Skip to content

Reference for ultralytics/data/dataset.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/dataset.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.data.dataset.YOLODataset

YOLODataset(*args, data=None, task='detect', **kwargs)

Bases: BaseDataset

Dataset class for loading object detection and/or segmentation labels in YOLO format.

This class supports loading data for object detection, segmentation, pose estimation, and oriented bounding box (OBB) tasks using the YOLO format.

Attributes:

Name Type Description
use_segments bool

Indicates if segmentation masks should be used.

use_keypoints bool

Indicates if keypoints should be used for pose estimation.

use_obb bool

Indicates if oriented bounding boxes should be used.

data dict

Dataset configuration dictionary.

Methods:

Name Description
cache_labels

Cache dataset labels, check images and read shapes.

get_labels

Returns dictionary of labels for YOLO training.

build_transforms

Builds and appends transforms to the list.

close_mosaic

Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations.

update_labels_info

Updates label format for different tasks.

collate_fn

Collates data samples into batches.

Examples:

>>> dataset = YOLODataset(img_path="path/to/images", data={"names": {0: "person"}}, task="detect")
>>> dataset.get_labels()

Parameters:

Name Type Description Default
data dict

Dataset configuration dictionary.

None
task str

Task type, one of 'detect', 'segment', 'pose', or 'obb'.

'detect'
*args Any

Additional positional arguments for the parent class.

()
**kwargs Any

Additional keyword arguments for the parent class.

{}
Source code in ultralytics/data/dataset.py
def __init__(self, *args, data=None, task="detect", **kwargs):
    """
    Initialize the YOLODataset.

    Args:
        data (dict, optional): Dataset configuration dictionary.
        task (str): Task type, one of 'detect', 'segment', 'pose', or 'obb'.
        *args (Any): Additional positional arguments for the parent class.
        **kwargs (Any): Additional keyword arguments for the parent class.
    """
    self.use_segments = task == "segment"
    self.use_keypoints = task == "pose"
    self.use_obb = task == "obb"
    self.data = data
    assert not (self.use_segments and self.use_keypoints), "Can not use both segments and keypoints."
    super().__init__(*args, **kwargs)

build_transforms

build_transforms(hyp=None)

Builds and appends transforms to the list.

Parameters:

Name Type Description Default
hyp dict

Hyperparameters for transforms.

None

Returns:

Type Description
Compose

Composed transforms.

Source code in ultralytics/data/dataset.py
def build_transforms(self, hyp=None):
    """
    Builds and appends transforms to the list.

    Args:
        hyp (dict, optional): Hyperparameters for transforms.

    Returns:
        (Compose): Composed transforms.
    """
    if self.augment:
        hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
        hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
        transforms = v8_transforms(self, self.imgsz, hyp)
    else:
        transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)])
    transforms.append(
        Format(
            bbox_format="xywh",
            normalize=True,
            return_mask=self.use_segments,
            return_keypoint=self.use_keypoints,
            return_obb=self.use_obb,
            batch_idx=True,
            mask_ratio=hyp.mask_ratio,
            mask_overlap=hyp.overlap_mask,
            bgr=hyp.bgr if self.augment else 0.0,  # only affect training.
        )
    )
    return transforms

cache_labels

cache_labels(path=Path('./labels.cache'))

Cache dataset labels, check images and read shapes.

Parameters:

Name Type Description Default
path Path

Path where to save the cache file.

Path('./labels.cache')

Returns:

Type Description
dict

Dictionary containing cached labels and related information.

Source code in ultralytics/data/dataset.py
def cache_labels(self, path=Path("./labels.cache")):
    """
    Cache dataset labels, check images and read shapes.

    Args:
        path (Path): Path where to save the cache file.

