Skip to content

Reference for ultralytics/utils/callbacks/comet.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/comet.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.utils.callbacks.comet._get_comet_mode

_get_comet_mode()

Returns the mode of comet set in the environment variables, defaults to 'online' if not set.

Source code in ultralytics/utils/callbacks/comet.py
def _get_comet_mode():
    """Returns the mode of comet set in the environment variables, defaults to 'online' if not set."""
    return os.getenv("COMET_MODE", "online")





ultralytics.utils.callbacks.comet._get_comet_model_name

_get_comet_model_name()

Returns the model name for Comet from the environment variable COMET_MODEL_NAME or defaults to 'Ultralytics'.

Source code in ultralytics/utils/callbacks/comet.py
def _get_comet_model_name():
    """Returns the model name for Comet from the environment variable COMET_MODEL_NAME or defaults to 'Ultralytics'."""
    return os.getenv("COMET_MODEL_NAME", "Ultralytics")





ultralytics.utils.callbacks.comet._get_eval_batch_logging_interval

_get_eval_batch_logging_interval()

Get the evaluation batch logging interval from environment variable or use default value 1.

Source code in ultralytics/utils/callbacks/comet.py
def _get_eval_batch_logging_interval():
    """Get the evaluation batch logging interval from environment variable or use default value 1."""
    return int(os.getenv("COMET_EVAL_BATCH_LOGGING_INTERVAL", 1))





ultralytics.utils.callbacks.comet._get_max_image_predictions_to_log

_get_max_image_predictions_to_log()

Get the maximum number of image predictions to log from the environment variables.

Source code in ultralytics/utils/callbacks/comet.py
def _get_max_image_predictions_to_log():
    """Get the maximum number of image predictions to log from the environment variables."""
    return int(os.getenv("COMET_MAX_IMAGE_PREDICTIONS", 100))





ultralytics.utils.callbacks.comet._scale_confidence_score

_scale_confidence_score(score)

Scales the given confidence score by a factor specified in an environment variable.

Source code in ultralytics/utils/callbacks/comet.py
def _scale_confidence_score(score):
    """Scales the given confidence score by a factor specified in an environment variable."""
    scale = float(os.getenv("COMET_MAX_CONFIDENCE_SCORE", 100.0))
    return score * scale





ultralytics.utils.callbacks.comet._should_log_confusion_matrix

_should_log_confusion_matrix()

Determines if the confusion matrix should be logged based on the environment variable settings.

Source code in ultralytics/utils/callbacks/comet.py
def _should_log_confusion_matrix():
    """Determines if the confusion matrix should be logged based on the environment variable settings."""
    return os.getenv("COMET_EVAL_LOG_CONFUSION_MATRIX", "false").lower() == "true"





ultralytics.utils.callbacks.comet._should_log_image_predictions

_should_log_image_predictions()

Determines whether to log image predictions based on a specified environment variable.

Source code in ultralytics/utils/callbacks/comet.py
def _should_log_image_predictions():
    """Determines whether to log image predictions based on a specified environment variable."""
    return os.getenv("COMET_EVAL_LOG_IMAGE_PREDICTIONS", "true").lower() == "true"





ultralytics.utils.callbacks.comet._get_experiment_type

_get_experiment_type(mode, project_name)

Return an experiment based on mode and project name.

Source code in ultralytics/utils/callbacks/comet.py
def _get_experiment_type(mode, project_name):
    """Return an experiment based on mode and project name."""
    if mode == "offline":
        return comet_ml.OfflineExperiment(project_name=project_name)

    return comet_ml.Experiment(project_name=project_name)





ultralytics.utils.callbacks.comet._create_experiment

_create_experiment(args)

Ensures that the experiment object is only created in a single process during distributed training.

Source code in ultralytics/utils/callbacks/comet.py
def _create_experiment(args):
    """Ensures that the experiment object is only created in a single process during distributed training."""
    if RANK not in {-1, 0}:
        return
    try:
        comet_mode = _get_comet_mode()
        _project_name = os.getenv("COMET_PROJECT_NAME", args.project)
        experiment = _get_experiment_type(comet_mode, _project_name)
        experiment.log_parameters(vars(args))
        experiment.log_others(
            {
                "eval_batch_logging_interval": _get_eval_batch_logging_interval(),
                "log_confusion_matrix_on_eval": _should_log_confusion_matrix(),
                "log_image_predictions": _should_log_image_predictions(),
                "max_image_predictions": _get_max_image_predictions_to_log(),
            }
        )
        experiment.log_other("Created from", "ultralytics")

    except Exception as e:
        LOGGER.warning(f"WARNING ⚠️ Comet installed but not initialized correctly, not logging this run. {e}")





ultralytics.utils.callbacks.comet._fetch_trainer_metadata

_fetch_trainer_metadata(trainer)

Returns metadata for YOLO training including epoch and asset saving status.

