Skip to content

Reference for ultralytics/data/dataset.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/dataset.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.data.dataset.YOLODataset

YOLODataset(*args, data=None, task='detect', **kwargs)

Bases: BaseDataset

Dataset class for loading object detection and/or segmentation labels in YOLO format.

Parameters:

NameTypeDescriptionDefault
datadict

A dataset YAML dictionary. Defaults to None.

None
taskstr

An explicit arg to point current task, Defaults to 'detect'.

'detect'

Returns:

TypeDescription
Dataset

A PyTorch dataset object that can be used for training an object detection model.

Source code in ultralytics/data/dataset.py
def __init__(self, *args, data=None, task="detect", **kwargs):
    """Initializes the YOLODataset with optional configurations for segments and keypoints."""
    self.use_segments = task == "segment"
    self.use_keypoints = task == "pose"
    self.use_obb = task == "obb"
    self.data = data
    assert not (self.use_segments and self.use_keypoints), "Can not use both segments and keypoints."
    super().__init__(*args, **kwargs)

build_transforms

build_transforms(hyp=None)

Builds and appends transforms to the list.

Source code in ultralytics/data/dataset.py
def build_transforms(self, hyp=None):
    """Builds and appends transforms to the list."""
    if self.augment:
        hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
        hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
        transforms = v8_transforms(self, self.imgsz, hyp)
    else:
        transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)])
    transforms.append(
        Format(
            bbox_format="xywh",
            normalize=True,
            return_mask=self.use_segments,
            return_keypoint=self.use_keypoints,
            return_obb=self.use_obb,
            batch_idx=True,
            mask_ratio=hyp.mask_ratio,
            mask_overlap=hyp.overlap_mask,
            bgr=hyp.bgr if self.augment else 0.0,  # only affect training.
        )
    )
    return transforms

cache_labels

cache_labels(path=Path('./labels.cache'))

Cache dataset labels, check images and read shapes.

Parameters:

NameTypeDescriptionDefault
pathPath

Path where to save the cache file. Default is Path('./labels.cache').

Path('./labels.cache')

Returns:

TypeDescription
dict

labels.

Source code in ultralytics/data/dataset.py
def cache_labels(self, path=Path("./labels.cache")):
    """
    Cache dataset labels, check images and read shapes.

    Args:
        path (Path): Path where to save the cache file. Default is Path('./labels.cache').

    Returns:
        (dict): labels.
    """
    x = {"labels": []}
    nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
    desc = f"{self.prefix}Scanning {path.parent / path.stem}..."
    total = len(self.im_files)
    nkpt, ndim = self.data.get("kpt_shape", (0, 0))
    if self.use_keypoints and (nkpt <= 0 or ndim not in {2, 3}):
        raise ValueError(
            "'kpt_shape' in data.yaml missing or incorrect. Should be a list with [number of "
            "keypoints, number of dims (2 for x,y or 3 for x,y,visible)], i.e. 'kpt_shape: [17, 3]'"
        )
    with ThreadPool(NUM_THREADS) as pool:
        results = pool.imap(
            func=verify_image_label,
            iterable=zip(
                self.im_files,
                self.label_files,
                repeat(self.prefix),
                repeat(self.use_keypoints),
                repeat(len(self.data["names"])),
                repeat(nkpt),
                repeat(ndim),
            ),
        )
        pbar = TQDM(results, desc=desc, total=total)
        for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar:
            nm += nm_f
            nf += nf_f
            ne += ne_f
            nc += nc_f
            if im_file:
                x["labels"].append(
                    {
                        "im_file": im_file,
                        "shape": shape,
                        "cls": lb[:, 0:1],  # n, 1
                        "bboxes": lb[:, 1:],  # n, 4
                        "segments": segments,
                        "keypoints": keypoint,
                        "normalized": True,
                        "bbox_format": "xywh",
                    }
                )
            if msg:
                msgs.append(msg)
            pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt"
        pbar.close()

    if msgs:
        LOGGER.info("\n".join(msgs))
    if nf == 0:
        LOGGER.warning(f"{self.prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}")
    x["hash"] = get_hash(self.label_files + self.im_files)
    x["results"] = nf, nm, ne, nc, len(self.im_files)
    x["msgs"] = msgs  # warnings
    save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION)
    return x

close_mosaic

close_mosaic(hyp)

Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations.

