Skip to content

Reference for ultralytics/data/dataset.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/dataset.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


class ultralytics.data.dataset.YOLODataset

YOLODataset(self, *args, data: dict | None = None, task: str = "detect", **kwargs)

Bases: BaseDataset

Dataset class for loading object detection and/or segmentation labels in YOLO format.

This class supports loading data for object detection, segmentation, pose estimation, and oriented bounding box (OBB) tasks using the YOLO format.

Args

NameTypeDescriptionDefault
datadict, optionalDataset configuration dictionary.None
taskstrTask type, one of 'detect', 'segment', 'pose', or 'obb'."detect"
*argsAnyAdditional positional arguments for the parent class.required
**kwargsAnyAdditional keyword arguments for the parent class.required

Attributes

NameTypeDescription
use_segmentsboolIndicates if segmentation masks should be used.
use_keypointsboolIndicates if keypoints should be used for pose estimation.
use_obbboolIndicates if oriented bounding boxes should be used.
datadictDataset configuration dictionary.

Methods

NameDescription
build_transformsBuild and append transforms to the list.
cache_labelsCache dataset labels, check images and read shapes.
close_mosaicDisable mosaic, copy_paste, mixup and cutmix augmentations by setting their probabilities to 0.0.
collate_fnCollate data samples into batches.
get_labelsReturn dictionary of labels for YOLO training.
update_labels_infoUpdate label format for different tasks.

Examples

>>> dataset = YOLODataset(img_path="path/to/images", data={"names": {0: "person"}}, task="detect")
>>> dataset.get_labels()
Source code in ultralytics/data/dataset.pyView on GitHub
class YOLODataset(BaseDataset):
    """Dataset class for loading object detection and/or segmentation labels in YOLO format.

    This class supports loading data for object detection, segmentation, pose estimation, and oriented bounding box
    (OBB) tasks using the YOLO format.

    Attributes:
        use_segments (bool): Indicates if segmentation masks should be used.
        use_keypoints (bool): Indicates if keypoints should be used for pose estimation.
        use_obb (bool): Indicates if oriented bounding boxes should be used.
        data (dict): Dataset configuration dictionary.

    Methods:
        cache_labels: Cache dataset labels, check images and read shapes.
        get_labels: Return dictionary of labels for YOLO training.
        build_transforms: Build and append transforms to the list.
        close_mosaic: Set mosaic, copy_paste and mixup options to 0.0 and build transformations.
        update_labels_info: Update label format for different tasks.
        collate_fn: Collate data samples into batches.

    Examples:
        >>> dataset = YOLODataset(img_path="path/to/images", data={"names": {0: "person"}}, task="detect")
        >>> dataset.get_labels()
    """

    def __init__(self, *args, data: dict | None = None, task: str = "detect", **kwargs):
        """Initialize the YOLODataset.

        Args:
            data (dict, optional): Dataset configuration dictionary.
            task (str): Task type, one of 'detect', 'segment', 'pose', or 'obb'.
            *args (Any): Additional positional arguments for the parent class.
            **kwargs (Any): Additional keyword arguments for the parent class.
        """
        self.use_segments = task == "segment"
        self.use_keypoints = task == "pose"
        self.use_obb = task == "obb"
        self.data = data
        assert not (self.use_segments and self.use_keypoints), "Can not use both segments and keypoints."
        super().__init__(*args, channels=self.data.get("channels", 3), **kwargs)


method ultralytics.data.dataset.YOLODataset.build_transforms

def build_transforms(self, hyp: dict | None = None) -> Compose

Build and append transforms to the list.

Args

NameTypeDescriptionDefault
hypdict, optionalHyperparameters for transforms.None

Returns

TypeDescription
ComposeComposed transforms.
Source code in ultralytics/data/dataset.pyView on GitHub
def build_transforms(self, hyp: dict | None = None) -> Compose:
    """Build and append transforms to the list.

    Args:
        hyp (dict, optional): Hyperparameters for transforms.

    Returns:
        (Compose): Composed transforms.
    """
    if self.augment:
        hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
        hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
        hyp.cutmix = hyp.cutmix if self.augment and not self.rect else 0.0
        transforms = v8_transforms(self, self.imgsz, hyp)
    else:
        transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)])
    transforms.append(
        Format(
            bbox_format="xywh",
            normalize=True,
            return_mask=self.use_segments,
            return_keypoint=self.use_keypoints,
            return_obb=self.use_obb,
            batch_idx=True,
            mask_ratio=hyp.mask_ratio,
            mask_overlap=hyp.overlap_mask,
            bgr=hyp.bgr if self.augment else 0.0,  # only affect training.
        )
    )
    return transforms


method ultralytics.data.dataset.YOLODataset.cache_labels

def cache_labels(self, path: Path = Path("./labels.cache")) -> dict

Cache dataset labels, check images and read shapes.

Args

NameTypeDescriptionDefault
pathPathPath where to save the cache file.Path("./labels.cache")

Returns

TypeDescription
dictDictionary containing cached labels and related information.
Source code in ultralytics/data/dataset.pyView on GitHub
def cache_labels(self, path: Path = Path("./labels.cache")) -> dict:
    """Cache dataset labels, check images and read shapes.

    Args:
        path (Path): Path where to save the cache file.

