Reference for ultralytics/utils/metrics.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/metrics.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
Metric.ap50Metric.apMetric.mpMetric.mrMetric.map50Metric.map75Metric.mapMetric.mapsMetric.curvesMetric.curves_resultsDetMetrics.keysDetMetrics.mapsDetMetrics.fitnessDetMetrics.ap_class_indexDetMetrics.results_dictDetMetrics.curvesDetMetrics.curves_resultsSegmentMetrics.keysSegmentMetrics.mapsSegmentMetrics.fitnessSegmentMetrics.curvesSegmentMetrics.curves_resultsPoseMetrics.keysPoseMetrics.mapsPoseMetrics.fitnessPoseMetrics.curvesPoseMetrics.curves_resultsClassifyMetrics.fitnessClassifyMetrics.results_dictClassifyMetrics.keysClassifyMetrics.curvesClassifyMetrics.curves_results
ConfusionMatrix._append_matchesConfusionMatrix.process_cls_predsConfusionMatrix.process_batchConfusionMatrix.matrixConfusionMatrix.tp_fpConfusionMatrix.plot_matchesConfusionMatrix.plotConfusionMatrix.printConfusionMatrix.summaryMetric.mean_resultsMetric.class_resultMetric.fitnessMetric.updateDetMetrics.update_statsDetMetrics.processDetMetrics.clear_statsDetMetrics.mean_resultsDetMetrics.class_resultDetMetrics.summarySegmentMetrics.processSegmentMetrics.mean_resultsSegmentMetrics.class_resultSegmentMetrics.summaryPoseMetrics.processPoseMetrics.mean_resultsPoseMetrics.class_resultPoseMetrics.summaryClassifyMetrics.processClassifyMetrics.summary
class ultralytics.utils.metrics.ConfusionMatrix
ConfusionMatrix(self, names: dict[int, str] = [], task: str = "detect", save_matches: bool = False)
Bases: DataExportMixin
A class for calculating and updating a confusion matrix for object detection and classification tasks.
Args
| Name | Type | Description | Default |
|---|---|---|---|
names | dict[int, str], optional | Names of classes, used as labels on the plot. | [] |
task | str, optional | Type of task, either 'detect' or 'classify'. | "detect" |
save_matches | bool, optional | Save the indices of GTs, TPs, FPs, FNs for visualization. | False |
Attributes
| Name | Type | Description |
|---|---|---|
task | str | The type of task, either 'detect' or 'classify'. |
matrix | np.ndarray | The confusion matrix, with dimensions depending on the task. |
nc | int | The number of category. |
names | list[str] | The names of the classes, used as labels on the plot. |
matches | dict | Contains the indices of ground truths and predictions categorized into TP, FP and FN. |
Methods
| Name | Description |
|---|---|
_append_matches | Append the matches to TP, FP, FN or GT list for the last batch. |
matrix | Return the confusion matrix. |
plot | Plot the confusion matrix using matplotlib and save it to a file. |
plot_matches | Plot grid of GT, TP, FP, FN for each image. |
print | Print the confusion matrix to the console. |
process_batch | Update confusion matrix for object detection task. |
process_cls_preds | Update confusion matrix for classification task. |
summary | Generate a summarized representation of the confusion matrix as a list of dictionaries, with optional |
tp_fp | Return true positives and false positives. |
Source code in ultralytics/utils/metrics.py
View on GitHubclass ConfusionMatrix(DataExportMixin):
"""A class for calculating and updating a confusion matrix for object detection and classification tasks.
Attributes:
task (str): The type of task, either 'detect' or 'classify'.
matrix (np.ndarray): The confusion matrix, with dimensions depending on the task.
nc (int): The number of category.
names (list[str]): The names of the classes, used as labels on the plot.
matches (dict): Contains the indices of ground truths and predictions categorized into TP, FP and FN.
"""
def __init__(self, names: dict[int, str] = [], task: str = "detect", save_matches: bool = False):
"""Initialize a ConfusionMatrix instance.
Args:
names (dict[int, str], optional): Names of classes, used as labels on the plot.
task (str, optional): Type of task, either 'detect' or 'classify'.
save_matches (bool, optional): Save the indices of GTs, TPs, FPs, FNs for visualization.
"""
self.task = task
self.nc = len(names) # number of classes
self.matrix = np.zeros((self.nc, self.nc)) if self.task == "classify" else np.zeros((self.nc + 1, self.nc + 1))
self.names = names # name of classes
self.matches = {} if save_matches else None
method ultralytics.utils.metrics.ConfusionMatrix._append_matches
def _append_matches(self, mtype: str, batch: dict[str, Any], idx: int) -> None
Append the matches to TP, FP, FN or GT list for the last batch.
This method updates the matches dictionary by appending specific batch data to the appropriate match type (True Positive, False Positive, or False Negative).
Args
| Name | Type | Description | Default |
|---|---|---|---|
mtype | str | Match type identifier ('TP', 'FP', 'FN' or 'GT'). | required |
batch | dict[str, Any] | Batch data containing detection results with keys like 'bboxes', 'cls', 'conf', 'keypoints', 'masks'. | required |
idx | int | Index of the specific detection to append from the batch. | required |
Notes
For masks, handles both overlap and non-overlap cases. When masks.max() > 1.0, it indicates overlap_mask=True with shape (1, H, W), otherwise uses direct indexing.
Source code in ultralytics/utils/metrics.py
View on GitHubdef _append_matches(self, mtype: str, batch: dict[str, Any], idx: int) -> None:
"""Append the matches to TP, FP, FN or GT list for the last batch.