Source code in ultralytics/data/dataset.py
def close_mosaic(self, hyp):
    """Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations."""
    hyp.mosaic = 0.0  # set mosaic ratio=0.0
    hyp.copy_paste = 0.0  # keep the same behavior as previous v8 close-mosaic
    hyp.mixup = 0.0  # keep the same behavior as previous v8 close-mosaic
    self.transforms = self.build_transforms(hyp)

collate_fn staticmethod

collate_fn(batch)

Collates data samples into batches.

Source code in ultralytics/data/dataset.py
@staticmethod
def collate_fn(batch):
    """Collates data samples into batches."""
    new_batch = {}
    keys = batch[0].keys()
    values = list(zip(*[list(b.values()) for b in batch]))
    for i, k in enumerate(keys):
        value = values[i]
        if k == "img":
            value = torch.stack(value, 0)
        if k in {"masks", "keypoints", "bboxes", "cls", "segments", "obb"}:
            value = torch.cat(value, 0)
        new_batch[k] = value
    new_batch["batch_idx"] = list(new_batch["batch_idx"])
    for i in range(len(new_batch["batch_idx"])):
        new_batch["batch_idx"][i] += i  # add target image index for build_targets()
    new_batch["batch_idx"] = torch.cat(new_batch["batch_idx"], 0)
    return new_batch

get_labels

get_labels()

Returns dictionary of labels for YOLO training.

Source code in ultralytics/data/dataset.py
def get_labels(self):
    """Returns dictionary of labels for YOLO training."""
    self.label_files = img2label_paths(self.im_files)
    cache_path = Path(self.label_files[0]).parent.with_suffix(".cache")
    try:
        cache, exists = load_dataset_cache_file(cache_path), True  # attempt to load a *.cache file
        assert cache["version"] == DATASET_CACHE_VERSION  # matches current version
        assert cache["hash"] == get_hash(self.label_files + self.im_files)  # identical hash
    except (FileNotFoundError, AssertionError, AttributeError):
        cache, exists = self.cache_labels(cache_path), False  # run cache ops

    # Display cache
    nf, nm, ne, nc, n = cache.pop("results")  # found, missing, empty, corrupt, total
    if exists and LOCAL_RANK in {-1, 0}:
        d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
        TQDM(None, desc=self.prefix + d, total=n, initial=n)  # display results
        if cache["msgs"]:
            LOGGER.info("\n".join(cache["msgs"]))  # display warnings

    # Read cache
    [cache.pop(k) for k in ("hash", "version", "msgs")]  # remove items
    labels = cache["labels"]
    if not labels:
        LOGGER.warning(f"WARNING ⚠️ No images found in {cache_path}, training may not work correctly. {HELP_URL}")
    self.im_files = [lb["im_file"] for lb in labels]  # update im_files

    # Check if the dataset is all boxes or all segments
    lengths = ((len(lb["cls"]), len(lb["bboxes"]), len(lb["segments"])) for lb in labels)
    len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths))
    if len_segments and len_boxes != len_segments:
        LOGGER.warning(
            f"WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, "
            f"len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. "
            "To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset."
        )
        for lb in labels:
            lb["segments"] = []
    if len_cls == 0:
        LOGGER.warning(f"WARNING ⚠️ No labels found in {cache_path}, training may not work correctly. {HELP_URL}")
    return labels

update_labels_info

update_labels_info(label)

Custom your label format here.

Note

cls is not with bboxes now, classification and semantic segmentation need an independent cls label Can also support classification and semantic segmentation by adding or removing dict keys there.

Source code in ultralytics/data/dataset.py
def update_labels_info(self, label):
    """
    Custom your label format here.

    Note:
        cls is not with bboxes now, classification and semantic segmentation need an independent cls label
        Can also support classification and semantic segmentation by adding or removing dict keys there.
    """
    bboxes = label.pop("bboxes")
    segments = label.pop("segments", [])
    keypoints = label.pop("keypoints", None)
    bbox_format = label.pop("bbox_format")
    normalized = label.pop("normalized")

    # NOTE: do NOT resample oriented boxes
    segment_resamples = 100 if self.use_obb else 1000
    if len(segments) > 0:
        # list[np.array(1000, 2)] * num_samples
        # (N, 1000, 2)
        segments = np.stack(resample_segments(segments, n=segment_resamples), axis=0)
    else:
        segments = np.zeros((0, segment_resamples, 2), dtype=np.float32)
    label["instances"] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized)
    return label





ultralytics.data.dataset.YOLOMultiModalDataset

YOLOMultiModalDataset(*args, data=None, task='detect', **kwargs)

Bases: YOLODataset

Dataset class for loading object detection and/or segmentation labels in YOLO format.