    Returns:
        (dict): Dictionary containing cached labels and related information.
    """
    x = {"labels": []}
    nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
    desc = f"{self.prefix}Scanning {path.parent / path.stem}..."
    total = len(self.im_files)
    nkpt, ndim = self.data.get("kpt_shape", (0, 0))
    if self.use_keypoints and (nkpt <= 0 or ndim not in {2, 3}):
        raise ValueError(
            "'kpt_shape' in data.yaml missing or incorrect. Should be a list with [number of "
            "keypoints, number of dims (2 for x,y or 3 for x,y,visible)], i.e. 'kpt_shape: [17, 3]'"
        )
    with ThreadPool(NUM_THREADS) as pool:
        results = pool.imap(
            func=verify_image_label,
            iterable=zip(
                self.im_files,
                self.label_files,
                repeat(self.prefix),
                repeat(self.use_keypoints),
                repeat(len(self.data["names"])),
                repeat(nkpt),
                repeat(ndim),
                repeat(self.single_cls),
            ),
        )
        pbar = TQDM(results, desc=desc, total=total)
        for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar:
            nm += nm_f
            nf += nf_f
            ne += ne_f
            nc += nc_f
            if im_file:
                x["labels"].append(
                    {
                        "im_file": im_file,
                        "shape": shape,
                        "cls": lb[:, 0:1],  # n, 1
                        "bboxes": lb[:, 1:],  # n, 4
                        "segments": segments,
                        "keypoints": keypoint,
                        "normalized": True,
                        "bbox_format": "xywh",
                    }
                )
            if msg:
                msgs.append(msg)
            pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt"
        pbar.close()

    if msgs:
        LOGGER.info("\n".join(msgs))
    if nf == 0:
        LOGGER.warning(f"{self.prefix}No labels found in {path}. {HELP_URL}")
    x["hash"] = get_hash(self.label_files + self.im_files)
    x["results"] = nf, nm, ne, nc, len(self.im_files)
    x["msgs"] = msgs  # warnings
    save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION)
    return x


method ultralytics.data.dataset.YOLODataset.close_mosaic

def close_mosaic(self, hyp: dict) -> None

Disable mosaic, copy_paste, mixup and cutmix augmentations by setting their probabilities to 0.0.

Args

NameTypeDescriptionDefault
hypdictHyperparameters for transforms.required
Source code in ultralytics/data/dataset.pyView on GitHub
def close_mosaic(self, hyp: dict) -> None:
    """Disable mosaic, copy_paste, mixup and cutmix augmentations by setting their probabilities to 0.0.

    Args:
        hyp (dict): Hyperparameters for transforms.
    """
    hyp.mosaic = 0.0
    hyp.copy_paste = 0.0
    hyp.mixup = 0.0
    hyp.cutmix = 0.0
    self.transforms = self.build_transforms(hyp)


method ultralytics.data.dataset.YOLODataset.collate_fn

def collate_fn(batch: list[dict]) -> dict

Collate data samples into batches.

Args

NameTypeDescriptionDefault
batchlist[dict]List of dictionaries containing sample data.required

Returns

TypeDescription
dictCollated batch with stacked tensors.
Source code in ultralytics/data/dataset.pyView on GitHub
@staticmethod
def collate_fn(batch: list[dict]) -> dict:
    """Collate data samples into batches.

    Args:
        batch (list[dict]): List of dictionaries containing sample data.

    Returns:
        (dict): Collated batch with stacked tensors.
    """
    new_batch = {}
    batch = [dict(sorted(b.items())) for b in batch]  # make sure the keys are in the same order
    keys = batch[0].keys()
    values = list(zip(*[list(b.values()) for b in batch]))
    for i, k in enumerate(keys):
        value = values[i]
        if k in {"img", "text_feats"}:
            value = torch.stack(value, 0)
        elif k == "visuals":
            value = torch.nn.utils.rnn.pad_sequence(value, batch_first=True)
        if k in {"masks", "keypoints", "bboxes", "cls", "segments", "obb"}:
            value = torch.cat(value, 0)
        new_batch[k] = value
    new_batch["batch_idx"] = list(new_batch["batch_idx"])
    for i in range(len(new_batch["batch_idx"])):
        new_batch["batch_idx"][i] += i  # add target image index for build_targets()
    new_batch["batch_idx"] = torch.cat(new_batch["batch_idx"], 0)
    return new_batch


method ultralytics.data.dataset.YOLODataset.get_labels

def get_labels(self) -> list[dict]

Return dictionary of labels for YOLO training.

This method loads labels from disk or cache, verifies their integrity, and prepares them for training.

Returns

TypeDescription
list[dict]List of label dictionaries, each containing information about an image and its annotations.
Source code in ultralytics/data/dataset.pyView on GitHub
def get_labels(self) -> list[dict]:
    """Return dictionary of labels for YOLO training.

    This method loads labels from disk or cache, verifies their integrity, and prepares them for training.

    Returns:
        (list[dict]): List of label dictionaries, each containing information about an image and its annotations.
    """
    self.label_files = img2label_paths(self.im_files)
    cache_path = Path(self.label_files[0]).parent.with_suffix(".cache")
    try:
        cache, exists = load_dataset_cache_file(cache_path), True  # attempt to load a *.cache file
        assert cache["version"] == DATASET_CACHE_VERSION  # matches current version
        assert cache["hash"] == get_hash(self.label_files + self.im_files)  # identical hash
    except (FileNotFoundError, AssertionError, AttributeError, ModuleNotFoundError):
        cache, exists = self.cache_labels(cache_path), False  # run cache ops

    # Display cache
    nf, nm, ne, nc, n = cache.pop("results")  # found, missing, empty, corrupt, total
    if exists and LOCAL_RANK in {-1, 0}:
        d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
        TQDM(None, desc=self.prefix + d, total=n, initial=n)  # display results
        if cache["msgs"]:
            LOGGER.info("\n".join(cache["msgs"]))  # display warnings

