiori dettagli su tutti i modelli disponibili, consulta il nostro README. Tavolo.
Uscita:
val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:12<00:00, 2.16it/s]
all 5000 36335 0.732 0.628 0.683 0.496
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640) # <--- base speed
Evaluating pycocotools mAP... saving runs/val/exp2/yolov5x_predictions.json...
...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.507 # <--- base mAP
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.689
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.552
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.381
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.630
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.682
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.731
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829
Results saved to runs/val/exp
Prova YOLOv5x su COCO (0,30 sparsity)
Ripetiamo il test di cui sopra con un modello ridotto utilizzando l'opzione torch_utils.prune()
comando. Aggiorniamo val.py
per ridurre la sparsità di YOLOv5x a 0,3:
30% di potatura:
val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
Pruning model... 0.3 global sparsity
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:11<00:00, 2.19it/s]
all 5000 36335 0.724 0.614 0.671 0.478
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640) # <--- prune mAP
Evaluating pycocotools mAP... saving runs/val/exp3/yolov5x_predictions.json...
...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.489 # <--- prune mAP
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.677
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.537
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.334
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.542
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.635
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.370
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.612
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.664
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.496
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.722
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.803
Results saved to runs/val/exp3
Nei risultati si può osservare che abbiamo ottenuto un sparsità del 30% nel nostro modello dopo la potatura, il che significa che il 30% dei parametri di peso del modello in nn.Conv2d
sono uguali a 0. Il tempo di inferenza è sostanzialmente invariato, mentre il modello I punteggi AP e AR sono leggermente ridotti.
Ambienti supportati
Ultralytics offre una serie di ambienti pronti all'uso, ognuno dei quali è preinstallato con le dipendenze essenziali, come ad esempio CUDA, CUDNN, Python, e PyTorchper dare il via ai tuoi progetti.
- Taccuini gratuiti GPU:
- Google Cloud: Guida rapida a GCP
- Amazon: Guida rapida di AWS
- Azure: Guida rapida ad AzureML
- Docker: Guida rapida a Docker
Stato del progetto
Questo badge indica che tutti i test di YOLOv5 GitHub Actions Continuous Integration (CI) sono stati superati con successo. Questi test CI verificano rigorosamente la funzionalità e le prestazioni di YOLOv5 in vari aspetti chiave: formazione, validazione, inferenza, esportazione e benchmark. Assicurano un funzionamento coerente e affidabile su macOS, Windows e Ubuntu, con test condotti ogni 24 ore e su ogni nuovo commit.