This method updates the matches dictionary by appending specific batch data to the appropriate match type (True
Positive, False Positive, or False Negative).
Args:
mtype (str): Match type identifier ('TP', 'FP', 'FN' or 'GT').
batch (dict[str, Any]): Batch data containing detection results with keys like 'bboxes', 'cls', 'conf',
'keypoints', 'masks'.
idx (int): Index of the specific detection to append from the batch.
Notes:
For masks, handles both overlap and non-overlap cases. When masks.max() > 1.0, it indicates
overlap_mask=True with shape (1, H, W), otherwise uses direct indexing.
"""
if self.matches is None:
return
for k, v in batch.items():
if k in {"bboxes", "cls", "conf", "keypoints"}:
self.matches[mtype][k] += v[[idx]]
elif k == "masks":
# NOTE: masks.max() > 1.0 means overlap_mask=True with (1, H, W) shape
self.matches[mtype][k] += [v[0] == idx + 1] if v.max() > 1.0 else [v[idx]]
method ultralytics.utils.metrics.ConfusionMatrix.matrix
def matrix(self)
Return the confusion matrix.
Source code in ultralytics/utils/metrics.py
View on GitHubdef matrix(self):
"""Return the confusion matrix."""
return self.matrix
method ultralytics.utils.metrics.ConfusionMatrix.plot
def plot(self, normalize: bool = True, save_dir: str = "", on_plot = None)
Plot the confusion matrix using matplotlib and save it to a file.
Args
| Name | Type | Description | Default |
|---|---|---|---|
normalize | bool, optional | Whether to normalize the confusion matrix. | True |
save_dir | str, optional | Directory where the plot will be saved. | "" |
on_plot | callable, optional | An optional callback to pass plots path and data when they are rendered. | None |
Source code in ultralytics/utils/metrics.py
View on GitHub@TryExcept(msg="ConfusionMatrix plot failure")
@plt_settings()
def plot(self, normalize: bool = True, save_dir: str = "", on_plot=None):
"""Plot the confusion matrix using matplotlib and save it to a file.
Args:
normalize (bool, optional): Whether to normalize the confusion matrix.
save_dir (str, optional): Directory where the plot will be saved.
on_plot (callable, optional): An optional callback to pass plots path and data when they are rendered.
"""
import matplotlib.pyplot as plt # scope for faster 'import ultralytics'
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1e-9) if normalize else 1) # normalize columns
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
fig, ax = plt.subplots(1, 1, figsize=(12, 9))
names, n = list(self.names.values()), self.nc
if self.nc >= 100: # downsample for large class count
k = max(2, self.nc // 60) # step size for downsampling, always > 1
keep_idx = slice(None, None, k) # create slice instead of array
names = names[keep_idx] # slice class names
array = array[keep_idx, :][:, keep_idx] # slice matrix rows and cols
n = (self.nc + k - 1) // k # number of retained classes
nc = nn = n if self.task == "classify" else n + 1 # adjust for background if needed
ticklabels = ([*names, "background"]) if (0 < nn < 99) and (nn == nc) else "auto"
xy_ticks = np.arange(len(ticklabels))
tick_fontsize = max(6, 15 - 0.1 * nc) # Minimum size is 6
label_fontsize = max(6, 12 - 0.1 * nc)
title_fontsize = max(6, 12 - 0.1 * nc)
btm = max(0.1, 0.25 - 0.001 * nc) # Minimum value is 0.1
with warnings.catch_warnings():
warnings.simplefilter("ignore") # suppress empty matrix RuntimeWarning: All-NaN slice encountered
im = ax.imshow(array, cmap="Blues", vmin=0.0, interpolation="none")
ax.xaxis.set_label_position("bottom")
if nc < 30: # Add score for each cell of confusion matrix
color_threshold = 0.45 * (1 if normalize else np.nanmax(array)) # text color threshold
for i, row in enumerate(array[:nc]):
for j, val in enumerate(row[:nc]):
val = array[i, j]
if np.isnan(val):
continue
ax.text(
j,
i,
f"{val:.2f}" if normalize else f"{int(val)}",
ha="center",
va="center",
fontsize=10,
color="white" if val > color_threshold else "black",
)
cbar = fig.colorbar(im, ax=ax, fraction=0.046, pad=0.05)
title = "Confusion Matrix" + " Normalized" * normalize
ax.set_xlabel("True", fontsize=label_fontsize, labelpad=10)
ax.set_ylabel("Predicted", fontsize=label_fontsize, labelpad=10)
ax.set_title(title, fontsize=title_fontsize, pad=20)
ax.set_xticks(xy_ticks)
ax.set_yticks(xy_ticks)
ax.tick_params(axis="x", bottom=True, top=False, labelbottom=True, labeltop=False)
ax.tick_params(axis="y", left=True, right=False, labelleft=True, labelright=False)
if ticklabels != "auto":
ax.set_xticklabels(ticklabels, fontsize=tick_fontsize, rotation=90, ha="center")
ax.set_yticklabels(ticklabels, fontsize=tick_fontsize)
for s in {"left", "right", "bottom", "top", "outline"}:
if s != "outline":
ax.spines[s].set_visible(False) # Confusion matrix plot don't have outline
cbar.ax.spines[s].set_visible(False)
fig.subplots_adjust(left=0, right=0.84, top=0.94, bottom=btm) # Adjust layout to ensure equal margins
plot_fname = Path(save_dir) / f"{title.lower().replace(' ', '_')}.png"
fig.savefig(plot_fname, dpi=250)
plt.close(fig)
if on_plot:
on_plot(plot_fname)
method ultralytics.utils.metrics.ConfusionMatrix.plot_matches
def plot_matches(self, img: torch.Tensor, im_file: str, save_dir: Path) -> None
Plot grid of GT, TP, FP, FN for each image.