    # Read cache
    [cache.pop(k) for k in ("hash", "version", "msgs")]  # remove items
    labels = cache["labels"]
    if not labels:
        raise RuntimeError(
            f"No valid images found in {cache_path}. Images with incorrectly formatted labels are ignored. {HELP_URL}"
        )
    self.im_files = [lb["im_file"] for lb in labels]  # update im_files

    # Check if the dataset is all boxes or all segments
    lengths = ((len(lb["cls"]), len(lb["bboxes"]), len(lb["segments"])) for lb in labels)
    len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths))
    if len_segments and len_boxes != len_segments:
        LOGGER.warning(
            f"Box and segment counts should be equal, but got len(segments) = {len_segments}, "
            f"len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. "
            "To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset."
        )
        for lb in labels:
            lb["segments"] = []
    if len_cls == 0:
        LOGGER.warning(f"Labels are missing or empty in {cache_path}, training may not work correctly. {HELP_URL}")
    return labels


method ultralytics.data.dataset.YOLODataset.update_labels_info

def update_labels_info(self, label: dict) -> dict

Update label format for different tasks.

Args

NameTypeDescriptionDefault
labeldictLabel dictionary containing bboxes, segments, keypoints, etc.required

Returns

TypeDescription
dictUpdated label dictionary with instances.

Notes

cls is not with bboxes now, classification and semantic segmentation need an independent cls label Can also support classification and semantic segmentation by adding or removing dict keys there.

Source code in ultralytics/data/dataset.pyView on GitHub
def update_labels_info(self, label: dict) -> dict:
    """Update label format for different tasks.

    Args:
        label (dict): Label dictionary containing bboxes, segments, keypoints, etc.

    Returns:
        (dict): Updated label dictionary with instances.

    Notes:
        cls is not with bboxes now, classification and semantic segmentation need an independent cls label
        Can also support classification and semantic segmentation by adding or removing dict keys there.
    """
    bboxes = label.pop("bboxes")
    segments = label.pop("segments", [])
    keypoints = label.pop("keypoints", None)
    bbox_format = label.pop("bbox_format")
    normalized = label.pop("normalized")

    # NOTE: do NOT resample oriented boxes
    segment_resamples = 100 if self.use_obb else 1000
    if len(segments) > 0:
        # make sure segments interpolate correctly if original length is greater than segment_resamples
        max_len = max(len(s) for s in segments)
        segment_resamples = (max_len + 1) if segment_resamples < max_len else segment_resamples
        # list[np.array(segment_resamples, 2)] * num_samples
        segments = np.stack(resample_segments(segments, n=segment_resamples), axis=0)
    else:
        segments = np.zeros((0, segment_resamples, 2), dtype=np.float32)
    label["instances"] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized)
    return label





class ultralytics.data.dataset.YOLOMultiModalDataset

YOLOMultiModalDataset(self, *args, data: dict | None = None, task: str = "detect", **kwargs)

Bases: YOLODataset

Dataset class for loading object detection and/or segmentation labels in YOLO format with multi-modal support.

This class extends YOLODataset to add text information for multi-modal model training, enabling models to process both image and text data.

Args

NameTypeDescriptionDefault
datadict, optionalDataset configuration dictionary.None
taskstrTask type, one of 'detect', 'segment', 'pose', or 'obb'."detect"
*argsAnyAdditional positional arguments for the parent class.required
**kwargsAnyAdditional keyword arguments for the parent class.required

Methods

NameDescription
category_namesReturn category names for the dataset.
category_freqReturn frequency of each category in the dataset.
_get_neg_textsGet negative text samples based on frequency threshold.
build_transformsEnhance data transformations with optional text augmentation for multi-modal training.
update_labels_infoAdd text information for multi-modal model training.

Examples

>>> dataset = YOLOMultiModalDataset(img_path="path/to/images", data={"names": {0: "person"}}, task="detect")
>>> batch = next(iter(dataset))
>>> print(batch.keys())  # Should include 'texts'
Source code in ultralytics/data/dataset.pyView on GitHub
class YOLOMultiModalDataset(YOLODataset):
    """Dataset class for loading object detection and/or segmentation labels in YOLO format with multi-modal support.

    This class extends YOLODataset to add text information for multi-modal model training, enabling models to process
    both image and text data.

    Methods:
        update_labels_info: Add text information for multi-modal model training.
        build_transforms: Enhance data transformations with text augmentation.

    Examples:
        >>> dataset = YOLOMultiModalDataset(img_path="path/to/images", data={"names": {0: "person"}}, task="detect")
        >>> batch = next(iter(dataset))
        >>> print(batch.keys())  # Should include 'texts'
    """

    def __init__(self, *args, data: dict | None = None, task: str = "detect", **kwargs):
        """Initialize a YOLOMultiModalDataset.

        Args:
            data (dict, optional): Dataset configuration dictionary.
            task (str): Task type, one of 'detect', 'segment', 'pose', or 'obb'.
            *args (Any): Additional positional arguments for the parent class.
            **kwargs (Any): Additional keyword arguments for the parent class.
        """
        super().__init__(*args, data=data, task=task, **kwargs)


property ultralytics.data.dataset.YOLOMultiModalDataset.category_names

def category_names(self)

Return category names for the dataset.

Returns

TypeDescription
set[str]List of class names.
Source code in ultralytics/data/dataset.pyView on GitHub
@property
def category_names(self):
    """Return category names for the dataset.

    Returns:
        (set[str]): List of class names.
    """
    names = self.data["names"].values()
    return {n.strip() for name in names for n in name.split("/")}  # category names


property ultralytics.data.dataset.YOLOMultiModalDataset.category_freq

def category_freq(self)

Return frequency of each category in the dataset.