    Returns:
        (dict): Dictionary containing cached labels and related information.
    """
    x = {"labels": []}
    nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
    desc = f"{self.prefix}Scanning {path.parent / path.stem}..."
    total = len(self.im_files)
    nkpt, ndim = self.data.get("kpt_shape", (0, 0))
    if self.use_keypoints and (nkpt <= 0 or ndim not in {2, 3}):
        raise ValueError(
            "'kpt_shape' in data.yaml missing or incorrect. Should be a list with [number of "
            "keypoints, number of dims (2 for x,y or 3 for x,y,visible)], i.e. 'kpt_shape: [17, 3]'"
        )
    with ThreadPool(NUM_THREADS) as pool:
        results = pool.imap(
            func=verify_image_label,
            iterable=zip(
                self.im_files,
                self.label_files,
                repeat(self.prefix),
                repeat(self.use_keypoints),
                repeat(len(self.data["names"])),
                repeat(nkpt),
                repeat(ndim),
                repeat(self.single_cls),
            ),
        )
        pbar = TQDM(results, desc=desc, total=total)
        for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar:
            nm += nm_f
            nf += nf_f
            ne += ne_f
            nc += nc_f
            if im_file:
                x["labels"].append(
                    {
                        "im_file": im_file,
                        "shape": shape,
                        "cls": lb[:, 0:1],  # n, 1
                        "bboxes": lb[:, 1:],  # n, 4
                        "segments": segments,
                        "keypoints": keypoint,
                        "normalized": True,
                        "bbox_format": "xywh",
                    }
                )
            if msg:
                msgs.append(msg)
            pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt"
        pbar.close()

    if msgs:
        LOGGER.info("\n".join(msgs))
    if nf == 0:
        LOGGER.warning(f"{self.prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}")
    x["hash"] = get_hash(self.label_files + self.im_files)
    x["results"] = nf, nm, ne, nc, len(self.im_files)
    x["msgs"] = msgs  # warnings
    save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION)
    return x

close_mosaic

close_mosaic(hyp)

Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations.

Parameters:

Name Type Description Default
hyp dict

Hyperparameters for transforms.

required
Source code in ultralytics/data/dataset.py
def close_mosaic(self, hyp):
    """
    Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations.

    Args:
        hyp (dict): Hyperparameters for transforms.
    """
    hyp.mosaic = 0.0  # set mosaic ratio=0.0
    hyp.copy_paste = 0.0  # keep the same behavior as previous v8 close-mosaic
    hyp.mixup = 0.0  # keep the same behavior as previous v8 close-mosaic
    self.transforms = self.build_transforms(hyp)

collate_fn staticmethod

collate_fn(batch)

Collates data samples into batches.

Parameters:

Name Type Description Default
batch List[dict]

List of dictionaries containing sample data.

required

Returns:

Type Description
dict

Collated batch with stacked tensors.

Source code in ultralytics/data/dataset.py
@staticmethod
def collate_fn(batch):
    """
    Collates data samples into batches.

    Args:
        batch (List[dict]): List of dictionaries containing sample data.

    Returns:
        (dict): Collated batch with stacked tensors.
    """
    new_batch = {}
    batch = [dict(sorted(b.items())) for b in batch]  # make sure the keys are in the same order
    keys = batch[0].keys()
    values = list(zip(*[list(b.values()) for b in batch]))
    for i, k in enumerate(keys):
        value = values[i]
        if k == "img" or k == "text_feats":
            value = torch.stack(value, 0)
        elif k == "visuals":
            value = torch.nn.utils.rnn.pad_sequence(value, batch_first=True)
        if k in {"masks", "keypoints", "bboxes", "cls", "segments", "obb"}:
            value = torch.cat(value, 0)
        new_batch[k] = value
    new_batch["batch_idx"] = list(new_batch["batch_idx"])
    for i in range(len(new_batch["batch_idx"])):
        new_batch["batch_idx"][i] += i  # add target image index for build_targets()
    new_batch["batch_idx"] = torch.cat(new_batch["batch_idx"], 0)
    return new_batch

get_labels

get_labels()

Returns dictionary of labels for YOLO training.

This method loads labels from disk or cache, verifies their integrity, and prepares them for training.

Returns:

Type Description
List[dict]

List of label dictionaries, each containing information about an image and its annotations.

Source code in ultralytics/data/dataset.py
def get_labels(self):
    """
    Returns dictionary of labels for YOLO training.

    This method loads labels from disk or cache, verifies their integrity, and prepares them for training.