Args
| Name | Type | Description | Default |
|---|---|---|---|
img | torch.Tensor | Image to plot onto. | required |
im_file | str | Image filename to save visualizations. | required |
save_dir | Path | Location to save the visualizations to. | required |
Source code in ultralytics/utils/metrics.py
View on GitHubdef plot_matches(self, img: torch.Tensor, im_file: str, save_dir: Path) -> None:
"""Plot grid of GT, TP, FP, FN for each image.
Args:
img (torch.Tensor): Image to plot onto.
im_file (str): Image filename to save visualizations.
save_dir (Path): Location to save the visualizations to.
"""
if not self.matches:
return
from .ops import xyxy2xywh
from .plotting import plot_images
# Create batch of 4 (GT, TP, FP, FN)
labels = defaultdict(list)
for i, mtype in enumerate(["GT", "FP", "TP", "FN"]):
mbatch = self.matches[mtype]
if "conf" not in mbatch:
mbatch["conf"] = torch.tensor([1.0] * len(mbatch["bboxes"]), device=img.device)
mbatch["batch_idx"] = torch.ones(len(mbatch["bboxes"]), device=img.device) * i
for k in mbatch.keys():
labels[k] += mbatch[k]
labels = {k: torch.stack(v, 0) if len(v) else torch.empty(0) for k, v in labels.items()}
if self.task != "obb" and labels["bboxes"].shape[0]:
labels["bboxes"] = xyxy2xywh(labels["bboxes"])
(save_dir / "visualizations").mkdir(parents=True, exist_ok=True)
plot_images(
labels,
img.repeat(4, 1, 1, 1),
paths=["Ground Truth", "False Positives", "True Positives", "False Negatives"],
fname=save_dir / "visualizations" / Path(im_file).name,
names=self.names,
max_subplots=4,
conf_thres=0.001,
)
method ultralytics.utils.metrics.ConfusionMatrix.print
def print(self)
Print the confusion matrix to the console.
Source code in ultralytics/utils/metrics.py
View on GitHubdef print(self):
"""Print the confusion matrix to the console."""
for i in range(self.matrix.shape[0]):
LOGGER.info(" ".join(map(str, self.matrix[i])))
method ultralytics.utils.metrics.ConfusionMatrix.process_batch
def process_batch(
self,
detections: dict[str, torch.Tensor],
batch: dict[str, Any],
conf: float = 0.25,
iou_thres: float = 0.45,
) -> None
Update confusion matrix for object detection task.
Args
| Name | Type | Description | Default |
|---|---|---|---|
detections | dict[str, torch.Tensor] | Dictionary containing detected bounding boxes and their associated information. Should contain 'cls', 'conf', and 'bboxes' keys, where 'bboxes' can be Array[N, 4] for regular boxes or Array[N, 5] for OBB with angle. | required |
batch | dict[str, Any] | Batch dictionary containing ground truth data with 'bboxes' (Array[M, 4] | Array[M, 5]) and 'cls' (Array[M]) keys, where M is the number of ground truth objects. |
conf | float, optional | Confidence threshold for detections. | 0.25 |
iou_thres | float, optional | IoU threshold for matching detections to ground truth. | 0.45 |
Source code in ultralytics/utils/metrics.py
View on GitHubdef process_batch(
self,
detections: dict[str, torch.Tensor],
batch: dict[str, Any],
conf: float = 0.25,
iou_thres: float = 0.45,
) -> None:
"""Update confusion matrix for object detection task.
Args:
detections (dict[str, torch.Tensor]): Dictionary containing detected bounding boxes and their associated
information. Should contain 'cls', 'conf', and 'bboxes' keys, where 'bboxes' can be Array[N, 4] for
regular boxes or Array[N, 5] for OBB with angle.
batch (dict[str, Any]): Batch dictionary containing ground truth data with 'bboxes' (Array[M, 4]| Array[M,
5]) and 'cls' (Array[M]) keys, where M is the number of ground truth objects.
conf (float, optional): Confidence threshold for detections.
iou_thres (float, optional): IoU threshold for matching detections to ground truth.
"""
gt_cls, gt_bboxes = batch["cls"], batch["bboxes"]
if self.matches is not None: # only if visualization is enabled
self.matches = {k: defaultdict(list) for k in {"TP", "FP", "FN", "GT"}}
for i in range(gt_cls.shape[0]):
self._append_matches("GT", batch, i) # store GT
is_obb = gt_bboxes.shape[1] == 5 # check if boxes contains angle for OBB
conf = 0.25 if conf in {None, 0.01 if is_obb else 0.001} else conf # apply 0.25 if default val conf is passed
no_pred = detections["cls"].shape[0] == 0
if gt_cls.shape[0] == 0: # Check if labels is empty
if not no_pred:
detections = {k: detections[k][detections["conf"] > conf] for k in detections}
detection_classes = detections["cls"].int().tolist()
for i, dc in enumerate(detection_classes):
self.matrix[dc, self.nc] += 1 # FP
self._append_matches("FP", detections, i)
return
if no_pred:
gt_classes = gt_cls.int().tolist()
for i, gc in enumerate(gt_classes):
self.matrix[self.nc, gc] += 1 # FN
self._append_matches("FN", batch, i)
return
detections = {k: detections[k][detections["conf"] > conf] for k in detections}
gt_classes = gt_cls.int().tolist()
detection_classes = detections["cls"].int().tolist()
bboxes = detections["bboxes"]
iou = batch_probiou(gt_bboxes, bboxes) if is_obb else box_iou(gt_bboxes, bboxes)
x = torch.where(iou > iou_thres)
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
else:
matches = np.zeros((0, 3))
n = matches.shape[0] > 0
m0, m1, _ = matches.transpose().astype(int)
for i, gc in enumerate(gt_classes):
j = m0 == i
if n and sum(j) == 1:
dc = detection_classes[m1[j].item()]
self.matrix[dc, gc] += 1 # TP if class is correct else both an FP and an FN
if dc == gc:
self._append_matches("TP", detections, m1[j].item())
else:
self._append_matches("FP", detections, m1[j].item())
self._append_matches("FN", batch, i)
else:
self.matrix[self.nc, gc] += 1 # FN
self._append_matches("FN", batch, i)
for i, dc in enumerate(detection_classes):
if not any(m1 == i):
self.matrix[dc, self.nc] += 1 # FP
self._append_matches("FP", detections, i)
method ultralytics.utils.metrics.ConfusionMatrix.process_cls_preds
def process_cls_preds(self, preds: list[torch.Tensor], targets: list[torch.Tensor]) -> None
Update confusion matrix for classification task.