Source code in ultralytics/data/dataset.pyView on GitHub
@property
def category_freq(self):
    """Return frequency of each category in the dataset."""
    texts = [v.split("/") for v in self.data["names"].values()]
    category_freq = defaultdict(int)
    for label in self.labels:
        for c in label["cls"].squeeze(-1):  # to check
            text = texts[int(c)]
            for t in text:
                t = t.strip()
                category_freq[t] += 1
    return category_freq


method ultralytics.data.dataset.YOLOMultiModalDataset._get_neg_texts

def _get_neg_texts(category_freq: dict, threshold: int = 100) -> list[str]

Get negative text samples based on frequency threshold.

Args

NameTypeDescriptionDefault
category_freqdictrequired
thresholdint100
Source code in ultralytics/data/dataset.pyView on GitHub
@staticmethod
def _get_neg_texts(category_freq: dict, threshold: int = 100) -> list[str]:
    """Get negative text samples based on frequency threshold."""
    threshold = min(max(category_freq.values()), 100)
    return [k for k, v in category_freq.items() if v >= threshold]


method ultralytics.data.dataset.YOLOMultiModalDataset.build_transforms

def build_transforms(self, hyp: dict | None = None) -> Compose

Enhance data transformations with optional text augmentation for multi-modal training.

Args

NameTypeDescriptionDefault
hypdict, optionalHyperparameters for transforms.None

Returns

TypeDescription
ComposeComposed transforms including text augmentation if applicable.
Source code in ultralytics/data/dataset.pyView on GitHub
def build_transforms(self, hyp: dict | None = None) -> Compose:
    """Enhance data transformations with optional text augmentation for multi-modal training.

    Args:
        hyp (dict, optional): Hyperparameters for transforms.

    Returns:
        (Compose): Composed transforms including text augmentation if applicable.
    """
    transforms = super().build_transforms(hyp)
    if self.augment:
        # NOTE: hard-coded the args for now.
        # NOTE: this implementation is different from official yoloe,
        # the strategy of selecting negative is restricted in one dataset,
        # while official pre-saved neg embeddings from all datasets at once.
        transform = RandomLoadText(
            max_samples=min(self.data["nc"], 80),
            padding=True,
            padding_value=self._get_neg_texts(self.category_freq),
        )
        transforms.insert(-1, transform)
    return transforms


method ultralytics.data.dataset.YOLOMultiModalDataset.update_labels_info

def update_labels_info(self, label: dict) -> dict

Add text information for multi-modal model training.

Args

NameTypeDescriptionDefault
labeldictLabel dictionary containing bboxes, segments, keypoints, etc.required

Returns

TypeDescription
dictUpdated label dictionary with instances and texts.
Source code in ultralytics/data/dataset.pyView on GitHub
def update_labels_info(self, label: dict) -> dict:
    """Add text information for multi-modal model training.

    Args:
        label (dict): Label dictionary containing bboxes, segments, keypoints, etc.

    Returns:
        (dict): Updated label dictionary with instances and texts.
    """
    labels = super().update_labels_info(label)
    # NOTE: some categories are concatenated with its synonyms by `/`.
    # NOTE: and `RandomLoadText` would randomly select one of them if there are multiple words.
    labels["texts"] = [v.split("/") for _, v in self.data["names"].items()]

    return labels





class ultralytics.data.dataset.GroundingDataset

GroundingDataset(self, *args, task: str = "detect", json_file: str = "", max_samples: int = 80, **kwargs)

Bases: YOLODataset

Dataset class for object detection tasks using annotations from a JSON file in grounding format.

This dataset is designed for grounding tasks where annotations are provided in a JSON file rather than the standard YOLO format text files.

Args

NameTypeDescriptionDefault
json_filestrPath to the JSON file containing annotations.""
taskstrMust be 'detect' or 'segment' for GroundingDataset."detect"
max_samplesintMaximum number of samples to load for text augmentation.80
*argsAnyAdditional positional arguments for the parent class.required
**kwargsAnyAdditional keyword arguments for the parent class.required

Attributes

NameTypeDescription
json_filestrPath to the JSON file containing annotations.

Methods

NameDescription
category_namesReturn unique category names from the dataset.
category_freqReturn frequency of each category in the dataset.
_get_neg_textsGet negative text samples based on frequency threshold.
build_transformsConfigure augmentations for training with optional text loading.
cache_labelsLoad annotations from a JSON file, filter, and normalize bounding boxes for each image.
get_img_filesThe image files would be read in get_labels function, return empty list here.
get_labelsLoad labels from cache or generate them from JSON file.
verify_labelsVerify the number of instances in the dataset matches expected counts.

Examples

>>> dataset = GroundingDataset(img_path="path/to/images", json_file="annotations.json", task="detect")
>>> len(dataset)  # Number of valid images with annotations
Source code in ultralytics/data/dataset.pyView on GitHub
class GroundingDataset(YOLODataset):
    """Dataset class for object detection tasks using annotations from a JSON file in grounding format.

    This dataset is designed for grounding tasks where annotations are provided in a JSON file rather than the standard
    YOLO format text files.

    Attributes:
        json_file (str): Path to the JSON file containing annotations.

    Methods:
        get_img_files: Return empty list as image files are read in get_labels.
        get_labels: Load annotations from a JSON file and prepare them for training.
        build_transforms: Configure augmentations for training with optional text loading.