Parameters:

NameTypeDescriptionDefault
datadict

A dataset YAML dictionary. Defaults to None.

None
taskstr

An explicit arg to point current task, Defaults to 'detect'.

'detect'

Returns:

TypeDescription
Dataset

A PyTorch dataset object that can be used for training an object detection model.

Source code in ultralytics/data/dataset.py
def __init__(self, *args, data=None, task="detect", **kwargs):
    """Initializes a dataset object for object detection tasks with optional specifications."""
    super().__init__(*args, data=data, task=task, **kwargs)

build_transforms

build_transforms(hyp=None)

Enhances data transformations with optional text augmentation for multi-modal training.

Source code in ultralytics/data/dataset.py
def build_transforms(self, hyp=None):
    """Enhances data transformations with optional text augmentation for multi-modal training."""
    transforms = super().build_transforms(hyp)
    if self.augment:
        # NOTE: hard-coded the args for now.
        transforms.insert(-1, RandomLoadText(max_samples=min(self.data["nc"], 80), padding=True))
    return transforms

update_labels_info

update_labels_info(label)

Add texts information for multi-modal model training.

Source code in ultralytics/data/dataset.py
def update_labels_info(self, label):
    """Add texts information for multi-modal model training."""
    labels = super().update_labels_info(label)
    # NOTE: some categories are concatenated with its synonyms by `/`.
    labels["texts"] = [v.split("/") for _, v in self.data["names"].items()]
    return labels





ultralytics.data.dataset.GroundingDataset

GroundingDataset(*args, task='detect', json_file, **kwargs)

Bases: YOLODataset

Handles object detection tasks by loading annotations from a specified JSON file, supporting YOLO format.

Source code in ultralytics/data/dataset.py
def __init__(self, *args, task="detect", json_file, **kwargs):
    """Initializes a GroundingDataset for object detection, loading annotations from a specified JSON file."""
    assert task == "detect", "`GroundingDataset` only support `detect` task for now!"
    self.json_file = json_file
    super().__init__(*args, task=task, data={}, **kwargs)

build_transforms

build_transforms(hyp=None)

Configures augmentations for training with optional text loading; hyp adjusts augmentation intensity.

Source code in ultralytics/data/dataset.py
def build_transforms(self, hyp=None):
    """Configures augmentations for training with optional text loading; `hyp` adjusts augmentation intensity."""
    transforms = super().build_transforms(hyp)
    if self.augment:
        # NOTE: hard-coded the args for now.
        transforms.insert(-1, RandomLoadText(max_samples=80, padding=True))
    return transforms

get_img_files

get_img_files(img_path)

The image files would be read in get_labels function, return empty list here.

Source code in ultralytics/data/dataset.py
def get_img_files(self, img_path):
    """The image files would be read in `get_labels` function, return empty list here."""
    return []

get_labels

get_labels()

Loads annotations from a JSON file, filters, and normalizes bounding boxes for each image.

Source code in ultralytics/data/dataset.py
def get_labels(self):
    """Loads annotations from a JSON file, filters, and normalizes bounding boxes for each image."""
    labels = []
    LOGGER.info("Loading annotation file...")
    with open(self.json_file) as f:
        annotations = json.load(f)
    images = {f'{x["id"]:d}': x for x in annotations["images"]}
    img_to_anns = defaultdict(list)
    for ann in annotations["annotations"]:
        img_to_anns[ann["image_id"]].append(ann)
    for img_id, anns in TQDM(img_to_anns.items(), desc=f"Reading annotations {self.json_file}"):
        img = images[f"{img_id:d}"]
        h, w, f = img["height"], img["width"], img["file_name"]
        im_file = Path(self.img_path) / f
        if not im_file.exists():
            continue
        self.im_files.append(str(im_file))
        bboxes = []
        cat2id = {}
        texts = []
        for ann in anns:
            if ann["iscrowd"]:
                continue
            box = np.array(ann["bbox"], dtype=np.float32)
            box[:2] += box[2:] / 2
            box[[0, 2]] /= float(w)
            box[[1, 3]] /= float(h)
            if box[2] <= 0 or box[3] <= 0:
                continue