Args
| Name | Type | Description | Default |
|---|---|---|---|
preds (list[N, min(nc,5)]): Predicted class labels. | required | ||
targets | list[N, 1] | Ground truth class labels. | required |
preds | list[torch.Tensor] | required |
Source code in ultralytics/utils/metrics.py
View on GitHubdef process_cls_preds(self, preds: list[torch.Tensor], targets: list[torch.Tensor]) -> None:
"""Update confusion matrix for classification task.
Args:
preds (list[N, min(nc,5)]): Predicted class labels.
targets (list[N, 1]): Ground truth class labels.
"""
preds, targets = torch.cat(preds)[:, 0], torch.cat(targets)
for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()):
self.matrix[p][t] += 1
method ultralytics.utils.metrics.ConfusionMatrix.summary
def summary(self, normalize: bool = False, decimals: int = 5) -> list[dict[str, float]]
Generate a summarized representation of the confusion matrix as a list of dictionaries, with optional
normalization. This is useful for exporting the matrix to various formats such as CSV, XML, HTML, JSON, or SQL.
Args
| Name | Type | Description | Default |
|---|---|---|---|
normalize | bool | Whether to normalize the confusion matrix values. | False |
decimals | int | Number of decimal places to round the output values to. | 5 |
Returns
| Type | Description |
|---|---|
list[dict[str, float]] | A list of dictionaries, each representing one predicted class with corresponding |
Examples
>>> results = model.val(data="coco8.yaml", plots=True)
>>> cm_dict = results.confusion_matrix.summary(normalize=True, decimals=5)
>>> print(cm_dict)
Source code in ultralytics/utils/metrics.py
View on GitHubdef summary(self, normalize: bool = False, decimals: int = 5) -> list[dict[str, float]]:
"""Generate a summarized representation of the confusion matrix as a list of dictionaries, with optional
normalization. This is useful for exporting the matrix to various formats such as CSV, XML, HTML, JSON,
or SQL.
Args:
normalize (bool): Whether to normalize the confusion matrix values.
decimals (int): Number of decimal places to round the output values to.
Returns:
(list[dict[str, float]]): A list of dictionaries, each representing one predicted class with corresponding
values for all actual classes.
Examples:
>>> results = model.val(data="coco8.yaml", plots=True)
>>> cm_dict = results.confusion_matrix.summary(normalize=True, decimals=5)
>>> print(cm_dict)
"""
import re
names = list(self.names.values()) if self.task == "classify" else [*list(self.names.values()), "background"]
clean_names, seen = [], set()
for name in names:
clean_name = re.sub(r"[^a-zA-Z0-9_]", "_", name)
original_clean = clean_name
counter = 1
while clean_name.lower() in seen:
clean_name = f"{original_clean}_{counter}"
counter += 1
seen.add(clean_name.lower())
clean_names.append(clean_name)
array = (self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1e-9) if normalize else 1)).round(decimals)
return [
dict({"Predicted": clean_names[i]}, **{clean_names[j]: array[i, j] for j in range(len(clean_names))})
for i in range(len(clean_names))
]
method ultralytics.utils.metrics.ConfusionMatrix.tp_fp
def tp_fp(self) -> tuple[np.ndarray, np.ndarray]
Return true positives and false positives.
Returns
| Type | Description |
|---|---|
tp (np.ndarray) | True positives. |
fp (np.ndarray) | False positives. |
Source code in ultralytics/utils/metrics.py
View on GitHubdef tp_fp(self) -> tuple[np.ndarray, np.ndarray]:
"""Return true positives and false positives.
Returns:
tp (np.ndarray): True positives.
fp (np.ndarray): False positives.
"""
tp = self.matrix.diagonal() # true positives
fp = self.matrix.sum(1) - tp # false positives
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
return (tp, fp) if self.task == "classify" else (tp[:-1], fp[:-1]) # remove background class if task=detect
class ultralytics.utils.metrics.Metric
Metric(self) -> None
Bases: SimpleClass
Class for computing evaluation metrics for Ultralytics YOLO models.