    Examples:
        >>> dataset = GroundingDataset(img_path="path/to/images", json_file="annotations.json", task="detect")
        >>> len(dataset)  # Number of valid images with annotations
    """

    def __init__(self, *args, task: str = "detect", json_file: str = "", max_samples: int = 80, **kwargs):
        """Initialize a GroundingDataset for object detection.

        Args:
            json_file (str): Path to the JSON file containing annotations.
            task (str): Must be 'detect' or 'segment' for GroundingDataset.
            max_samples (int): Maximum number of samples to load for text augmentation.
            *args (Any): Additional positional arguments for the parent class.
            **kwargs (Any): Additional keyword arguments for the parent class.
        """
        assert task in {"detect", "segment"}, "GroundingDataset currently only supports `detect` and `segment` tasks"
        self.json_file = json_file
        self.max_samples = max_samples
        super().__init__(*args, task=task, data={"channels": 3}, **kwargs)


property ultralytics.data.dataset.GroundingDataset.category_names

def category_names(self)

Return unique category names from the dataset.

Source code in ultralytics/data/dataset.pyView on GitHub
@property
def category_names(self):
    """Return unique category names from the dataset."""
    return {t.strip() for label in self.labels for text in label["texts"] for t in text}


property ultralytics.data.dataset.GroundingDataset.category_freq

def category_freq(self)

Return frequency of each category in the dataset.

Source code in ultralytics/data/dataset.pyView on GitHub
@property
def category_freq(self):
    """Return frequency of each category in the dataset."""
    category_freq = defaultdict(int)
    for label in self.labels:
        for text in label["texts"]:
            for t in text:
                t = t.strip()
                category_freq[t] += 1
    return category_freq


method ultralytics.data.dataset.GroundingDataset._get_neg_texts

def _get_neg_texts(category_freq: dict, threshold: int = 100) -> list[str]

Get negative text samples based on frequency threshold.

Args

NameTypeDescriptionDefault
category_freqdictrequired
thresholdint100
Source code in ultralytics/data/dataset.pyView on GitHub
@staticmethod
def _get_neg_texts(category_freq: dict, threshold: int = 100) -> list[str]:
    """Get negative text samples based on frequency threshold."""
    threshold = min(max(category_freq.values()), 100)
    return [k for k, v in category_freq.items() if v >= threshold]


method ultralytics.data.dataset.GroundingDataset.build_transforms

def build_transforms(self, hyp: dict | None = None) -> Compose

Configure augmentations for training with optional text loading.

Args

NameTypeDescriptionDefault
hypdict, optionalHyperparameters for transforms.None

Returns

TypeDescription
ComposeComposed transforms including text augmentation if applicable.
Source code in ultralytics/data/dataset.pyView on GitHub
def build_transforms(self, hyp: dict | None = None) -> Compose:
    """Configure augmentations for training with optional text loading.

    Args:
        hyp (dict, optional): Hyperparameters for transforms.

    Returns:
        (Compose): Composed transforms including text augmentation if applicable.
    """
    transforms = super().build_transforms(hyp)
    if self.augment:
        # NOTE: hard-coded the args for now.
        # NOTE: this implementation is different from official yoloe,
        # the strategy of selecting negative is restricted in one dataset,
        # while official pre-saved neg embeddings from all datasets at once.
        transform = RandomLoadText(
            max_samples=min(self.max_samples, 80),
            padding=True,
            padding_value=self._get_neg_texts(self.category_freq),
        )
        transforms.insert(-1, transform)
    return transforms


method ultralytics.data.dataset.GroundingDataset.cache_labels

def cache_labels(self, path: Path = Path("./labels.cache")) -> dict[str, Any]

Load annotations from a JSON file, filter, and normalize bounding boxes for each image.

Args

NameTypeDescriptionDefault
pathPathPath where to save the cache file.Path("./labels.cache")

Returns

TypeDescription
dict[str, Any]Dictionary containing cached labels and related information.
Source code in ultralytics/data/dataset.pyView on GitHub
def cache_labels(self, path: Path = Path("./labels.cache")) -> dict[str, Any]:
    """Load annotations from a JSON file, filter, and normalize bounding boxes for each image.

    Args:
        path (Path): Path where to save the cache file.

    Returns:
        (dict[str, Any]): Dictionary containing cached labels and related information.
    """
    x = {"labels": []}
    LOGGER.info("Loading annotation file...")
    with open(self.json_file) as f:
        annotations = json.load(f)
    images = {f"{x['id']:d}": x for x in annotations["images"]}
    img_to_anns = defaultdict(list)
    for ann in annotations["annotations"]:
        img_to_anns[ann["image_id"]].append(ann)
    for img_id, anns in TQDM(img_to_anns.items(), desc=f"Reading annotations {self.json_file}"):
        img = images[f"{img_id:d}"]
        h, w, f = img["height"], img["width"], img["file_name"]
        im_file = Path(self.img_path) / f
        if not im_file.exists():
            continue
        self.im_files.append(str(im_file))
        bboxes = []
        segments = []
        cat2id = {}
        texts = []
        for ann in anns:
            if ann["iscrowd"]:
                continue
            box = np.array(ann["bbox"], dtype=np.float32)
            box[:2] += box[2:] / 2
            box[[0, 2]] /= float(w)
            box[[1, 3]] /= float(h)
            if box[2] <= 0 or box[3] <= 0:
                continue

            caption = img["caption"]
            cat_name = " ".join([caption[t[0] : t[1]] for t in ann["tokens_positive"]]).lower().strip()
            if not cat_name:
                continue

