Skip to content

Guide complet pour Ultralytics YOLOv5

Ultralytics YOLOv5 bannière v7.0

YOLOv5 CI YOLOv5 Citation Les tirages de Docker
Exécuter sur un gradient Open In Colab Ouvrir dans Kaggle

Bienvenue sur le site Ultralytics' YOLOv5🚀 Documentation! YOLOv5, the fifth iteration of the revolutionary "You Only Look Once" [object detection](https://www.ultralytics.com/glossary/object-detection) model, is designed to deliver high-speed, high-accuracy results in real-time.

Built on PyTorch, this powerful [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) framework has garnered immense popularity for its versatility, ease of use, and high performance. Our documentation guides you through the installation process, explains the architectural nuances of the model, showcases various use-cases, and provides a series of detailed tutorials. These resources will help you harness the full potential of YOLOv5 for your [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) projects. Let's get started!

Explore et apprends

Voici une compilation de tutoriels complets qui te guideront à travers les différents aspects de YOLOv5.

Environnements pris en charge

Ultralytics fournit une gamme d'environnements prêts à l'emploi, chacun étant préinstallé avec des dépendances essentielles telles que CUDACUDNN, Pythonet PyTorchpour lancer tes projets.

Statut du projet

YOLOv5 CI

Ce badge indique que tous les tests d'intégration continue (CI) de YOLOv5 GitHub Actions sont passés avec succès. Ces tests CI vérifient rigoureusement la fonctionnalité et les performances de YOLOv5 sur différents aspects clés : entraînement, validation, inférence, exportation et benchmarks. Ils garantissent un fonctionnement cohérent et fiable sur macOS, Windows et Ubuntu, avec des tests effectués toutes les 24 heures et à chaque nouveau commit.


Ultralytics GitHub espace Ultralytics LinkedIn espace Ultralytics Twitter espace Ultralytics YouTube espace Ultralytics TikTok espace Ultralytics BiliBili espace Ultralytics Discorde

Connecte-toi et contribue

Ton voyage avec YOLOv5 n'a pas besoin d'être solitaire. Rejoins notre communauté dynamique sur GitHub, connecte-toi avec des professionnels sur LinkedIn, partage tes résultats sur Twitter et trouve des ressources éducatives sur YouTube. Suis-nous sur TikTok et BiliBili pour plus de contenu engageant.

Tu souhaites contribuer ? Nous acceptons toutes les formes de contribution, qu'il s'agisse d'améliorations du code, de rapports de bogues ou de mises à jour de la documentation. Consulte nos directives de contribution pour plus d'informations.

Nous sommes impatients de voir les façons novatrices dont tu utiliseras YOLOv5. Plonge, expérimente et révolutionne tes projets de vision par ordinateur ! 🚀

FAQ

Quelles sont les principales caractéristiques de Ultralytics YOLOv5 ?

Ultralytics YOLOv5 is renowned for its high-speed and high-accuracy object detection capabilities. Built on PyTorch, it is versatile and user-friendly, making it suitable for various computer vision projects. Key features include real-time inference, support for multiple training tricks like Test-Time Augmentation (TTA) and Model Ensembling, and compatibility with export formats such as TFLite, ONNX, CoreML, and TensorRT. To delve deeper into how Ultralytics YOLOv5 can elevate your project, explore our TFLite, ONNX, CoreML, TensorRT Export guide.

Comment puis-je entraîner un modèle YOLOv5 personnalisé sur mon ensemble de données ?

L'entraînement d'un modèle YOLOv5 personnalisé sur ton ensemble de données implique quelques étapes clés. Tout d'abord, prépare ton jeu de données dans le format requis, annoté avec des étiquettes. Ensuite, configure les paramètres de formation de YOLOv5 et démarre le processus de formation à l'aide de la commande train.py script. Pour un tutoriel approfondi sur ce processus, consulte notre Former le guide des données personnalisées. Il fournit des instructions étape par étape pour garantir des résultats optimaux pour ton cas d'utilisation spécifique.

Pourquoi devrais-je utiliser Ultralytics YOLOv5 plutôt que d'autres modèles de détection d'objets comme RCNN ?

Ultralytics YOLOv5 est préféré à des modèles comme RCNN en raison de sa vitesse et de sa précision supérieures dans la détection d'objets en temps réel. YOLOv5 traite l'ensemble de l'image en une seule fois, ce qui le rend beaucoup plus rapide que l'approche par région de RCNN, qui implique plusieurs passages. De plus, l'intégration transparente de YOLOv5 avec différents formats d'exportation et sa documentation complète en font un excellent choix pour les débutants comme pour les professionnels. Pour en savoir plus sur les avantages architecturaux, consulte notre résumé de l'architecture.

Comment puis-je optimiser les performances du modèle YOLOv5 pendant la formation ?

Optimizing YOLOv5 model performance involves tuning various hyperparameters and incorporating techniques like data augmentation and transfer learning. Ultralytics provides comprehensive resources on hyperparameter evolution and pruning/sparsity to improve model efficiency. You can discover practical tips in our Tips for Best Training Results guide, which offers actionable insights for achieving optimal performance during training.

Quels sont les environnements pris en charge pour l'exécution des applications YOLOv5 ?

Ultralytics YOLOv5 prend en charge une variété d'environnements, y compris les carnets gratuits GPU sur Gradient, Google Colab, Kaggle, ainsi que les principales plateformes en nuage comme Google Cloud, Amazon AWS et Azure. Des images Docker sont également disponibles pour une configuration pratique. Pour un guide détaillé sur la configuration de ces environnements, consulte notre section Environnements pris en charge, qui comprend des instructions étape par étape pour chaque plateforme.


📅 Created 11 months ago ✏️ Updated 8 days ago

Commentaires