Attributes
| Name | Type | Description |
|---|---|---|
p | list | Precision for each class. Shape: (nc,). |
r | list | Recall for each class. Shape: (nc,). |
f1 | list | F1 score for each class. Shape: (nc,). |
all_ap | list | AP scores for all classes and all IoU thresholds. Shape: (nc, 10). |
ap_class_index | list | Index of class for each AP score. Shape: (nc,). |
nc | int | Number of classes. |
Methods
| Name | Description |
|---|---|
ap50 | Return the Average Precision (AP) at an IoU threshold of 0.5 for all classes. |
ap | Return the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes. |
mp | Return the Mean Precision of all classes. |
mr | Return the Mean Recall of all classes. |
map50 | Return the mean Average Precision (mAP) at an IoU threshold of 0.5. |
map75 | Return the mean Average Precision (mAP) at an IoU threshold of 0.75. |
map | Return the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05. |
maps | Return mAP of each class. |
curves | Return a list of curves for accessing specific metrics curves. |
curves_results | Return a list of curves for accessing specific metrics curves. |
class_result | Return class-aware result, p[i], r[i], ap50[i], ap[i]. |
fitness | Return model fitness as a weighted combination of metrics. |
mean_results | Return mean of results, mp, mr, map50, map. |
update | Update the evaluation metrics with a new set of results. |
Source code in ultralytics/utils/metrics.py
View on GitHubclass Metric(SimpleClass):
"""Class for computing evaluation metrics for Ultralytics YOLO models.
Attributes:
p (list): Precision for each class. Shape: (nc,).
r (list): Recall for each class. Shape: (nc,).
f1 (list): F1 score for each class. Shape: (nc,).
all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
ap_class_index (list): Index of class for each AP score. Shape: (nc,).
nc (int): Number of classes.
Methods:
ap50: AP at IoU threshold of 0.5 for all classes.
ap: AP at IoU thresholds from 0.5 to 0.95 for all classes.
mp: Mean precision of all classes.
mr: Mean recall of all classes.
map50: Mean AP at IoU threshold of 0.5 for all classes.
map75: Mean AP at IoU threshold of 0.75 for all classes.
map: Mean AP at IoU thresholds from 0.5 to 0.95 for all classes.
mean_results: Mean of results, returns mp, mr, map50, map.
class_result: Class-aware result, returns p[i], r[i], ap50[i], ap[i].
maps: mAP of each class.
fitness: Model fitness as a weighted combination of metrics.
update: Update metric attributes with new evaluation results.
curves: Provides a list of curves for accessing specific metrics like precision, recall, F1, etc.
curves_results: Provide a list of results for accessing specific metrics like precision, recall, F1, etc.
"""
def __init__(self) -> None:
"""Initialize a Metric instance for computing evaluation metrics for the YOLOv8 model."""
self.p = [] # (nc, )
self.r = [] # (nc, )
self.f1 = [] # (nc, )
self.all_ap = [] # (nc, 10)
self.ap_class_index = [] # (nc, )
self.nc = 0
property ultralytics.utils.metrics.Metric.ap50
def ap50(self) -> np.ndarray | list
Return the Average Precision (AP) at an IoU threshold of 0.5 for all classes.
Returns
| Type | Description |
|---|---|
np.ndarray | list | Array of shape (nc,) with AP50 values per class, or an empty list if not available. |
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def ap50(self) -> np.ndarray | list:
"""Return the Average Precision (AP) at an IoU threshold of 0.5 for all classes.
Returns:
(np.ndarray | list): Array of shape (nc,) with AP50 values per class, or an empty list if not available.
"""
return self.all_ap[:, 0] if len(self.all_ap) else []
property ultralytics.utils.metrics.Metric.ap
def ap(self) -> np.ndarray | list
Return the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes.
Returns
| Type | Description |
|---|---|
np.ndarray | list | Array of shape (nc,) with AP50-95 values per class, or an empty list if not available. |
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def ap(self) -> np.ndarray | list:
"""Return the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes.
Returns:
(np.ndarray | list): Array of shape (nc,) with AP50-95 values per class, or an empty list if not available.
"""
return self.all_ap.mean(1) if len(self.all_ap) else []
property ultralytics.utils.metrics.Metric.mp
def mp(self) -> float
Return the Mean Precision of all classes.
Returns
| Type | Description |
|---|---|
float | The mean precision of all classes. |
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def mp(self) -> float:
"""Return the Mean Precision of all classes.
Returns:
(float): The mean precision of all classes.
"""
return self.p.mean() if len(self.p) else 0.0
property ultralytics.utils.metrics.Metric.mr
def mr(self) -> float
Return the Mean Recall of all classes.
Returns
| Type | Description |
|---|---|
float | The mean recall of all classes. |
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def mr(self) -> float:
"""Return the Mean Recall of all classes.
Returns:
(float): The mean recall of all classes.
"""
return self.r.mean() if len(self.r) else 0.0
property ultralytics.utils.metrics.Metric.map50
def map50(self) -> float
Return the mean Average Precision (mAP) at an IoU threshold of 0.5.
Returns
| Type | Description |
|---|---|
float | The mAP at an IoU threshold of 0.5. |
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def map50(self) -> float:
"""Return the mean Average Precision (mAP) at an IoU threshold of 0.5.
Returns:
(float): The mAP at an IoU threshold of 0.5.
"""
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
property ultralytics.utils.metrics.Metric.map75
def map75(self) -> float
Return the mean Average Precision (mAP) at an IoU threshold of 0.75.
Returns
| Type | Description |
|---|---|
float | The mAP at an IoU threshold of 0.75. |
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def map75(self) -> float:
"""Return the mean Average Precision (mAP) at an IoU threshold of 0.75.
Returns:
(float): The mAP at an IoU threshold of 0.75.