            if cat_name not in cat2id:
                cat2id[cat_name] = len(cat2id)
                texts.append([cat_name])
            cls = cat2id[cat_name]  # class
            box = [cls, *box.tolist()]
            if box not in bboxes:
                bboxes.append(box)
                if ann.get("segmentation") is not None:
                    if len(ann["segmentation"]) == 0:
                        segments.append(box)
                        continue
                    elif len(ann["segmentation"]) > 1:
                        s = merge_multi_segment(ann["segmentation"])
                        s = (np.concatenate(s, axis=0) / np.array([w, h], dtype=np.float32)).reshape(-1).tolist()
                    else:
                        s = [j for i in ann["segmentation"] for j in i]  # all segments concatenated
                        s = (
                            (np.array(s, dtype=np.float32).reshape(-1, 2) / np.array([w, h], dtype=np.float32))
                            .reshape(-1)
                            .tolist()
                        )
                    s = [cls, *s]
                    segments.append(s)
        lb = np.array(bboxes, dtype=np.float32) if len(bboxes) else np.zeros((0, 5), dtype=np.float32)

        if segments:
            classes = np.array([x[0] for x in segments], dtype=np.float32)
            segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in segments]  # (cls, xy1...)
            lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
        lb = np.array(lb, dtype=np.float32)

        x["labels"].append(
            {
                "im_file": im_file,
                "shape": (h, w),
                "cls": lb[:, 0:1],  # n, 1
                "bboxes": lb[:, 1:],  # n, 4
                "segments": segments,
                "normalized": True,
                "bbox_format": "xywh",
                "texts": texts,
            }
        )
    x["hash"] = get_hash(self.json_file)
    save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION)
    return x


method ultralytics.data.dataset.GroundingDataset.get_img_files

def get_img_files(self, img_path: str) -> list

The image files would be read in get_labels function, return empty list here.

Args

NameTypeDescriptionDefault
img_pathstrPath to the directory containing images.required

Returns

TypeDescription
listEmpty list as image files are read in get_labels.
Source code in ultralytics/data/dataset.pyView on GitHub
def get_img_files(self, img_path: str) -> list:
    """The image files would be read in `get_labels` function, return empty list here.

    Args:
        img_path (str): Path to the directory containing images.

    Returns:
        (list): Empty list as image files are read in get_labels.
    """
    return []


method ultralytics.data.dataset.GroundingDataset.get_labels

def get_labels(self) -> list[dict]

Load labels from cache or generate them from JSON file.

Returns

TypeDescription
list[dict]List of label dictionaries, each containing information about an image and its annotations.
Source code in ultralytics/data/dataset.pyView on GitHub
def get_labels(self) -> list[dict]:
    """Load labels from cache or generate them from JSON file.

    Returns:
        (list[dict]): List of label dictionaries, each containing information about an image and its annotations.
    """
    cache_path = Path(self.json_file).with_suffix(".cache")
    try:
        cache, _ = load_dataset_cache_file(cache_path), True  # attempt to load a *.cache file
        assert cache["version"] == DATASET_CACHE_VERSION  # matches current version
        assert cache["hash"] == get_hash(self.json_file)  # identical hash
    except (FileNotFoundError, AssertionError, AttributeError, ModuleNotFoundError):
        cache, _ = self.cache_labels(cache_path), False  # run cache ops
    [cache.pop(k) for k in ("hash", "version")]  # remove items
    labels = cache["labels"]
    self.verify_labels(labels)
    self.im_files = [str(label["im_file"]) for label in labels]
    if LOCAL_RANK in {-1, 0}:
        LOGGER.info(f"Load {self.json_file} from cache file {cache_path}")
    return labels


method ultralytics.data.dataset.GroundingDataset.verify_labels

def verify_labels(self, labels: list[dict[str, Any]]) -> None

Verify the number of instances in the dataset matches expected counts.

This method checks if the total number of bounding box instances in the provided labels matches the expected count for known datasets. It performs validation against a predefined set of datasets with known instance counts.

Args

NameTypeDescriptionDefault
labelslist[dict[str, Any]]List of label dictionaries, where each dictionary contains dataset annotations. Each label dict must have a 'bboxes' key with a numpy array or tensor containing bounding box coordinates.required

Notes

For unrecognized datasets (those not in the predefined expected_counts), a warning is logged and verification is skipped.

Raises

TypeDescription
AssertionErrorIf the actual instance count doesn't match the expected count for a recognized dataset.
Source code in ultralytics/data/dataset.pyView on GitHub
def verify_labels(self, labels: list[dict[str, Any]]) -> None:
    """Verify the number of instances in the dataset matches expected counts.

    This method checks if the total number of bounding box instances in the provided labels matches the expected
    count for known datasets. It performs validation against a predefined set of datasets with known instance
    counts.

    Args:
        labels (list[dict[str, Any]]): List of label dictionaries, where each dictionary contains dataset
            annotations. Each label dict must have a 'bboxes' key with a numpy array or tensor containing bounding
            box coordinates.

    Raises:
        AssertionError: If the actual instance count doesn't match the expected count for a recognized dataset.

    Notes:
        For unrecognized datasets (those not in the predefined expected_counts),
        a warning is logged and verification is skipped.
    """
    expected_counts = {
        "final_mixed_train_no_coco_segm": 3662412,
        "final_mixed_train_no_coco": 3681235,
        "final_flickr_separateGT_train_segm": 638214,
        "final_flickr_separateGT_train": 640704,
    }

    instance_count = sum(label["bboxes"].shape[0] for label in labels)
    for data_name, count in expected_counts.items():
        if data_name in self.json_file:
            assert instance_count == count, f"'{self.json_file}' has {instance_count} instances, expected {count}."
            return
    LOGGER.warning(f"Skipping instance count verification for unrecognized dataset '{self.json_file}'")





class ultralytics.data.dataset.YOLOConcatDataset

YOLOConcatDataset()

Bases: ConcatDataset

Dataset as a concatenation of multiple datasets.

