コンテンツへスキップ

YOLOv5 🚀Google Cloud Platform (GCP)でのディープラーニング仮想マシン(VM)のデプロイメントをマスターする⭐。

Embarking on the journey of artificial intelligence and machine learning can be exhilarating, especially when you leverage the power and flexibility of a cloud platform. Google Cloud Platform (GCP) offers robust tools tailored for machine learning enthusiasts and professionals alike. One such tool is the Deep Learning VM that is preconfigured for data science and ML tasks. In this tutorial, we will navigate through the process of setting up YOLOv5 on a GCP Deep Learning VM. Whether you're taking your first steps in ML or you're a seasoned practitioner, this guide is designed to provide you with a clear pathway to implementing object detection models powered by YOLOv5.

🆓 Plus, if you're a fresh GCP user, you're in luck with a $300 free credit offer to kickstart your projects.

GCP 以外にも、YOLOv5 のクイックスタート・オプションがあります。 コラボ・ノートブック オープン・イン・コラボ ブラウザベースのエクスペリエンスや、拡張性に優れた アマゾンAWS.さらに、コンテナ愛好家は、以下の公式 Docker イメージを利用できます。 ドッカー・ハブ ドッカー・プル カプセル化された環境のために。

ステップ1:ディープラーニングVMの作成と設定

Let's begin by creating a virtual machine that's tuned for deep learning:

  1. GCPマーケットプレイスに行き、Deep Learning VMを選択する。
  2. n1-standard-8インスタンスを選択する。これは8つのvCPUと30GBのメモリのバランスを提供し、我々のニーズに理想的である。
  3. 次にGPUを選択します。Tesla T4のような基本的なものであっても、モデル・トレーニングを著しく高速化します。
  4. 初回起動時にNVIDIA GPUドライバを自動的にインストールしますか?
  5. I/Oオペレーションがボトルネックにならないように、300GBのSSD永続ディスクを割り当てます。
  6. Deploy」をクリックし、GCPにカスタムDeep Learning VMのプロビジョニングの魔法をかけよう。

この VM には、プリインストールされたツールやフレームワークの宝庫が搭載されており、その中にはAnaconda Python ディストリビューションも含まれています。このディストリビューションには、YOLOv5 に必要な依存関係がすべてバンドルされています。

GCP MarketplaceによるディープラーニングVMのセットアップ例

ステップ2:VMの準備YOLOv5

環境のセットアップに続いて、YOLOv5 :

# Clone the YOLOv5 repository
git clone https://github.com/ultralytics/yolov5

# Change the directory to the cloned repository
cd yolov5

# Install the necessary Python packages from requirements.txt
pip install -r requirements.txt

このセットアッププロセスでは、Python のバージョン3.8.0以降とPyTorch 1.8以降で作業していることを確認します。弊社のスクリプトは、最新のYOLOv5 リリースからモデルとデータセットをスムーズにダウンロードし、モデル学習を手間をかけずに開始することができます。

ステップ3:YOLOv5 モデルの訓練と展開 🌐 ↪So_1F310 モデルの訓練と展開 🌐 ↪So_1F310 モデルの訓練と展開

セットアップが完了すれば、GCP VM上でYOLOv5 、トレーニングと推論を行う準備が整ったことになる:

# Train a model on your data
python train.py

# Validate the trained model for Precision, Recall, and mAP
python val.py --weights yolov5s.pt

# Run inference using the trained model on your images or videos
python detect.py --weights yolov5s.pt --source path/to/images

# Export the trained model to other formats for deployment
python export.py --weights yolov5s.pt --include onnx coreml tflite

YOLOv5 、いくつかのコマンドを実行するだけで、特定のニーズに合わせたカスタムオブジェクト検出モデルをトレーニングしたり、事前にトレーニングされたウェイトを利用して、さまざまなタスクで迅速に結果を得ることができます。

GCP Deep Learning VM上でのモデル学習を示すターミナルコマンドのイメージ

スワップ領域の割り当て(オプション)

膨大なデータセットを扱う場合は、GCPインスタンスに64GBのスワップ・メモリを追加することを検討してください:

sudo fallocate -l 64G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
free -h  # confirm the memory increment

結びの言葉

おめでとうございます!これで、YOLOv5 の機能を Google Cloud Platform の計算能力で利用できるようになりました。この組み合わせは、あなたの物体検出タスクにスケーラビリティ、効率性、汎用性を提供します。個人プロジェクトでも、学術研究でも、産業用途でも、あなたはクラウド上のAIと機械学習の世界に極めて重要な一歩を踏み出しました。

あなたの旅を記録し、Ultralytics コミュニティと洞察を共有し、GitHub のディスカッションのような共同作業の場を活用して、さらに成長することを忘れないでください。さあ、YOLOv5 とGCPでイノベーションを起こしてください!🌟

MLのスキルや知識を向上させ続けたいですか?ドキュメンテーションやチュートリアルで、より多くのリソースをご覧ください。AIの冒険を続けましょう!



Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (5), Burhan-Q (1)

コメント