Source code in ultralytics/utils/callbacks/comet.py
def _fetch_trainer_metadata(trainer):
    """Returns metadata for YOLO training including epoch and asset saving status."""
    curr_epoch = trainer.epoch + 1

    train_num_steps_per_epoch = len(trainer.train_loader.dataset) // trainer.batch_size
    curr_step = curr_epoch * train_num_steps_per_epoch
    final_epoch = curr_epoch == trainer.epochs

    save = trainer.args.save
    save_period = trainer.args.save_period
    save_interval = curr_epoch % save_period == 0
    save_assets = save and save_period > 0 and save_interval and not final_epoch

    return dict(curr_epoch=curr_epoch, curr_step=curr_step, save_assets=save_assets, final_epoch=final_epoch)





ultralytics.utils.callbacks.comet._scale_bounding_box_to_original_image_shape

_scale_bounding_box_to_original_image_shape(
    box, resized_image_shape, original_image_shape, ratio_pad
)

YOLO resizes images during training and the label values are normalized based on this resized shape.

This function rescales the bounding box labels to the original image shape.

Source code in ultralytics/utils/callbacks/comet.py
def _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad):
    """
    YOLO resizes images during training and the label values are normalized based on this resized shape.

    This function rescales the bounding box labels to the original image shape.
    """
    resized_image_height, resized_image_width = resized_image_shape

    # Convert normalized xywh format predictions to xyxy in resized scale format
    box = ops.xywhn2xyxy(box, h=resized_image_height, w=resized_image_width)
    # Scale box predictions from resized image scale back to original image scale
    box = ops.scale_boxes(resized_image_shape, box, original_image_shape, ratio_pad)
    # Convert bounding box format from xyxy to xywh for Comet logging
    box = ops.xyxy2xywh(box)
    # Adjust xy center to correspond top-left corner
    box[:2] -= box[2:] / 2
    box = box.tolist()

    return box





ultralytics.utils.callbacks.comet._format_ground_truth_annotations_for_detection

_format_ground_truth_annotations_for_detection(
    img_idx, image_path, batch, class_name_map=None
)

Format ground truth annotations for detection.

Source code in ultralytics/utils/callbacks/comet.py
def _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, class_name_map=None):
    """Format ground truth annotations for detection."""
    indices = batch["batch_idx"] == img_idx
    bboxes = batch["bboxes"][indices]
    if len(bboxes) == 0:
        LOGGER.debug(f"COMET WARNING: Image: {image_path} has no bounding boxes labels")
        return None

    cls_labels = batch["cls"][indices].squeeze(1).tolist()
    if class_name_map:
        cls_labels = [str(class_name_map[label]) for label in cls_labels]

    original_image_shape = batch["ori_shape"][img_idx]
    resized_image_shape = batch["resized_shape"][img_idx]
    ratio_pad = batch["ratio_pad"][img_idx]

    data = []
    for box, label in zip(bboxes, cls_labels):
        box = _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad)
        data.append(
            {
                "boxes": [box],
                "label": f"gt_{label}",
                "score": _scale_confidence_score(1.0),
            }
        )

    return {"name": "ground_truth", "data": data}





ultralytics.utils.callbacks.comet._format_prediction_annotations_for_detection

_format_prediction_annotations_for_detection(
    image_path, metadata, class_label_map=None
)

Format YOLO predictions for object detection visualization.

Source code in ultralytics/utils/callbacks/comet.py
def _format_prediction_annotations_for_detection(image_path, metadata, class_label_map=None):
    """Format YOLO predictions for object detection visualization."""
    stem = image_path.stem
    image_id = int(stem) if stem.isnumeric() else stem

    predictions = metadata.get(image_id)
    if not predictions:
        LOGGER.debug(f"COMET WARNING: Image: {image_path} has no bounding boxes predictions")
        return None

    data = []
    for prediction in predictions:
        boxes = prediction["bbox"]
        score = _scale_confidence_score(prediction["score"])
        cls_label = prediction["category_id"]
        if class_label_map:
            cls_label = str(class_label_map[cls_label])

        data.append({"boxes": [boxes], "label": cls_label, "score": score})

    return {"name": "prediction", "data": data}





ultralytics.utils.callbacks.comet._fetch_annotations

_fetch_annotations(
    img_idx, image_path, batch, prediction_metadata_map, class_label_map
)

Join the ground truth and prediction annotations if they exist.