    Returns:
        (List[dict]): List of label dictionaries, each containing information about an image and its annotations.
    """
    self.label_files = img2label_paths(self.im_files)
    cache_path = Path(self.label_files[0]).parent.with_suffix(".cache")
    try:
        cache, exists = load_dataset_cache_file(cache_path), True  # attempt to load a *.cache file
        assert cache["version"] == DATASET_CACHE_VERSION  # matches current version
        assert cache["hash"] == get_hash(self.label_files + self.im_files)  # identical hash
    except (FileNotFoundError, AssertionError, AttributeError):
        cache, exists = self.cache_labels(cache_path), False  # run cache ops

    # Display cache
    nf, nm, ne, nc, n = cache.pop("results")  # found, missing, empty, corrupt, total
    if exists and LOCAL_RANK in {-1, 0}:
        d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
        TQDM(None, desc=self.prefix + d, total=n, initial=n)  # display results
        if cache["msgs"]:
            LOGGER.info("\n".join(cache["msgs"]))  # display warnings

    # Read cache
    [cache.pop(k) for k in ("hash", "version", "msgs")]  # remove items
    labels = cache["labels"]
    if not labels:
        LOGGER.warning(f"WARNING ⚠️ No images found in {cache_path}, training may not work correctly. {HELP_URL}")
    self.im_files = [lb["im_file"] for lb in labels]  # update im_files

    # Check if the dataset is all boxes or all segments
    lengths = ((len(lb["cls"]), len(lb["bboxes"]), len(lb["segments"])) for lb in labels)
    len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths))
    if len_segments and len_boxes != len_segments:
        LOGGER.warning(
            f"WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, "
            f"len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. "
            "To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset."
        )
        for lb in labels:
            lb["segments"] = []
    if len_cls == 0:
        LOGGER.warning(f"WARNING ⚠️ No labels found in {cache_path}, training may not work correctly. {HELP_URL}")
    return labels

update_labels_info

update_labels_info(label)

Custom your label format here.

Parameters:

Name Type Description Default
label dict

Label dictionary containing bboxes, segments, keypoints, etc.

required

Returns:

Type Description
dict

Updated label dictionary with instances.

Note

cls is not with bboxes now, classification and semantic segmentation need an independent cls label Can also support classification and semantic segmentation by adding or removing dict keys there.

Source code in ultralytics/data/dataset.py
def update_labels_info(self, label):
    """
    Custom your label format here.

    Args:
        label (dict): Label dictionary containing bboxes, segments, keypoints, etc.

    Returns:
        (dict): Updated label dictionary with instances.

    Note:
        cls is not with bboxes now, classification and semantic segmentation need an independent cls label
        Can also support classification and semantic segmentation by adding or removing dict keys there.
    """
    bboxes = label.pop("bboxes")
    segments = label.pop("segments", [])
    keypoints = label.pop("keypoints", None)
    bbox_format = label.pop("bbox_format")
    normalized = label.pop("normalized")

    # NOTE: do NOT resample oriented boxes
    segment_resamples = 100 if self.use_obb else 1000
    if len(segments) > 0:
        # make sure segments interpolate correctly if original length is greater than segment_resamples
        max_len = max(len(s) for s in segments)
        segment_resamples = (max_len + 1) if segment_resamples < max_len else segment_resamples
        # list[np.array(segment_resamples, 2)] * num_samples
        segments = np.stack(resample_segments(segments, n=segment_resamples), axis=0)
    else:
        segments = np.zeros((0, segment_resamples, 2), dtype=np.float32)
    label["instances"] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized)
    return label





ultralytics.data.dataset.YOLOMultiModalDataset

YOLOMultiModalDataset(*args, data=None, task='detect', **kwargs)

Bases: YOLODataset

Dataset class for loading object detection and/or segmentation labels in YOLO format with multi-modal support.

This class extends YOLODataset to add text information for multi-modal model training, enabling models to process both image and text data.

Methods:

Name Description
update_labels_info

Adds text information for multi-modal model training.

build_transforms

Enhances data transformations with text augmentation.

Examples:

>>> dataset = YOLOMultiModalDataset(img_path="path/to/images", data={"names": {0: "person"}}, task="detect")
>>> batch = next(iter(dataset))
>>> print(batch.keys())  # Should include 'texts'

Parameters:

Name Type Description Default
data dict

Dataset configuration dictionary.

