Skip to content

Reference for ultralytics/utils/callbacks/neptune.py

Note

Full source code for this file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/neptune.py. Help us fix any issues you see by submitting a Pull Request 🛠️. Thank you 🙏!


ultralytics.utils.callbacks.neptune._log_scalars(scalars, step=0)

Log scalars to the NeptuneAI experiment logger.

Source code in ultralytics/utils/callbacks/neptune.py
def _log_scalars(scalars, step=0):
    """Log scalars to the NeptuneAI experiment logger."""
    if run:
        for k, v in scalars.items():
            run[k].append(value=v, step=step)




ultralytics.utils.callbacks.neptune._log_images(imgs_dict, group='')

Log scalars to the NeptuneAI experiment logger.

Source code in ultralytics/utils/callbacks/neptune.py
def _log_images(imgs_dict, group=''):
    """Log scalars to the NeptuneAI experiment logger."""
    if run:
        for k, v in imgs_dict.items():
            run[f'{group}/{k}'].upload(File(v))




ultralytics.utils.callbacks.neptune._log_plot(title, plot_path)

Log plots to the NeptuneAI experiment logger.

Source code in ultralytics/utils/callbacks/neptune.py
def _log_plot(title, plot_path):
    """Log plots to the NeptuneAI experiment logger."""
    """
        Log image as plot in the plot section of NeptuneAI

        arguments:
        title (str) Title of the plot
        plot_path (PosixPath or str) Path to the saved image file
        """
    import matplotlib.image as mpimg
    import matplotlib.pyplot as plt

    img = mpimg.imread(plot_path)
    fig = plt.figure()
    ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[])  # no ticks
    ax.imshow(img)
    run[f'Plots/{title}'].upload(fig)




ultralytics.utils.callbacks.neptune.on_pretrain_routine_start(trainer)

Callback function called before the training routine starts.

Source code in ultralytics/utils/callbacks/neptune.py
def on_pretrain_routine_start(trainer):
    """Callback function called before the training routine starts."""
    try:
        global run
        run = neptune.init_run(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, tags=['YOLOv8'])
        run['Configuration/Hyperparameters'] = {k: '' if v is None else v for k, v in vars(trainer.args).items()}
    except Exception as e:
        LOGGER.warning(f'WARNING ⚠️ NeptuneAI installed but not initialized correctly, not logging this run. {e}')




ultralytics.utils.callbacks.neptune.on_train_epoch_end(trainer)

Callback function called at end of each training epoch.

Source code in ultralytics/utils/callbacks/neptune.py
def on_train_epoch_end(trainer):
    """Callback function called at end of each training epoch."""
    _log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1)
    _log_scalars(trainer.lr, trainer.epoch + 1)
    if trainer.epoch == 1:
        _log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, 'Mosaic')




ultralytics.utils.callbacks.neptune.on_fit_epoch_end(trainer)

Callback function called at end of each fit (train+val) epoch.

Source code in ultralytics/utils/callbacks/neptune.py
def on_fit_epoch_end(trainer):
    """Callback function called at end of each fit (train+val) epoch."""
    if run and trainer.epoch == 0:
        from ultralytics.utils.torch_utils import model_info_for_loggers
        run['Configuration/Model'] = model_info_for_loggers(trainer)
    _log_scalars(trainer.metrics, trainer.epoch + 1)




ultralytics.utils.callbacks.neptune.on_val_end(validator)

Callback function called at end of each validation.

Source code in ultralytics/utils/callbacks/neptune.py
def on_val_end(validator):
    """Callback function called at end of each validation."""
    if run:
        # Log val_labels and val_pred
        _log_images({f.stem: str(f) for f in validator.save_dir.glob('val*.jpg')}, 'Validation')




ultralytics.utils.callbacks.neptune.on_train_end(trainer)

Callback function called at end of training.

Source code in ultralytics/utils/callbacks/neptune.py
def on_train_end(trainer):
    """Callback function called at end of training."""
    if run:
        # Log final results, CM matrix + PR plots
        files = [
            'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png',
            *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
        files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()]  # filter
        for f in files:
            _log_plot(title=f.stem, plot_path=f)
        # Log the final model
        run[f'weights/{trainer.args.name or trainer.args.task}/{str(trainer.best.name)}'].upload(File(str(
            trainer.best)))




Created 2023-07-16, Updated 2023-08-07
Authors: glenn-jocher (5), Laughing-q (1)