Vai al contenuto

Aumento del tempo di prova (TTA)

📚 This guide explains how to use Test Time Augmentation (TTA) during testing and inference for improved mAP and Recall with YOLOv5 🚀.

Prima di iniziare

Clona il repo e installa il file requirements.txt in un file di tipo Python>=3.8.0 con l'inclusione di PyTorch>=1.8. I modelli e i dataset vengono scaricati automaticamente dall'ultimarelease di YOLOv5 .

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Prova normalmente

Prima di provare TTA vogliamo stabilire una performance di base con cui confrontarci. Questo comando testa YOLOv5x su COCO val2017 con un'immagine di 640 pixel. yolov5x.pt è il modello più grande e accurato disponibile. Le altre opzioni sono yolov5s.pt, yolov5m.pt e yolov5l.ptoppure il tuo checkpoint dall'addestramento di un set di dati personalizzato ./weights/best.pt. Per maggiori dettagli su tutti i modelli disponibili, consulta il nostro README. Tavolo.

python val.py --weights yolov5x.pt --data coco.yaml --img 640 --half

Uscita:

val: data=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True
YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Fusing layers...
Model Summary: 476 layers, 87730285 parameters, 0 gradients

val: Scanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2846.03it/s]
val: New cache created: ../datasets/coco/val2017.cache
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [02:30<00:00,  1.05it/s]
                 all       5000      36335      0.746      0.626       0.68       0.49
Speed: 0.1ms pre-process, 22.4ms inference, 1.4ms NMS per image at shape (32, 3, 640, 640)  # <--- baseline speed

Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.504  # <--- baseline mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.688
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.546
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.351
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.644
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.628
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.681  # <--- baseline mAR
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.826

Test con TTA

Aggiungi --augment a qualsiasi altro sito web esistente val.py per abilitare il TTA e aumentare le dimensioni dell'immagine di circa il 30% per ottenere risultati migliori. Tieni presente che l'inferenza con TTA abilitato richiede in genere circa 2-3 volte il tempo di un'inferenza normale, poiché le immagini vengono capovolte da sinistra a destra ed elaborate a 3 diverse risoluzioni, con i risultati uniti prima dell'NMS. Una parte della diminuzione della velocità è dovuta semplicemente alle dimensioni maggiori delle immagini (832 vs 640), mentre una parte è dovuta alle operazioni di TTA.

python val.py --weights yolov5x.pt --data coco.yaml --img 832 --augment --half

Uscita:

val: data=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=832, conf_thres=0.001, iou_thres=0.6, task=val, device=, single_cls=False, augment=True, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True
YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Fusing layers...
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
Model Summary: 476 layers, 87730285 parameters, 0 gradients
val: Scanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2885.61it/s]
val: New cache created: ../datasets/coco/val2017.cache
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [07:29<00:00,  2.86s/it]
                 all       5000      36335      0.718      0.656      0.695      0.503
Speed: 0.2ms pre-process, 80.6ms inference, 2.7ms NMS per image at shape (32, 3, 832, 832)  # <--- TTA speed

Evaluating pycocotools mAP... saving runs/val/exp2/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.516  # <--- TTA mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.701
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.562
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.361
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.564
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.656
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.388
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.640
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.696  # <--- TTA mAR
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.553
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.744
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.833

Inferenza con TTA

detect.py L'inferenza TTA funziona in modo identico a val.py TTA: semplicemente aggiungere --augment a qualsiasi altro sito web esistente detect.py comando:

python detect.py --weights yolov5s.pt --img 832 --source data/images --augment

Uscita:

YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)

Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 81.9MB/s]

Fusing layers...
Model Summary: 224 layers, 7266973 parameters, 0 gradients
image 1/2 /content/yolov5/data/images/bus.jpg: 832x640 4 persons, 1 bus, 1 fire hydrant, Done. (0.029s)
image 2/2 /content/yolov5/data/images/zidane.jpg: 480x832 3 persons, 3 ties, Done. (0.024s)
Results saved to runs/detect/exp
Done. (0.156s)

YOLOv5 aumenti del tempo di prova

PyTorch Hub TTA

Il TTA viene integrato automaticamente in tutti i YOLOv5 PyTorch Hub e si può accedere a questi modelli passando augment=True al momento dell'inferenza.

import torch

# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s")  # or yolov5m, yolov5x, custom

# Images
img = "https://ultralytics.com/images/zidane.jpg"  # or file, PIL, OpenCV, numpy, multiple

# Inference
results = model(img, augment=True)  # <--- TTA inference

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

Personalizza

Puoi personalizzare le operazioni TTA applicate nella sezione YOLOv5 forward_augment() metodo qui.

Ambienti supportati

Ultralytics offre una serie di ambienti pronti all'uso, ognuno dei quali è preinstallato con le dipendenze essenziali, come ad esempio CUDA, CUDNN, Python, e PyTorchper dare il via ai tuoi progetti.

Stato del progetto

YOLOv5 CI

Questo badge indica che tutti i test di YOLOv5 GitHub Actions Continuous Integration (CI) sono stati superati con successo. Questi test CI verificano rigorosamente la funzionalità e le prestazioni di YOLOv5 in vari aspetti chiave: formazione, validazione, inferenza, esportazione e benchmark. Assicurano un funzionamento coerente e affidabile su macOS, Windows e Ubuntu, con test condotti ogni 24 ore e su ogni nuovo commit.


📅 Created 11 months ago ✏️ Updated 15 days ago

Commenti