None
task str

Task type, one of 'detect', 'segment', 'pose', or 'obb'.

'detect'
*args Any

Additional positional arguments for the parent class.

()
**kwargs Any

Additional keyword arguments for the parent class.

{}
Source code in ultralytics/data/dataset.py
def __init__(self, *args, data=None, task="detect", **kwargs):
    """
    Initialize a YOLOMultiModalDataset.

    Args:
        data (dict, optional): Dataset configuration dictionary.
        task (str): Task type, one of 'detect', 'segment', 'pose', or 'obb'.
        *args (Any): Additional positional arguments for the parent class.
        **kwargs (Any): Additional keyword arguments for the parent class.
    """
    super().__init__(*args, data=data, task=task, **kwargs)

category_freq property

category_freq

Return frequency of each category in the dataset.

category_names property

category_names

Return category names for the dataset.

Returns:

Type Description
Tuple[str]

List of class names.

build_transforms

build_transforms(hyp=None)

Enhances data transformations with optional text augmentation for multi-modal training.

Parameters:

Name Type Description Default
hyp dict

Hyperparameters for transforms.

None

Returns:

Type Description
Compose

Composed transforms including text augmentation if applicable.

Source code in ultralytics/data/dataset.py
def build_transforms(self, hyp=None):
    """
    Enhances data transformations with optional text augmentation for multi-modal training.

    Args:
        hyp (dict, optional): Hyperparameters for transforms.

    Returns:
        (Compose): Composed transforms including text augmentation if applicable.
    """
    transforms = super().build_transforms(hyp)
    if self.augment:
        # NOTE: hard-coded the args for now.
        # NOTE: this implementation is different from official yoloe,
        # the strategy of selecting negative is restricted in one dataset,
        # while official pre-saved neg embeddings from all datasets at once.
        transform = RandomLoadText(
            max_samples=min(self.data["nc"], 80),
            padding=True,
            padding_value=self._get_neg_texts(self.category_freq),
        )
        transforms.insert(-1, transform)
    return transforms

update_labels_info

update_labels_info(label)

Add texts information for multi-modal model training.

Parameters:

Name Type Description Default
label dict

Label dictionary containing bboxes, segments, keypoints, etc.

required

Returns:

Type Description
dict

Updated label dictionary with instances and texts.

Source code in ultralytics/data/dataset.py
def update_labels_info(self, label):
    """
    Add texts information for multi-modal model training.

    Args:
        label (dict): Label dictionary containing bboxes, segments, keypoints, etc.

    Returns:
        (dict): Updated label dictionary with instances and texts.
    """
    labels = super().update_labels_info(label)
    # NOTE: some categories are concatenated with its synonyms by `/`.
    # NOTE: and `RandomLoadText` would randomly select one of them if there are multiple words.
    labels["texts"] = [v.split("/") for _, v in self.data["names"].items()]

    return labels





ultralytics.data.dataset.GroundingDataset

GroundingDataset(*args, task='detect', json_file='', **kwargs)

Bases: YOLODataset

Handles object detection tasks by loading annotations from a specified JSON file, supporting YOLO format.

This dataset is designed for grounding tasks where annotations are provided in a JSON file rather than the standard YOLO format text files.

Attributes:

Name Type Description
json_file str

Path to the JSON file containing annotations.

Methods:

Name Description
get_img_files

Returns empty list as image files are read in get_labels.

get_labels

Loads annotations from a JSON file and prepares them for training.

build_transforms

Configures augmentations for training with optional text loading.

Examples:

>>> dataset = GroundingDataset(img_path="path/to/images", json_file="annotations.json", task="detect")
>>> len(dataset)  # Number of valid images with annotations

Parameters:

Name Type Description Default
json_file str

Path to the JSON file containing annotations.

''
task str

Must be 'detect' or 'segment' for GroundingDataset.

'detect'
*args Any

Additional positional arguments for the parent class.

()
**kwargs Any

Additional keyword arguments for the parent class.

{}
Source code in ultralytics/data/dataset.py
def __init__(self, *args, task="detect", json_file="", **kwargs):
    """
    Initialize a GroundingDataset for object detection.