"""
return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0
property ultralytics.utils.metrics.Metric.map
def map(self) -> float
Return the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
Returns
| Type | Description |
|---|---|
float | The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05. |
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def map(self) -> float:
"""Return the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
Returns:
(float): The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
"""
return self.all_ap.mean() if len(self.all_ap) else 0.0
property ultralytics.utils.metrics.Metric.maps
def maps(self) -> np.ndarray
Return mAP of each class.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def maps(self) -> np.ndarray:
"""Return mAP of each class."""
maps = np.zeros(self.nc) + self.map
for i, c in enumerate(self.ap_class_index):
maps[c] = self.ap[i]
return maps
property ultralytics.utils.metrics.Metric.curves
def curves(self) -> list
Return a list of curves for accessing specific metrics curves.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def curves(self) -> list:
"""Return a list of curves for accessing specific metrics curves."""
return []
property ultralytics.utils.metrics.Metric.curves_results
def curves_results(self) -> list[list]
Return a list of curves for accessing specific metrics curves.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def curves_results(self) -> list[list]:
"""Return a list of curves for accessing specific metrics curves."""
return [
[self.px, self.prec_values, "Recall", "Precision"],
[self.px, self.f1_curve, "Confidence", "F1"],
[self.px, self.p_curve, "Confidence", "Precision"],
[self.px, self.r_curve, "Confidence", "Recall"],
]
method ultralytics.utils.metrics.Metric.class_result
def class_result(self, i: int) -> tuple[float, float, float, float]
Return class-aware result, p[i], r[i], ap50[i], ap[i].
Args
| Name | Type | Description | Default |
|---|---|---|---|
i | int | required |
Source code in ultralytics/utils/metrics.py
View on GitHubdef class_result(self, i: int) -> tuple[float, float, float, float]:
"""Return class-aware result, p[i], r[i], ap50[i], ap[i]."""
return self.p[i], self.r[i], self.ap50[i], self.ap[i]
method ultralytics.utils.metrics.Metric.fitness
def fitness(self) -> float
Return model fitness as a weighted combination of metrics.
Source code in ultralytics/utils/metrics.py
View on GitHubdef fitness(self) -> float:
"""Return model fitness as a weighted combination of metrics."""
w = [0.0, 0.0, 0.0, 1.0] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
return (np.nan_to_num(np.array(self.mean_results())) * w).sum()
method ultralytics.utils.metrics.Metric.mean_results
def mean_results(self) -> list[float]
Return mean of results, mp, mr, map50, map.
Source code in ultralytics/utils/metrics.py
View on GitHubdef mean_results(self) -> list[float]:
"""Return mean of results, mp, mr, map50, map."""
return [self.mp, self.mr, self.map50, self.map]
method ultralytics.utils.metrics.Metric.update
def update(self, results: tuple)
Update the evaluation metrics with a new set of results.
Args
| Name | Type | Description | Default |
|---|---|---|---|
results | tuple | A tuple containing evaluation metrics: - p (list): Precision for each class. - r (list): Recall for each class. - f1 (list): F1 score for each class. - all_ap (list): AP scores for all classes and all IoU thresholds. - ap_class_index (list): Index of class for each AP score. - p_curve (list): Precision curve for each class. - r_curve (list): Recall curve for each class. - f1_curve (list): F1 curve for each class. - px (list): X values for the curves. - prec_values (list): Precision values for each class. | required |
Source code in ultralytics/utils/metrics.py
View on GitHubdef update(self, results: tuple):
"""Update the evaluation metrics with a new set of results.
Args:
results (tuple): A tuple containing evaluation metrics:
- p (list): Precision for each class.
- r (list): Recall for each class.
- f1 (list): F1 score for each class.
- all_ap (list): AP scores for all classes and all IoU thresholds.
- ap_class_index (list): Index of class for each AP score.
- p_curve (list): Precision curve for each class.
- r_curve (list): Recall curve for each class.
- f1_curve (list): F1 curve for each class.
- px (list): X values for the curves.
- prec_values (list): Precision values for each class.
"""
(
self.p,
self.r,
self.f1,
self.all_ap,
self.ap_class_index,
self.p_curve,
self.r_curve,
self.f1_curve,
self.px,
self.prec_values,
) = results
class ultralytics.utils.metrics.DetMetrics
DetMetrics(self, names: dict[int, str] = {}) -> None
Bases: SimpleClass, DataExportMixin
Utility class for computing detection metrics such as precision, recall, and mean average precision (mAP).
Args
| Name | Type | Description | Default |
|---|---|---|---|
names | dict[int, str], optional | Dictionary of class names. | {} |
Attributes
| Name | Type | Description |
|---|---|---|
names | dict[int, str] | A dictionary of class names. |
box | Metric | An instance of the Metric class for storing detection results. |
speed | dict[str, float] | A dictionary for storing execution times of different parts of the detection process. |
task | str | The task type, set to 'detect'. |
stats | dict[str, list] | A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images. |
nt_per_class | Number of targets per class. | |
nt_per_image | Number of targets per image. |
Methods
| Name | Description |
|---|---|
keys | Return a list of keys for accessing specific metrics. |
maps | Return mean Average Precision (mAP) scores per class. |
fitness | Return the fitness of box object. |
ap_class_index | Return the average precision index per class. |
results_dict | Return dictionary of computed performance metrics and statistics. |
curves | Return a list of curves for accessing specific metrics curves. |
curves_results | Return a list of computed performance metrics and statistics. |
class_result | Return the result of evaluating the performance of an object detection model on a specific class. |
clear_stats | Clear the stored statistics. |
mean_results | Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95. |
process | Process predicted results for object detection and update metrics. |
summary | Generate a summarized representation of per-class detection metrics as a list of dictionaries. Includes |
update_stats | Update statistics by appending new values to existing stat collections. |
Source code in ultralytics/utils/metrics.py
View on GitHubclass DetMetrics(SimpleClass, DataExportMixin):
"""Utility class for computing detection metrics such as precision, recall, and mean average precision (mAP).