            cat_name = " ".join([img["caption"][t[0] : t[1]] for t in ann["tokens_positive"]])
            if cat_name not in cat2id:
                cat2id[cat_name] = len(cat2id)
                texts.append([cat_name])
            cls = cat2id[cat_name]  # class
            box = [cls] + box.tolist()
            if box not in bboxes:
                bboxes.append(box)
        lb = np.array(bboxes, dtype=np.float32) if len(bboxes) else np.zeros((0, 5), dtype=np.float32)
        labels.append(
            {
                "im_file": im_file,
                "shape": (h, w),
                "cls": lb[:, 0:1],  # n, 1
                "bboxes": lb[:, 1:],  # n, 4
                "normalized": True,
                "bbox_format": "xywh",
                "texts": texts,
            }
        )
    return labels





ultralytics.data.dataset.YOLOConcatDataset

Bases: ConcatDataset

Dataset as a concatenation of multiple datasets.

This class is useful to assemble different existing datasets.

collate_fn staticmethod

collate_fn(batch)

Collates data samples into batches.

Source code in ultralytics/data/dataset.py
@staticmethod
def collate_fn(batch):
    """Collates data samples into batches."""
    return YOLODataset.collate_fn(batch)





ultralytics.data.dataset.SemanticDataset

SemanticDataset()

Bases: BaseDataset

Semantic Segmentation Dataset.

This class is responsible for handling datasets used for semantic segmentation tasks. It inherits functionalities from the BaseDataset class.

Note

This class is currently a placeholder and needs to be populated with methods and attributes for supporting semantic segmentation tasks.

Source code in ultralytics/data/dataset.py
def __init__(self):
    """Initialize a SemanticDataset object."""
    super().__init__()





ultralytics.data.dataset.ClassificationDataset

ClassificationDataset(root, args, augment=False, prefix='')

Extends torchvision ImageFolder to support YOLO classification tasks, offering functionalities like image augmentation, caching, and verification. It's designed to efficiently handle large datasets for training deep learning models, with optional image transformations and caching mechanisms to speed up training.

This class allows for augmentations using both torchvision and Albumentations libraries, and supports caching images in RAM or on disk to reduce IO overhead during training. Additionally, it implements a robust verification process to ensure data integrity and consistency.

Attributes:

NameTypeDescription
cache_rambool

Indicates if caching in RAM is enabled.

cache_diskbool

Indicates if caching on disk is enabled.

sampleslist

A list of tuples, each containing the path to an image, its class index, path to its .npy cache file (if caching on disk), and optionally the loaded image array (if caching in RAM).

torch_transformscallable

PyTorch transforms to be applied to the images.

Parameters:

NameTypeDescriptionDefault
rootstr

Path to the dataset directory where images are stored in a class-specific folder structure.

required
argsNamespace

Configuration containing dataset-related settings such as image size, augmentation parameters, and cache settings. It includes attributes like imgsz (image size), fraction (fraction of data to use), scale, fliplr, flipud, cache (disk or RAM caching for faster training), auto_augment, hsv_h, hsv_s, hsv_v, and crop_fraction.

required
augmentbool

Whether to apply augmentations to the dataset. Default is False.

False
prefixstr

Prefix for logging and cache filenames, aiding in dataset identification and debugging. Default is an empty string.

''
Source code in ultralytics/data/dataset.py
def __init__(self, root, args, augment=False, prefix=""):
    """
    Initialize YOLO object with root, image size, augmentations, and cache settings.

    Args:
        root (str): Path to the dataset directory where images are stored in a class-specific folder structure.
        args (Namespace): Configuration containing dataset-related settings such as image size, augmentation
            parameters, and cache settings. It includes attributes like `imgsz` (image size), `fraction` (fraction
            of data to use), `scale`, `fliplr`, `flipud`, `cache` (disk or RAM caching for faster training),
            `auto_augment`, `hsv_h`, `hsv_s`, `hsv_v`, and `crop_fraction`.
        augment (bool, optional): Whether to apply augmentations to the dataset. Default is False.
        prefix (str, optional): Prefix for logging and cache filenames, aiding in dataset identification and
            debugging. Default is an empty string.
    """
    import torchvision  # scope for faster 'import ultralytics'

    # Base class assigned as attribute rather than used as base class to allow for scoping slow torchvision import
    if TORCHVISION_0_18:  # 'allow_empty' argument first introduced in torchvision 0.18
        self.base = torchvision.datasets.ImageFolder(root=root, allow_empty=True)
    else:
        self.base = torchvision.datasets.ImageFolder(root=root)
    self.samples = self.base.samples
    self.root = self.base.root