    Args:
        json_file (str): Path to the JSON file containing annotations.
        task (str): Must be 'detect' or 'segment' for GroundingDataset.
        *args (Any): Additional positional arguments for the parent class.
        **kwargs (Any): Additional keyword arguments for the parent class.
    """
    assert task in {"detect", "segment"}, "GroundingDataset currently only supports `detect` and `segment` tasks"
    self.json_file = json_file
    super().__init__(*args, task=task, data={}, **kwargs)

category_freq property

category_freq

Return frequency of each category in the dataset.

category_names property

category_names

Return unique category names from the dataset.

build_transforms

build_transforms(hyp=None)

Configures augmentations for training with optional text loading.

Parameters:

Name Type Description Default
hyp dict

Hyperparameters for transforms.

None

Returns:

Type Description
Compose

Composed transforms including text augmentation if applicable.

Source code in ultralytics/data/dataset.py
def build_transforms(self, hyp=None):
    """
    Configures augmentations for training with optional text loading.

    Args:
        hyp (dict, optional): Hyperparameters for transforms.

    Returns:
        (Compose): Composed transforms including text augmentation if applicable.
    """
    transforms = super().build_transforms(hyp)
    if self.augment:
        # NOTE: hard-coded the args for now.
        # NOTE: this implementation is different from official yoloe,
        # the strategy of selecting negative is restricted in one dataset,
        # while official pre-saved neg embeddings from all datasets at once.
        transform = RandomLoadText(
            max_samples=80,
            padding=True,
            padding_value=self._get_neg_texts(self.category_freq),
        )
        transforms.insert(-1, transform)
    return transforms

cache_labels

cache_labels(path=Path('./labels.cache'))

Loads annotations from a JSON file, filters, and normalizes bounding boxes for each image.

Parameters:

Name Type Description Default
path Path

Path where to save the cache file.

Path('./labels.cache')

Returns:

Type Description
dict

Dictionary containing cached labels and related information.

Source code in ultralytics/data/dataset.py
def cache_labels(self, path=Path("./labels.cache")):
    """
    Loads annotations from a JSON file, filters, and normalizes bounding boxes for each image.

    Args:
        path (Path): Path where to save the cache file.

    Returns:
        (dict): Dictionary containing cached labels and related information.
    """
    x = {"labels": []}
    LOGGER.info("Loading annotation file...")
    with open(self.json_file) as f:
        annotations = json.load(f)
    images = {f"{x['id']:d}": x for x in annotations["images"]}
    img_to_anns = defaultdict(list)
    for ann in annotations["annotations"]:
        img_to_anns[ann["image_id"]].append(ann)
    for img_id, anns in TQDM(img_to_anns.items(), desc=f"Reading annotations {self.json_file}"):
        img = images[f"{img_id:d}"]
        h, w, f = img["height"], img["width"], img["file_name"]
        im_file = Path(self.img_path) / f
        if not im_file.exists():
            continue
        self.im_files.append(str(im_file))
        bboxes = []
        segments = []
        cat2id = {}
        texts = []
        for ann in anns:
            if ann["iscrowd"]:
                continue
            box = np.array(ann["bbox"], dtype=np.float32)
            box[:2] += box[2:] / 2
            box[[0, 2]] /= float(w)
            box[[1, 3]] /= float(h)
            if box[2] <= 0 or box[3] <= 0:
                continue

            caption = img["caption"]
            cat_name = " ".join([caption[t[0] : t[1]] for t in ann["tokens_positive"]]).lower().strip()
            if not cat_name:
                continue

            if cat_name not in cat2id:
                cat2id[cat_name] = len(cat2id)
                texts.append([cat_name])
            cls = cat2id[cat_name]  # class
            box = [cls] + box.tolist()
            if box not in bboxes:
                bboxes.append(box)
                if ann.get("segmentation") is not None:
                    if len(ann["segmentation"]) == 0:
                        segments.append(box)
                        continue
                    elif len(ann["segmentation"]) > 1:
                        s = merge_multi_segment(ann["segmentation"])
                        s = (np.concatenate(s, axis=0) / np.array([w, h], dtype=np.float32)).reshape(-1).tolist()
                    else:
                        s = [j for i in ann["segmentation"] for j in i]  # all segments concatenated
                        s = (
                            (np.array(s, dtype=np.float32).reshape(-1, 2) / np.array([w, h], dtype=np.float32))
                            .reshape(-1)
                            .tolist()
                        )
                    s = [cls] + s
                    segments.append(s)
        lb = np.array(bboxes, dtype=np.float32) if len(bboxes) else np.zeros((0, 5), dtype=np.float32)

