Vai al contenuto

Riferimento per ultralytics/models/rtdetr/train.py

Nota

Questo file è disponibile su https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/models/rtdetr/train .py. Se riscontri un problema, contribuisci a risolverlo inviando una Pull Request 🛠️. Grazie 🙏!



ultralytics.models.rtdetr.train.RTDETRTrainer

Basi: DetectionTrainer

Classe di addestramento per il modello RT-DETR sviluppato da Baidu per il rilevamento di oggetti in tempo reale. Estende la classe DetectionTrainer per YOLO per adattarsi alle caratteristiche e all'architettura specifiche di RT-DETR. Questo modello sfrutta i Vision Transformers e dispone di funzionalitĂ  come la selezione di query IoU-aware e la velocitĂ  di inferenza adattabile.

Note
  • F.grid_sample usato in RT-DETR non supporta l'opzione deterministic=True argomento.
  • L'addestramento AMP può portare a risultati NaN e può produrre errori durante la corrispondenza dei grafi bipartiti.
Esempio
from ultralytics.models.rtdetr.train import RTDETRTrainer

args = dict(model='rtdetr-l.yaml', data='coco8.yaml', imgsz=640, epochs=3)
trainer = RTDETRTrainer(overrides=args)
trainer.train()
Codice sorgente in ultralytics/models/rtdetr/train.py
class RTDETRTrainer(DetectionTrainer):
    """
    Trainer class for the RT-DETR model developed by Baidu for real-time object detection. Extends the DetectionTrainer
    class for YOLO to adapt to the specific features and architecture of RT-DETR. This model leverages Vision
    Transformers and has capabilities like IoU-aware query selection and adaptable inference speed.

    Notes:
        - F.grid_sample used in RT-DETR does not support the `deterministic=True` argument.
        - AMP training can lead to NaN outputs and may produce errors during bipartite graph matching.

    Example:
        ```python
        from ultralytics.models.rtdetr.train import RTDETRTrainer

        args = dict(model='rtdetr-l.yaml', data='coco8.yaml', imgsz=640, epochs=3)
        trainer = RTDETRTrainer(overrides=args)
        trainer.train()
        ```
    """

    def get_model(self, cfg=None, weights=None, verbose=True):
        """
        Initialize and return an RT-DETR model for object detection tasks.

        Args:
            cfg (dict, optional): Model configuration. Defaults to None.
            weights (str, optional): Path to pre-trained model weights. Defaults to None.
            verbose (bool): Verbose logging if True. Defaults to True.

        Returns:
            (RTDETRDetectionModel): Initialized model.
        """
        model = RTDETRDetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
        if weights:
            model.load(weights)
        return model

    def build_dataset(self, img_path, mode="val", batch=None):
        """
        Build and return an RT-DETR dataset for training or validation.

        Args:
            img_path (str): Path to the folder containing images.
            mode (str): Dataset mode, either 'train' or 'val'.
            batch (int, optional): Batch size for rectangle training. Defaults to None.

        Returns:
            (RTDETRDataset): Dataset object for the specific mode.
        """
        return RTDETRDataset(
            img_path=img_path,
            imgsz=self.args.imgsz,
            batch_size=batch,
            augment=mode == "train",
            hyp=self.args,
            rect=False,
            cache=self.args.cache or None,
            prefix=colorstr(f"{mode}: "),
            data=self.data,
        )

    def get_validator(self):
        """
        Returns a DetectionValidator suitable for RT-DETR model validation.

        Returns:
            (RTDETRValidator): Validator object for model validation.
        """
        self.loss_names = "giou_loss", "cls_loss", "l1_loss"
        return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))

    def preprocess_batch(self, batch):
        """
        Preprocess a batch of images. Scales and converts the images to float format.

        Args:
            batch (dict): Dictionary containing a batch of images, bboxes, and labels.

        Returns:
            (dict): Preprocessed batch.
        """
        batch = super().preprocess_batch(batch)
        bs = len(batch["img"])
        batch_idx = batch["batch_idx"]
        gt_bbox, gt_class = [], []
        for i in range(bs):
            gt_bbox.append(batch["bboxes"][batch_idx == i].to(batch_idx.device))
            gt_class.append(batch["cls"][batch_idx == i].to(device=batch_idx.device, dtype=torch.long))
        return batch

build_dataset(img_path, mode='val', batch=None)

Costruisce e restituisce un dataset RT-DETR per l'addestramento o la validazione.