Attributes:
names (dict[int, str]): A dictionary of class names.
box (Metric): An instance of the Metric class for storing detection results.
speed (dict[str, float]): A dictionary for storing execution times of different parts of the detection process.
task (str): The task type, set to 'detect'.
stats (dict[str, list]): A dictionary containing lists for true positives, confidence scores, predicted classes,
target classes, and target images.
nt_per_class: Number of targets per class.
nt_per_image: Number of targets per image.
Methods:
update_stats: Update statistics by appending new values to existing stat collections.
process: Process predicted results for object detection and update metrics.
clear_stats: Clear the stored statistics.
keys: Return a list of keys for accessing specific metrics.
mean_results: Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95.
class_result: Return the result of evaluating the performance of an object detection model on a specific class.
maps: Return mean Average Precision (mAP) scores per class.
fitness: Return the fitness of box object.
ap_class_index: Return the average precision index per class.
results_dict: Return dictionary of computed performance metrics and statistics.
curves: Return a list of curves for accessing specific metrics curves.
curves_results: Return a list of computed performance metrics and statistics.
summary: Generate a summarized representation of per-class detection metrics as a list of dictionaries.
"""
def __init__(self, names: dict[int, str] = {}) -> None:
"""Initialize a DetMetrics instance with a save directory, plot flag, and class names.
Args:
names (dict[int, str], optional): Dictionary of class names.
"""
self.names = names
self.box = Metric()
self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
self.task = "detect"
self.stats = dict(tp=[], conf=[], pred_cls=[], target_cls=[], target_img=[])
self.nt_per_class = None
self.nt_per_image = None
property ultralytics.utils.metrics.DetMetrics.keys
def keys(self) -> list[str]
Return a list of keys for accessing specific metrics.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def keys(self) -> list[str]:
"""Return a list of keys for accessing specific metrics."""
return ["metrics/precision(B)", "metrics/recall(B)", "metrics/mAP50(B)", "metrics/mAP50-95(B)"]
property ultralytics.utils.metrics.DetMetrics.maps
def maps(self) -> np.ndarray
Return mean Average Precision (mAP) scores per class.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def maps(self) -> np.ndarray:
"""Return mean Average Precision (mAP) scores per class."""
return self.box.maps
property ultralytics.utils.metrics.DetMetrics.fitness
def fitness(self) -> float
Return the fitness of box object.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def fitness(self) -> float:
"""Return the fitness of box object."""
return self.box.fitness()
property ultralytics.utils.metrics.DetMetrics.ap_class_index
def ap_class_index(self) -> list
Return the average precision index per class.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def ap_class_index(self) -> list:
"""Return the average precision index per class."""
return self.box.ap_class_index
property ultralytics.utils.metrics.DetMetrics.results_dict
def results_dict(self) -> dict[str, float]
Return dictionary of computed performance metrics and statistics.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def results_dict(self) -> dict[str, float]:
"""Return dictionary of computed performance metrics and statistics."""
keys = [*self.keys, "fitness"]
values = ((float(x) if hasattr(x, "item") else x) for x in ([*self.mean_results(), self.fitness]))
return dict(zip(keys, values))
property ultralytics.utils.metrics.DetMetrics.curves
def curves(self) -> list[str]
Return a list of curves for accessing specific metrics curves.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def curves(self) -> list[str]:
"""Return a list of curves for accessing specific metrics curves."""
return ["Precision-Recall(B)", "F1-Confidence(B)", "Precision-Confidence(B)", "Recall-Confidence(B)"]
property ultralytics.utils.metrics.DetMetrics.curves_results
def curves_results(self) -> list[list]
Return a list of computed performance metrics and statistics.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def curves_results(self) -> list[list]:
"""Return a list of computed performance metrics and statistics."""
return self.box.curves_results
method ultralytics.utils.metrics.DetMetrics.class_result
def class_result(self, i: int) -> tuple[float, float, float, float]
Return the result of evaluating the performance of an object detection model on a specific class.
Args
| Name | Type | Description | Default |
|---|---|---|---|
i | int | required |
Source code in ultralytics/utils/metrics.py
View on GitHubdef class_result(self, i: int) -> tuple[float, float, float, float]:
"""Return the result of evaluating the performance of an object detection model on a specific class."""
return self.box.class_result(i)
method ultralytics.utils.metrics.DetMetrics.clear_stats
def clear_stats(self)
Clear the stored statistics.
Source code in ultralytics/utils/metrics.py
View on GitHubdef clear_stats(self):
"""Clear the stored statistics."""
for v in self.stats.values():
v.clear()
method ultralytics.utils.metrics.DetMetrics.mean_results
def mean_results(self) -> list[float]
Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95.
Source code in ultralytics/utils/metrics.py
View on GitHubdef mean_results(self) -> list[float]:
"""Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95."""
return self.box.mean_results()
method ultralytics.utils.metrics.DetMetrics.process
def process(self, save_dir: Path = Path("."), plot: bool = False, on_plot = None) -> dict[str, np.ndarray]
Process predicted results for object detection and update metrics.