        if segments:
            classes = np.array([x[0] for x in segments], dtype=np.float32)
            segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in segments]  # (cls, xy1...)
            lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
        lb = np.array(lb, dtype=np.float32)

        x["labels"].append(
            {
                "im_file": im_file,
                "shape": (h, w),
                "cls": lb[:, 0:1],  # n, 1
                "bboxes": lb[:, 1:],  # n, 4
                "segments": segments,
                "normalized": True,
                "bbox_format": "xywh",
                "texts": texts,
            }
        )
    x["hash"] = get_hash(self.json_file)
    save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION)
    return x

get_img_files

get_img_files(img_path)

The image files would be read in get_labels function, return empty list here.

Parameters:

Name Type Description Default
img_path str

Path to the directory containing images.

required

Returns:

Type Description
list

Empty list as image files are read in get_labels.

Source code in ultralytics/data/dataset.py
def get_img_files(self, img_path):
    """
    The image files would be read in `get_labels` function, return empty list here.

    Args:
        img_path (str): Path to the directory containing images.

    Returns:
        (list): Empty list as image files are read in get_labels.
    """
    return []

get_labels

get_labels()

Load labels from cache or generate them from JSON file.

Returns:

Type Description
List[dict]

List of label dictionaries, each containing information about an image and its annotations.

Source code in ultralytics/data/dataset.py
def get_labels(self):
    """
    Load labels from cache or generate them from JSON file.

    Returns:
        (List[dict]): List of label dictionaries, each containing information about an image and its annotations.
    """
    cache_path = Path(self.json_file).with_suffix(".cache")
    try:
        cache, _ = load_dataset_cache_file(cache_path), True  # attempt to load a *.cache file
        assert cache["version"] == DATASET_CACHE_VERSION  # matches current version
        assert cache["hash"] == get_hash(self.json_file)  # identical hash
    except (FileNotFoundError, AssertionError, AttributeError):
        cache, _ = self.cache_labels(cache_path), False  # run cache ops
    [cache.pop(k) for k in ("hash", "version")]  # remove items
    labels = cache["labels"]
    # self.verify_labels(labels)
    self.im_files = [str(label["im_file"]) for label in labels]
    if LOCAL_RANK in {-1, 0}:
        LOGGER.info(f"Load {self.json_file} from cache file {cache_path}")
    return labels

verify_labels

verify_labels(labels)

Verify the number of instances in the dataset matches expected counts.

Source code in ultralytics/data/dataset.py
def verify_labels(self, labels):
    """Verify the number of instances in the dataset matches expected counts."""
    instance_count = sum(label["bboxes"].shape[0] for label in labels)
    if "final_mixed_train_no_coco_segm" in self.json_file:
        assert instance_count == 3662344
    elif "final_mixed_train_no_coco" in self.json_file:
        assert instance_count == 3681235
    elif "final_flickr_separateGT_train_segm" in self.json_file:
        assert instance_count == 638214
    elif "final_flickr_separateGT_train" in self.json_file:
        assert instance_count == 640704
    else:
        assert False





ultralytics.data.dataset.YOLOConcatDataset

Bases: ConcatDataset

Dataset as a concatenation of multiple datasets.

This class is useful to assemble different existing datasets for YOLO training, ensuring they use the same collation function.

Methods:

Name Description
collate_fn

Static method that collates data samples into batches using YOLODataset's collation function.

Examples:

>>> dataset1 = YOLODataset(...)
>>> dataset2 = YOLODataset(...)
>>> combined_dataset = YOLOConcatDataset([dataset1, dataset2])

close_mosaic

close_mosaic(hyp)

Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations.

Parameters:

Name Type Description Default
hyp dict

Hyperparameters for transforms.

required
Source code in ultralytics/data/dataset.py
def close_mosaic(self, hyp):
    """
    Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations.