    # Initialize attributes
    if augment and args.fraction < 1.0:  # reduce training fraction
        self.samples = self.samples[: round(len(self.samples) * args.fraction)]
    self.prefix = colorstr(f"{prefix}: ") if prefix else ""
    self.cache_ram = args.cache is True or str(args.cache).lower() == "ram"  # cache images into RAM
    if self.cache_ram:
        LOGGER.warning(
            "WARNING ⚠️ Classification `cache_ram` training has known memory leak in "
            "https://github.com/ultralytics/ultralytics/issues/9824, setting `cache_ram=False`."
        )
        self.cache_ram = False
    self.cache_disk = str(args.cache).lower() == "disk"  # cache images on hard drive as uncompressed *.npy files
    self.samples = self.verify_images()  # filter out bad images
    self.samples = [list(x) + [Path(x[0]).with_suffix(".npy"), None] for x in self.samples]  # file, index, npy, im
    scale = (1.0 - args.scale, 1.0)  # (0.08, 1.0)
    self.torch_transforms = (
        classify_augmentations(
            size=args.imgsz,
            scale=scale,
            hflip=args.fliplr,
            vflip=args.flipud,
            erasing=args.erasing,
            auto_augment=args.auto_augment,
            hsv_h=args.hsv_h,
            hsv_s=args.hsv_s,
            hsv_v=args.hsv_v,
        )
        if augment
        else classify_transforms(size=args.imgsz, crop_fraction=args.crop_fraction)
    )

__getitem__

__getitem__(i)

Returns subset of data and targets corresponding to given indices.

Source code in ultralytics/data/dataset.py
def __getitem__(self, i):
    """Returns subset of data and targets corresponding to given indices."""
    f, j, fn, im = self.samples[i]  # filename, index, filename.with_suffix('.npy'), image
    if self.cache_ram:
        if im is None:  # Warning: two separate if statements required here, do not combine this with previous line
            im = self.samples[i][3] = cv2.imread(f)
    elif self.cache_disk:
        if not fn.exists():  # load npy
            np.save(fn.as_posix(), cv2.imread(f), allow_pickle=False)
        im = np.load(fn)
    else:  # read image
        im = cv2.imread(f)  # BGR
    # Convert NumPy array to PIL image
    im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))
    sample = self.torch_transforms(im)
    return {"img": sample, "cls": j}

__len__

__len__() -> int

Return the total number of samples in the dataset.

Source code in ultralytics/data/dataset.py
def __len__(self) -> int:
    """Return the total number of samples in the dataset."""
    return len(self.samples)

verify_images

verify_images()

Verify all images in dataset.

Source code in ultralytics/data/dataset.py
def verify_images(self):
    """Verify all images in dataset."""
    desc = f"{self.prefix}Scanning {self.root}..."
    path = Path(self.root).with_suffix(".cache")  # *.cache file path

    try:
        cache = load_dataset_cache_file(path)  # attempt to load a *.cache file
        assert cache["version"] == DATASET_CACHE_VERSION  # matches current version
        assert cache["hash"] == get_hash([x[0] for x in self.samples])  # identical hash
        nf, nc, n, samples = cache.pop("results")  # found, missing, empty, corrupt, total
        if LOCAL_RANK in {-1, 0}:
            d = f"{desc} {nf} images, {nc} corrupt"
            TQDM(None, desc=d, total=n, initial=n)
            if cache["msgs"]:
                LOGGER.info("\n".join(cache["msgs"]))  # display warnings
        return samples

    except (FileNotFoundError, AssertionError, AttributeError):
        # Run scan if *.cache retrieval failed
        nf, nc, msgs, samples, x = 0, 0, [], [], {}
        with ThreadPool(NUM_THREADS) as pool:
            results = pool.imap(func=verify_image, iterable=zip(self.samples, repeat(self.prefix)))
            pbar = TQDM(results, desc=desc, total=len(self.samples))
            for sample, nf_f, nc_f, msg in pbar:
                if nf_f:
                    samples.append(sample)
                if msg:
                    msgs.append(msg)
                nf += nf_f
                nc += nc_f
                pbar.desc = f"{desc} {nf} images, {nc} corrupt"
            pbar.close()
        if msgs:
            LOGGER.info("\n".join(msgs))
        x["hash"] = get_hash([x[0] for x in self.samples])
        x["results"] = nf, nc, len(samples), samples
        x["msgs"] = msgs  # warnings
        save_dataset_cache_file(self.prefix, path, x, DATASET_CACHE_VERSION)
        return samples



📅 Created 1 year ago ✏️ Updated 2 months ago