Parametri:

Nome Tipo Descrizione Predefinito
img_path str

Percorso della cartella contenente le immagini.

richiesto
mode str

ModalitĂ  del dataset, "train" o "val".

'val'
batch int

Dimensione del batch per la formazione dei rettangoli. Il valore predefinito è Nessuno.

None

Restituzione:

Tipo Descrizione
RTDETRDataset

Oggetto dataset per la modalitĂ  specifica.

Codice sorgente in ultralytics/models/rtdetr/train.py
def build_dataset(self, img_path, mode="val", batch=None):
    """
    Build and return an RT-DETR dataset for training or validation.

    Args:
        img_path (str): Path to the folder containing images.
        mode (str): Dataset mode, either 'train' or 'val'.
        batch (int, optional): Batch size for rectangle training. Defaults to None.

    Returns:
        (RTDETRDataset): Dataset object for the specific mode.
    """
    return RTDETRDataset(
        img_path=img_path,
        imgsz=self.args.imgsz,
        batch_size=batch,
        augment=mode == "train",
        hyp=self.args,
        rect=False,
        cache=self.args.cache or None,
        prefix=colorstr(f"{mode}: "),
        data=self.data,
    )

get_model(cfg=None, weights=None, verbose=True)

Inizializza e restituisce un modello RT-DETR per le attivitĂ  di rilevamento degli oggetti.

Parametri:

Nome Tipo Descrizione Predefinito
cfg dict

Configurazione del modello. Il valore predefinito è Nessuno.

None
weights str

Percorso dei pesi del modello pre-addestrato. Il valore predefinito è Nessuno.

None
verbose bool

Registrazione verbosa se Vero. L'impostazione predefinita è Vero.

True

Restituzione:

Tipo Descrizione
RTDETRDetectionModel

Modello inizializzato.

Codice sorgente in ultralytics/models/rtdetr/train.py
def get_model(self, cfg=None, weights=None, verbose=True):
    """
    Initialize and return an RT-DETR model for object detection tasks.

    Args:
        cfg (dict, optional): Model configuration. Defaults to None.
        weights (str, optional): Path to pre-trained model weights. Defaults to None.
        verbose (bool): Verbose logging if True. Defaults to True.

    Returns:
        (RTDETRDetectionModel): Initialized model.
    """
    model = RTDETRDetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
    if weights:
        model.load(weights)
    return model

get_validator()

Restituisce un DetectionValidator adatto alla validazione del modello di RT-DETR .

Restituzione:

Tipo Descrizione
RTDETRValidator

Oggetto Validator per la validazione del modello.

Codice sorgente in ultralytics/models/rtdetr/train.py
def get_validator(self):
    """
    Returns a DetectionValidator suitable for RT-DETR model validation.

    Returns:
        (RTDETRValidator): Validator object for model validation.
    """
    self.loss_names = "giou_loss", "cls_loss", "l1_loss"
    return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))

preprocess_batch(batch)

Preelabora un gruppo di immagini. Scala e converte le immagini in formato float.

Parametri:

Nome Tipo Descrizione Predefinito
batch dict

Dizionario contenente un gruppo di immagini, bbox ed etichette.

richiesto

Restituzione:

Tipo Descrizione
dict

Lotto pre-elaborato.

Codice sorgente in ultralytics/models/rtdetr/train.py
def preprocess_batch(self, batch):
    """
    Preprocess a batch of images. Scales and converts the images to float format.

    Args:
        batch (dict): Dictionary containing a batch of images, bboxes, and labels.

    Returns:
        (dict): Preprocessed batch.
    """
    batch = super().preprocess_batch(batch)
    bs = len(batch["img"])
    batch_idx = batch["batch_idx"]
    gt_bbox, gt_class = [], []
    for i in range(bs):
        gt_bbox.append(batch["bboxes"][batch_idx == i].to(batch_idx.device))
        gt_class.append(batch["cls"][batch_idx == i].to(device=batch_idx.device, dtype=torch.long))
    return batch





Creato 2023-11-12, Aggiornato 2023-11-25
Autori: glenn-jocher (3)