    Args:
        hyp (dict): Hyperparameters for transforms.
    """
    for dataset in self.datasets:
        if not hasattr(dataset, "close_mosaic"):
            continue
        dataset.close_mosaic(hyp)

collate_fn staticmethod

collate_fn(batch)

Collates data samples into batches.

Parameters:

Name Type Description Default
batch List[dict]

List of dictionaries containing sample data.

required

Returns:

Type Description
dict

Collated batch with stacked tensors.

Source code in ultralytics/data/dataset.py
@staticmethod
def collate_fn(batch):
    """
    Collates data samples into batches.

    Args:
        batch (List[dict]): List of dictionaries containing sample data.

    Returns:
        (dict): Collated batch with stacked tensors.
    """
    return YOLODataset.collate_fn(batch)





ultralytics.data.dataset.SemanticDataset

SemanticDataset()

Bases: BaseDataset

Semantic Segmentation Dataset.

Source code in ultralytics/data/dataset.py
def __init__(self):
    """Initialize a SemanticDataset object."""
    super().__init__()





ultralytics.data.dataset.ClassificationDataset

ClassificationDataset(root, args, augment=False, prefix='')

Extends torchvision ImageFolder to support YOLO classification tasks.

This class offers functionalities like image augmentation, caching, and verification. It's designed to efficiently handle large datasets for training deep learning models, with optional image transformations and caching mechanisms to speed up training.

Attributes:

Name Type Description
cache_ram bool

Indicates if caching in RAM is enabled.

cache_disk bool

Indicates if caching on disk is enabled.

samples list

A list of tuples, each containing the path to an image, its class index, path to its .npy cache file (if caching on disk), and optionally the loaded image array (if caching in RAM).

torch_transforms callable

PyTorch transforms to be applied to the images.

root str

Root directory of the dataset.

prefix str

Prefix for logging and cache filenames.

Methods:

Name Description
__getitem__

Returns subset of data and targets corresponding to given indices.

__len__

Returns the total number of samples in the dataset.

verify_images

Verifies all images in dataset.

Parameters:

Name Type Description Default
root str

Path to the dataset directory where images are stored in a class-specific folder structure.

required
args Namespace

Configuration containing dataset-related settings such as image size, augmentation parameters, and cache settings.

required
augment bool

Whether to apply augmentations to the dataset.

False
prefix str

Prefix for logging and cache filenames, aiding in dataset identification.

''
Source code in ultralytics/data/dataset.py
def __init__(self, root, args, augment=False, prefix=""):
    """
    Initialize YOLO object with root, image size, augmentations, and cache settings.

    Args:
        root (str): Path to the dataset directory where images are stored in a class-specific folder structure.
        args (Namespace): Configuration containing dataset-related settings such as image size, augmentation
            parameters, and cache settings.
        augment (bool, optional): Whether to apply augmentations to the dataset.
        prefix (str, optional): Prefix for logging and cache filenames, aiding in dataset identification.
    """
    import torchvision  # scope for faster 'import ultralytics'

    # Base class assigned as attribute rather than used as base class to allow for scoping slow torchvision import
    if TORCHVISION_0_18:  # 'allow_empty' argument first introduced in torchvision 0.18
        self.base = torchvision.datasets.ImageFolder(root=root, allow_empty=True)
    else:
        self.base = torchvision.datasets.ImageFolder(root=root)
    self.samples = self.base.samples
    self.root = self.base.root

