Aumento del tempo di prova (TTA)
📚 Questa guida spiega come utilizzare il Test Time Augmentation (TTA) durante i test e l'inferenza per migliorare la mAP e il Recall con YOLOv5 🚀.
Prima di iniziare
Clona il repo e installa il file requirements.txt in un file di tipo Python>=3.8.0 con l'inclusione di PyTorch>=1.8. I modelli e i dataset vengono scaricati automaticamente dall'ultimarelease di YOLOv5 .
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
Prova normalmente
Prima di provare TTA vogliamo stabilire una performance di base con cui confrontarci. Questo comando testa YOLOv5x su COCO val2017 con un'immagine di 640 pixel. yolov5x.pt
è il modello più grande e accurato disponibile. Le altre opzioni sono yolov5s.pt
, yolov5m.pt
e yolov5l.pt
oppure il tuo checkpoint dall'addestramento di un set di dati personalizzato ./weights/best.pt
. Per maggiori dettagli su tutti i modelli disponibili, consulta il nostro README. Tavolo.
Uscita:
val: data=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True
YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)
Fusing layers...
Model Summary: 476 layers, 87730285 parameters, 0 gradients
val: Scanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2846.03it/s]
val: New cache created: ../datasets/coco/val2017.cache
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [02:30<00:00, 1.05it/s]
all 5000 36335 0.746 0.626 0.68 0.49
Speed: 0.1ms pre-process, 22.4ms inference, 1.4ms NMS per image at shape (32, 3, 640, 640) # <--- baseline speed
Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...
...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504 # <--- baseline mAP
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.546
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.351
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.551
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.644
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.382
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.628
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.681 # <--- baseline mAR
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.826
Test con TTA
Aggiungi --augment
a qualsiasi altro sito web esistente val.py
per abilitare il TTA e aumentare le dimensioni dell'immagine di circa il 30% per ottenere risultati migliori. Tieni presente che l'inferenza con TTA abilitato richiede in genere circa 2-3 volte il tempo di un'inferenza normale, poiché le immagini vengono capovolte da sinistra a destra ed elaborate a 3 diverse risoluzioni, con i risultati uniti prima dell'NMS. Una parte della diminuzione della velocità è dovuta semplicemente alle dimensioni maggiori delle immagini (832 vs 640), mentre una parte è dovuta alle operazioni di TTA.
Uscita:
val: data=./data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=832, conf_thres=0.001, iou_thres=0.6, task=val, device=, single_cls=False, augment=True, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True
YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)
Fusing layers...
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
Model Summary: 476 layers, 87730285 parameters, 0 gradients
val: Scanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2885.61it/s]
val: New cache created: ../datasets/coco/val2017.cache
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [07:29<00:00, 2.86s/it]
all 5000 36335 0.718 0.656 0.695 0.503
Speed: 0.2ms pre-process, 80.6ms inference, 2.7ms NMS per image at shape (32, 3, 832, 832) # <--- TTA speed
Evaluating pycocotools mAP... saving runs/val/exp2/yolov5x_predictions.json...
...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.516 # <--- TTA mAP
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.701
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.562
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.361
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.564
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.656
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.388
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.640
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.696 # <--- TTA mAR
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.553
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.744
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.833
Inferenza con TTA
detect.py
L'inferenza TTA funziona in modo identico a val.py
TTA: semplicemente aggiungere --augment
a qualsiasi altro sito web esistente detect.py
comando:
Uscita:
YOLOv5 🚀 v5.0-267-g6a3ee7c torch 1.9.0+cu102 CUDA:0 (Tesla P100-PCIE-16GB, 16280.875MB)
Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 81.9MB/s]
Fusing layers...
Model Summary: 224 layers, 7266973 parameters, 0 gradients
image 1/2 /content/yolov5/data/images/bus.jpg: 832x640 4 persons, 1 bus, 1 fire hydrant, Done. (0.029s)
image 2/2 /content/yolov5/data/images/zidane.jpg: 480x832 3 persons, 3 ties, Done. (0.024s)
Results saved to runs/detect/exp
Done. (0.156s)
PyTorch Hub TTA
Il TTA viene integrato automaticamente in tutti i YOLOv5 PyTorch Hub e si può accedere a questi modelli passando augment=True
al momento dell'inferenza.
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5m, yolov5x, custom
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, PIL, OpenCV, numpy, multiple
# Inference
results = model(img, augment=True) # <--- TTA inference
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
Personalizza
Puoi personalizzare le operazioni TTA applicate nella sezione YOLOv5 forward_augment()
metodo qui.
Ambienti supportati
Ultralytics offre una serie di ambienti pronti all'uso, ognuno dei quali è preinstallato con le dipendenze essenziali, come ad esempio CUDA, CUDNN, Python, e PyTorchper dare il via ai tuoi progetti.
- Taccuini gratuiti GPU:
- Google Cloud: Guida rapida a GCP
- Amazon: Guida rapida di AWS
- Azure: Guida rapida ad AzureML
- Docker: Guida rapida a Docker
Stato del progetto
Questo badge indica che tutti i test di YOLOv5 GitHub Actions Continuous Integration (CI) sono stati superati con successo. Questi test CI verificano rigorosamente la funzionalità e le prestazioni di YOLOv5 in vari aspetti chiave: formazione, validazione, inferenza, esportazione e benchmark. Assicurano un funzionamento coerente e affidabile su macOS, Windows e Ubuntu, con test condotti ogni 24 ore e su ogni nuovo commit.