This class is useful to assemble different existing datasets for YOLO training, ensuring they use the same collation function.

Methods

NameDescription
close_mosaicSet mosaic, copy_paste and mixup options to 0.0 and build transformations.
collate_fnCollate data samples into batches.

Examples

>>> dataset1 = YOLODataset(...)
>>> dataset2 = YOLODataset(...)
>>> combined_dataset = YOLOConcatDataset([dataset1, dataset2])
Source code in ultralytics/data/dataset.pyView on GitHub
class YOLOConcatDataset(ConcatDataset):


method ultralytics.data.dataset.YOLOConcatDataset.close_mosaic

def close_mosaic(self, hyp: dict) -> None

Set mosaic, copy_paste and mixup options to 0.0 and build transformations.

Args

NameTypeDescriptionDefault
hypdictHyperparameters for transforms.required
Source code in ultralytics/data/dataset.pyView on GitHub
def close_mosaic(self, hyp: dict) -> None:
    """Set mosaic, copy_paste and mixup options to 0.0 and build transformations.

    Args:
        hyp (dict): Hyperparameters for transforms.
    """
    for dataset in self.datasets:
        if not hasattr(dataset, "close_mosaic"):
            continue
        dataset.close_mosaic(hyp)


method ultralytics.data.dataset.YOLOConcatDataset.collate_fn

def collate_fn(batch: list[dict]) -> dict

Collate data samples into batches.

Args

NameTypeDescriptionDefault
batchlist[dict]List of dictionaries containing sample data.required

Returns

TypeDescription
dictCollated batch with stacked tensors.
Source code in ultralytics/data/dataset.pyView on GitHub
@staticmethod
def collate_fn(batch: list[dict]) -> dict:
    """Collate data samples into batches.

    Args:
        batch (list[dict]): List of dictionaries containing sample data.

    Returns:
        (dict): Collated batch with stacked tensors.
    """
    return YOLODataset.collate_fn(batch)





class ultralytics.data.dataset.SemanticDataset

SemanticDataset(self)

Bases: BaseDataset

Semantic Segmentation Dataset.

Source code in ultralytics/data/dataset.pyView on GitHub
class SemanticDataset(BaseDataset):
    """Semantic Segmentation Dataset."""

    def __init__(self):
        """Initialize a SemanticDataset object."""
        super().__init__()





class ultralytics.data.dataset.ClassificationDataset

ClassificationDataset(self, root: str, args, augment: bool = False, prefix: str = "")

Dataset class for image classification tasks extending torchvision ImageFolder functionality.

This class offers functionalities like image augmentation, caching, and verification. It's designed to efficiently handle large datasets for training deep learning models, with optional image transformations and caching mechanisms to speed up training.

Args

NameTypeDescriptionDefault
rootstrPath to the dataset directory where images are stored in a class-specific folder structure.required
argsNamespaceConfiguration containing dataset-related settings such as image size, augmentation parameters, and cache settings.required
augmentbool, optionalWhether to apply augmentations to the dataset.False
prefixstr, optionalPrefix for logging and cache filenames, aiding in dataset identification.""

Attributes

NameTypeDescription
cache_ramboolIndicates if caching in RAM is enabled.
cache_diskboolIndicates if caching on disk is enabled.
sampleslistA list of tuples, each containing the path to an image, its class index, path to its .npy cache file (if caching on disk), and optionally the loaded image array (if caching in RAM).
torch_transformscallablePyTorch transforms to be applied to the images.
rootstrRoot directory of the dataset.
prefixstrPrefix for logging and cache filenames.

Methods

NameDescription
__getitem__Return subset of data and targets corresponding to given indices.
__len__Return the total number of samples in the dataset.
verify_imagesVerify all images in dataset.
Source code in ultralytics/data/dataset.pyView on GitHub
class ClassificationDataset:
    """Dataset class for image classification tasks extending torchvision ImageFolder functionality.

    This class offers functionalities like image augmentation, caching, and verification. It's designed to efficiently
    handle large datasets for training deep learning models, with optional image transformations and caching mechanisms
    to speed up training.

    Attributes:
        cache_ram (bool): Indicates if caching in RAM is enabled.
        cache_disk (bool): Indicates if caching on disk is enabled.
        samples (list): A list of tuples, each containing the path to an image, its class index, path to its .npy cache
            file (if caching on disk), and optionally the loaded image array (if caching in RAM).
        torch_transforms (callable): PyTorch transforms to be applied to the images.
        root (str): Root directory of the dataset.
        prefix (str): Prefix for logging and cache filenames.

    Methods:
        __getitem__: Return subset of data and targets corresponding to given indices.
        __len__: Return the total number of samples in the dataset.
        verify_images: Verify all images in dataset.
    """

    def __init__(self, root: str, args, augment: bool = False, prefix: str = ""):
        """Initialize YOLO classification dataset with root directory, arguments, augmentations, and cache settings.