    # Initialize attributes
    if augment and args.fraction < 1.0:  # reduce training fraction
        self.samples = self.samples[: round(len(self.samples) * args.fraction)]
    self.prefix = colorstr(f"{prefix}: ") if prefix else ""
    self.cache_ram = args.cache is True or str(args.cache).lower() == "ram"  # cache images into RAM
    if self.cache_ram:
        LOGGER.warning(
            "WARNING ⚠️ Classification `cache_ram` training has known memory leak in "
            "https://github.com/ultralytics/ultralytics/issues/9824, setting `cache_ram=False`."
        )
        self.cache_ram = False
    self.cache_disk = str(args.cache).lower() == "disk"  # cache images on hard drive as uncompressed *.npy files
    self.samples = self.verify_images()  # filter out bad images
    self.samples = [list(x) + [Path(x[0]).with_suffix(".npy"), None] for x in self.samples]  # file, index, npy, im
    scale = (1.0 - args.scale, 1.0)  # (0.08, 1.0)
    self.torch_transforms = (
        classify_augmentations(
            size=args.imgsz,
            scale=scale,
            hflip=args.fliplr,
            vflip=args.flipud,
            erasing=args.erasing,
            auto_augment=args.auto_augment,
            hsv_h=args.hsv_h,
            hsv_s=args.hsv_s,
            hsv_v=args.hsv_v,
        )
        if augment
        else classify_transforms(size=args.imgsz, crop_fraction=args.crop_fraction)
    )

__getitem__

__getitem__(i)

Returns subset of data and targets corresponding to given indices.

Parameters:

Name Type Description Default
i int

Index of the sample to retrieve.

required

Returns:

Type Description
dict

Dictionary containing the image and its class index.

Source code in ultralytics/data/dataset.py
def __getitem__(self, i):
    """
    Returns subset of data and targets corresponding to given indices.

    Args:
        i (int): Index of the sample to retrieve.

    Returns:
        (dict): Dictionary containing the image and its class index.
    """
    f, j, fn, im = self.samples[i]  # filename, index, filename.with_suffix('.npy'), image
    if self.cache_ram:
        if im is None:  # Warning: two separate if statements required here, do not combine this with previous line
            im = self.samples[i][3] = cv2.imread(f)
    elif self.cache_disk:
        if not fn.exists():  # load npy
            np.save(fn.as_posix(), cv2.imread(f), allow_pickle=False)
        im = np.load(fn)
    else:  # read image
        im = cv2.imread(f)  # BGR
    # Convert NumPy array to PIL image
    im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))
    sample = self.torch_transforms(im)
    return {"img": sample, "cls": j}

__len__

__len__() -> int

Return the total number of samples in the dataset.

Source code in ultralytics/data/dataset.py
def __len__(self) -> int:
    """Return the total number of samples in the dataset."""
    return len(self.samples)

verify_images

verify_images()

Verify all images in dataset.

Returns:

Type Description
list

List of valid samples after verification.

Source code in ultralytics/data/dataset.py
def verify_images(self):
    """
    Verify all images in dataset.

    Returns:
        (list): List of valid samples after verification.
    """
    desc = f"{self.prefix}Scanning {self.root}..."
    path = Path(self.root).with_suffix(".cache")  # *.cache file path

    try:
        cache = load_dataset_cache_file(path)  # attempt to load a *.cache file
        assert cache["version"] == DATASET_CACHE_VERSION  # matches current version
        assert cache["hash"] == get_hash([x[0] for x in self.samples])  # identical hash
        nf, nc, n, samples = cache.pop("results")  # found, missing, empty, corrupt, total
        if LOCAL_RANK in {-1, 0}:
            d = f"{desc} {nf} images, {nc} corrupt"
            TQDM(None, desc=d, total=n, initial=n)
            if cache["msgs"]:
                LOGGER.info("\n".join(cache["msgs"]))  # display warnings
        return samples

    except (FileNotFoundError, AssertionError, AttributeError):
        # Run scan if *.cache retrieval failed
        nf, nc, msgs, samples, x = 0, 0, [], [], {}
        with ThreadPool(NUM_THREADS) as pool:
            results = pool.imap(func=verify_image, iterable=zip(self.samples, repeat(self.prefix)))
            pbar = TQDM(results, desc=desc, total=len(self.samples))
            for sample, nf_f, nc_f, msg in pbar:
                if nf_f:
                    samples.append(sample)
                if msg:
                    msgs.append(msg)
                nf += nf_f
                nc += nc_f
                pbar.desc = f"{desc} {nf} images, {nc} corrupt"
            pbar.close()
        if msgs:
            LOGGER.info("\n".join(msgs))
        x["hash"] = get_hash([x[0] for x in self.samples])
        x["results"] = nf, nc, len(samples), samples
        x["msgs"] = msgs  # warnings
        save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION)
        return samples



📅 Created 1 year ago ✏️ Updated 6 months ago