Source code in ultralytics/utils/callbacks/comet.py
def _fetch_annotations(img_idx, image_path, batch, prediction_metadata_map, class_label_map):
    """Join the ground truth and prediction annotations if they exist."""
    ground_truth_annotations = _format_ground_truth_annotations_for_detection(
        img_idx, image_path, batch, class_label_map
    )
    prediction_annotations = _format_prediction_annotations_for_detection(
        image_path, prediction_metadata_map, class_label_map
    )

    annotations = [
        annotation for annotation in [ground_truth_annotations, prediction_annotations] if annotation is not None
    ]
    return [annotations] if annotations else None





ultralytics.utils.callbacks.comet._create_prediction_metadata_map

_create_prediction_metadata_map(model_predictions)

Create metadata map for model predictions by groupings them based on image ID.

Source code in ultralytics/utils/callbacks/comet.py
def _create_prediction_metadata_map(model_predictions):
    """Create metadata map for model predictions by groupings them based on image ID."""
    pred_metadata_map = {}
    for prediction in model_predictions:
        pred_metadata_map.setdefault(prediction["image_id"], [])
        pred_metadata_map[prediction["image_id"]].append(prediction)

    return pred_metadata_map





ultralytics.utils.callbacks.comet._log_confusion_matrix

_log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)

Log the confusion matrix to Comet experiment.

Source code in ultralytics/utils/callbacks/comet.py
def _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch):
    """Log the confusion matrix to Comet experiment."""
    conf_mat = trainer.validator.confusion_matrix.matrix
    names = list(trainer.data["names"].values()) + ["background"]
    experiment.log_confusion_matrix(
        matrix=conf_mat, labels=names, max_categories=len(names), epoch=curr_epoch, step=curr_step
    )





ultralytics.utils.callbacks.comet._log_images

_log_images(experiment, image_paths, curr_step, annotations=None)

Logs images to the experiment with optional annotations.

Source code in ultralytics/utils/callbacks/comet.py
def _log_images(experiment, image_paths, curr_step, annotations=None):
    """Logs images to the experiment with optional annotations."""
    if annotations:
        for image_path, annotation in zip(image_paths, annotations):
            experiment.log_image(image_path, name=image_path.stem, step=curr_step, annotations=annotation)

    else:
        for image_path in image_paths:
            experiment.log_image(image_path, name=image_path.stem, step=curr_step)





ultralytics.utils.callbacks.comet._log_image_predictions

_log_image_predictions(experiment, validator, curr_step)

Logs predicted boxes for a single image during training.

Source code in ultralytics/utils/callbacks/comet.py
def _log_image_predictions(experiment, validator, curr_step):
    """Logs predicted boxes for a single image during training."""
    global _comet_image_prediction_count

    task = validator.args.task
    if task not in COMET_SUPPORTED_TASKS:
        return

    jdict = validator.jdict
    if not jdict:
        return

    predictions_metadata_map = _create_prediction_metadata_map(jdict)
    dataloader = validator.dataloader
    class_label_map = validator.names

    batch_logging_interval = _get_eval_batch_logging_interval()
    max_image_predictions = _get_max_image_predictions_to_log()

    for batch_idx, batch in enumerate(dataloader):
        if (batch_idx + 1) % batch_logging_interval != 0:
            continue

        image_paths = batch["im_file"]
        for img_idx, image_path in enumerate(image_paths):
            if _comet_image_prediction_count >= max_image_predictions:
                return

            image_path = Path(image_path)
            annotations = _fetch_annotations(
                img_idx,
                image_path,
                batch,
                predictions_metadata_map,
                class_label_map,
            )
            _log_images(
                experiment,
                [image_path],
                curr_step,
                annotations=annotations,
            )
            _comet_image_prediction_count += 1





ultralytics.utils.callbacks.comet._log_plots

_log_plots(experiment, trainer)

Logs evaluation plots and label plots for the experiment.

Source code in ultralytics/utils/callbacks/comet.py
def _log_plots(experiment, trainer):
    """Logs evaluation plots and label plots for the experiment."""
    plot_filenames = None
    if isinstance(trainer.validator.metrics, SegmentMetrics) and trainer.validator.metrics.task == "segment":
        plot_filenames = [
            trainer.save_dir / f"{prefix}{plots}.png"
            for plots in EVALUATION_PLOT_NAMES
            for prefix in SEGMENT_METRICS_PLOT_PREFIX
        ]
    elif isinstance(trainer.validator.metrics, PoseMetrics):
        plot_filenames = [
            trainer.save_dir / f"{prefix}{plots}.png"
            for plots in EVALUATION_PLOT_NAMES
            for prefix in POSE_METRICS_PLOT_PREFIX
        ]
    elif isinstance(trainer.validator.metrics, DetMetrics) or isinstance(trainer.validator.metrics, OBBMetrics):
        plot_filenames = [trainer.save_dir / f"{plots}.png" for plots in EVALUATION_PLOT_NAMES]