        Args:
            root (str): Path to the dataset directory where images are stored in a class-specific folder structure.
            args (Namespace): Configuration containing dataset-related settings such as image size, augmentation
                parameters, and cache settings.
            augment (bool, optional): Whether to apply augmentations to the dataset.
            prefix (str, optional): Prefix for logging and cache filenames, aiding in dataset identification.
        """
        import torchvision  # scope for faster 'import ultralytics'

        # Base class assigned as attribute rather than used as base class to allow for scoping slow torchvision import
        if TORCHVISION_0_18:  # 'allow_empty' argument first introduced in torchvision 0.18
            self.base = torchvision.datasets.ImageFolder(root=root, allow_empty=True)
        else:
            self.base = torchvision.datasets.ImageFolder(root=root)
        self.samples = self.base.samples
        self.root = self.base.root

        # Initialize attributes
        if augment and args.fraction < 1.0:  # reduce training fraction
            self.samples = self.samples[: round(len(self.samples) * args.fraction)]
        self.prefix = colorstr(f"{prefix}: ") if prefix else ""
        self.cache_ram = args.cache is True or str(args.cache).lower() == "ram"  # cache images into RAM
        if self.cache_ram:
            LOGGER.warning(
                "Classification `cache_ram` training has known memory leak in "
                "https://github.com/ultralytics/ultralytics/issues/9824, setting `cache_ram=False`."
            )
            self.cache_ram = False
        self.cache_disk = str(args.cache).lower() == "disk"  # cache images on hard drive as uncompressed *.npy files
        self.samples = self.verify_images()  # filter out bad images
        self.samples = [[*list(x), Path(x[0]).with_suffix(".npy"), None] for x in self.samples]  # file, index, npy, im
        scale = (1.0 - args.scale, 1.0)  # (0.08, 1.0)
        self.torch_transforms = (
            classify_augmentations(
                size=args.imgsz,
                scale=scale,
                hflip=args.fliplr,
                vflip=args.flipud,
                erasing=args.erasing,
                auto_augment=args.auto_augment,
                hsv_h=args.hsv_h,
                hsv_s=args.hsv_s,
                hsv_v=args.hsv_v,
            )
            if augment
            else classify_transforms(size=args.imgsz)
        )


method ultralytics.data.dataset.ClassificationDataset.__getitem__

def __getitem__(self, i: int) -> dict

Return subset of data and targets corresponding to given indices.

Args

NameTypeDescriptionDefault
iintIndex of the sample to retrieve.required

Returns

TypeDescription
dictDictionary containing the image and its class index.
Source code in ultralytics/data/dataset.pyView on GitHub
def __getitem__(self, i: int) -> dict:
    """Return subset of data and targets corresponding to given indices.

    Args:
        i (int): Index of the sample to retrieve.

    Returns:
        (dict): Dictionary containing the image and its class index.
    """
    f, j, fn, im = self.samples[i]  # filename, index, filename.with_suffix('.npy'), image
    if self.cache_ram:
        if im is None:  # Warning: two separate if statements required here, do not combine this with previous line
            im = self.samples[i][3] = cv2.imread(f)
    elif self.cache_disk:
        if not fn.exists():  # load npy
            np.save(fn.as_posix(), cv2.imread(f), allow_pickle=False)
        im = np.load(fn)
    else:  # read image
        im = cv2.imread(f)  # BGR
    # Convert NumPy array to PIL image
    im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))
    sample = self.torch_transforms(im)
    return {"img": sample, "cls": j}


method ultralytics.data.dataset.ClassificationDataset.__len__

def __len__(self) -> int

Return the total number of samples in the dataset.

Source code in ultralytics/data/dataset.pyView on GitHub
def __len__(self) -> int:
    """Return the total number of samples in the dataset."""
    return len(self.samples)


method ultralytics.data.dataset.ClassificationDataset.verify_images

def verify_images(self) -> list[tuple]

Verify all images in dataset.

Returns

TypeDescription
listList of valid samples after verification.
Source code in ultralytics/data/dataset.pyView on GitHub
def verify_images(self) -> list[tuple]:
    """Verify all images in dataset.

    Returns:
        (list): List of valid samples after verification.
    """
    desc = f"{self.prefix}Scanning {self.root}..."
    path = Path(self.root).with_suffix(".cache")  # *.cache file path

    try:
        check_file_speeds([file for (file, _) in self.samples[:5]], prefix=self.prefix)  # check image read speeds
        cache = load_dataset_cache_file(path)  # attempt to load a *.cache file
        assert cache["version"] == DATASET_CACHE_VERSION  # matches current version
        assert cache["hash"] == get_hash([x[0] for x in self.samples])  # identical hash
        nf, nc, n, samples = cache.pop("results")  # found, missing, empty, corrupt, total
        if LOCAL_RANK in {-1, 0}:
            d = f"{desc} {nf} images, {nc} corrupt"
            TQDM(None, desc=d, total=n, initial=n)
            if cache["msgs"]:
                LOGGER.info("\n".join(cache["msgs"]))  # display warnings
        return samples

    except (FileNotFoundError, AssertionError, AttributeError):
        # Run scan if *.cache retrieval failed
        nf, nc, msgs, samples, x = 0, 0, [], [], {}
        with ThreadPool(NUM_THREADS) as pool:
            results = pool.imap(func=verify_image, iterable=zip(self.samples, repeat(self.prefix)))
            pbar = TQDM(results, desc=desc, total=len(self.samples))
            for sample, nf_f, nc_f, msg in pbar:
                if nf_f:
                    samples.append(sample)
                if msg:
                    msgs.append(msg)
                nf += nf_f
                nc += nc_f
                pbar.desc = f"{desc} {nf} images, {nc} corrupt"
            pbar.close()
        if msgs:
            LOGGER.info("\n".join(msgs))
        x["hash"] = get_hash([x[0] for x in self.samples])
        x["results"] = nf, nc, len(samples), samples
        x["msgs"] = msgs  # warnings
        save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION)
        return samples





📅 Created 2 years ago ✏️ Updated 2 days ago
glenn-jocherjk4eBurhan-QLaughing-q