    if plot_filenames is not None:
        _log_images(experiment, plot_filenames, None)

    confusion_matrix_filenames = [trainer.save_dir / f"{plots}.png" for plots in CONFUSION_MATRIX_PLOT_NAMES]
    _log_images(experiment, confusion_matrix_filenames, None)

    if not isinstance(trainer.validator.metrics, ClassifyMetrics):
        label_plot_filenames = [trainer.save_dir / f"{labels}.jpg" for labels in LABEL_PLOT_NAMES]
        _log_images(experiment, label_plot_filenames, None)





ultralytics.utils.callbacks.comet._log_model

_log_model(experiment, trainer)

Log the best-trained model to Comet.ml.

Source code in ultralytics/utils/callbacks/comet.py
def _log_model(experiment, trainer):
    """Log the best-trained model to Comet.ml."""
    model_name = _get_comet_model_name()
    experiment.log_model(model_name, file_or_folder=str(trainer.best), file_name="best.pt", overwrite=True)





ultralytics.utils.callbacks.comet.on_pretrain_routine_start

on_pretrain_routine_start(trainer)

Creates or resumes a CometML experiment at the start of a YOLO pre-training routine.

Source code in ultralytics/utils/callbacks/comet.py
def on_pretrain_routine_start(trainer):
    """Creates or resumes a CometML experiment at the start of a YOLO pre-training routine."""
    experiment = comet_ml.get_global_experiment()
    is_alive = getattr(experiment, "alive", False)
    if not experiment or not is_alive:
        _create_experiment(trainer.args)





ultralytics.utils.callbacks.comet.on_train_epoch_end

on_train_epoch_end(trainer)

Log metrics and save batch images at the end of training epochs.

Source code in ultralytics/utils/callbacks/comet.py
def on_train_epoch_end(trainer):
    """Log metrics and save batch images at the end of training epochs."""
    experiment = comet_ml.get_global_experiment()
    if not experiment:
        return

    metadata = _fetch_trainer_metadata(trainer)
    curr_epoch = metadata["curr_epoch"]
    curr_step = metadata["curr_step"]

    experiment.log_metrics(trainer.label_loss_items(trainer.tloss, prefix="train"), step=curr_step, epoch=curr_epoch)





ultralytics.utils.callbacks.comet.on_fit_epoch_end

on_fit_epoch_end(trainer)

Logs model assets at the end of each epoch.

Source code in ultralytics/utils/callbacks/comet.py
def on_fit_epoch_end(trainer):
    """Logs model assets at the end of each epoch."""
    experiment = comet_ml.get_global_experiment()
    if not experiment:
        return

    metadata = _fetch_trainer_metadata(trainer)
    curr_epoch = metadata["curr_epoch"]
    curr_step = metadata["curr_step"]
    save_assets = metadata["save_assets"]

    experiment.log_metrics(trainer.metrics, step=curr_step, epoch=curr_epoch)
    experiment.log_metrics(trainer.lr, step=curr_step, epoch=curr_epoch)
    if curr_epoch == 1:
        from ultralytics.utils.torch_utils import model_info_for_loggers

        experiment.log_metrics(model_info_for_loggers(trainer), step=curr_step, epoch=curr_epoch)

    if not save_assets:
        return

    _log_model(experiment, trainer)
    if _should_log_confusion_matrix():
        _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)
    if _should_log_image_predictions():
        _log_image_predictions(experiment, trainer.validator, curr_step)





ultralytics.utils.callbacks.comet.on_train_end

on_train_end(trainer)

Perform operations at the end of training.

Source code in ultralytics/utils/callbacks/comet.py
def on_train_end(trainer):
    """Perform operations at the end of training."""
    experiment = comet_ml.get_global_experiment()
    if not experiment:
        return

    metadata = _fetch_trainer_metadata(trainer)
    curr_epoch = metadata["curr_epoch"]
    curr_step = metadata["curr_step"]
    plots = trainer.args.plots

    _log_model(experiment, trainer)
    if plots:
        _log_plots(experiment, trainer)

    _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)
    _log_image_predictions(experiment, trainer.validator, curr_step)
    _log_images(experiment, trainer.save_dir.glob("train_batch*.jpg"), curr_step)
    _log_images(experiment, trainer.save_dir.glob("val_batch*.jpg"), curr_step)
    experiment.end()

    global _comet_image_prediction_count
    _comet_image_prediction_count = 0



📅 Created 11 months ago ✏️ Updated 1 month ago