Args
| Name | Type | Description | Default |
|---|---|---|---|
save_dir | Path | Directory to save plots. Defaults to Path("."). | Path(".") |
plot | bool | Whether to plot precision-recall curves. Defaults to False. | False |
on_plot | callable, optional | Function to call after plots are generated. Defaults to None. | None |
Returns
| Type | Description |
|---|---|
dict[str, np.ndarray] | Dictionary containing concatenated statistics arrays. |
Source code in ultralytics/utils/metrics.py
View on GitHubdef process(self, save_dir: Path = Path("."), plot: bool = False, on_plot=None) -> dict[str, np.ndarray]:
"""Process predicted results for object detection and update metrics.
Args:
save_dir (Path): Directory to save plots. Defaults to Path(".").
plot (bool): Whether to plot precision-recall curves. Defaults to False.
on_plot (callable, optional): Function to call after plots are generated. Defaults to None.
Returns:
(dict[str, np.ndarray]): Dictionary containing concatenated statistics arrays.
"""
stats = {k: np.concatenate(v, 0) for k, v in self.stats.items()} # to numpy
if not stats:
return stats
results = ap_per_class(
stats["tp"],
stats["conf"],
stats["pred_cls"],
stats["target_cls"],
plot=plot,
save_dir=save_dir,
names=self.names,
on_plot=on_plot,
prefix="Box",
)[2:]
self.box.nc = len(self.names)
self.box.update(results)
self.nt_per_class = np.bincount(stats["target_cls"].astype(int), minlength=len(self.names))
self.nt_per_image = np.bincount(stats["target_img"].astype(int), minlength=len(self.names))
return stats
method ultralytics.utils.metrics.DetMetrics.summary
def summary(self, normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]
Generate a summarized representation of per-class detection metrics as a list of dictionaries. Includes
shared scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.
Args
| Name | Type | Description | Default |
|---|---|---|---|
normalize | bool | For Detect metrics, everything is normalized by default [0-1]. | True |
decimals | int | Number of decimal places to round the metrics values to. | 5 |
Returns
| Type | Description |
|---|---|
list[dict[str, Any]] | A list of dictionaries, each representing one class with corresponding metric |
Examples
>>> results = model.val(data="coco8.yaml")
>>> detection_summary = results.summary()
>>> print(detection_summary)
Source code in ultralytics/utils/metrics.py
View on GitHubdef summary(self, normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]:
"""Generate a summarized representation of per-class detection metrics as a list of dictionaries. Includes
shared scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.
Args:
normalize (bool): For Detect metrics, everything is normalized by default [0-1].
decimals (int): Number of decimal places to round the metrics values to.
Returns:
(list[dict[str, Any]]): A list of dictionaries, each representing one class with corresponding metric
values.
Examples:
>>> results = model.val(data="coco8.yaml")
>>> detection_summary = results.summary()
>>> print(detection_summary)
"""
per_class = {
"Box-P": self.box.p,
"Box-R": self.box.r,
"Box-F1": self.box.f1,
}
return [
{
"Class": self.names[self.ap_class_index[i]],
"Images": self.nt_per_image[self.ap_class_index[i]],
"Instances": self.nt_per_class[self.ap_class_index[i]],
**{k: round(v[i], decimals) for k, v in per_class.items()},
"mAP50": round(self.class_result(i)[2], decimals),
"mAP50-95": round(self.class_result(i)[3], decimals),
}
for i in range(len(per_class["Box-P"]))
]
method ultralytics.utils.metrics.DetMetrics.update_stats
def update_stats(self, stat: dict[str, Any]) -> None
Update statistics by appending new values to existing stat collections.
Args
| Name | Type | Description | Default |
|---|---|---|---|
stat | dict[str, any] | Dictionary containing new statistical values to append. Keys should match existing keys in self.stats. | required |
Source code in ultralytics/utils/metrics.py
View on GitHubdef update_stats(self, stat: dict[str, Any]) -> None:
"""Update statistics by appending new values to existing stat collections.
Args:
stat (dict[str, any]): Dictionary containing new statistical values to append. Keys should match existing
keys in self.stats.
"""
for k in self.stats.keys():
self.stats[k].append(stat[k])
class ultralytics.utils.metrics.SegmentMetrics
SegmentMetrics(self, names: dict[int, str] = {}) -> None
Bases: DetMetrics
Calculate and aggregate detection and segmentation metrics over a given set of classes.
Args
| Name | Type | Description | Default |
|---|---|---|---|
names | dict[int, str], optional | Dictionary of class names. | {} |
Attributes
| Name | Type | Description |
|---|---|---|
names | dict[int, str] | Dictionary of class names. |
box | Metric | An instance of the Metric class for storing detection results. |
seg | Metric | An instance of the Metric class to calculate mask segmentation metrics. |
speed | dict[str, float] | A dictionary for storing execution times of different parts of the detection process. |
task | str | The task type, set to 'segment'. |
stats | dict[str, list] | A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images. |
nt_per_class | Number of targets per class. | |
nt_per_image | Number of targets per image. |
Methods
| Name | Description |
|---|---|
keys | Return a list of keys for accessing metrics. |
maps | Return mAP scores for object detection and semantic segmentation models. |
fitness | Return the fitness score for both segmentation and bounding box models. |
curves | Return a list of curves for accessing specific metrics curves. |
curves_results | Return a list of computed performance metrics and statistics. |
class_result | Return classification results for a specified class index. |
mean_results | Return the mean metrics for bounding box and segmentation results. |
process | Process the detection and segmentation metrics over the given set of predictions. |
summary | Generate a summarized representation of per-class segmentation metrics as a list of dictionaries. Includes |
Source code in ultralytics/utils/metrics.py
View on GitHubclass SegmentMetrics(DetMetrics):
"""Calculate and aggregate detection and segmentation metrics over a given set of classes.
Attributes:
names (dict[int, str]): Dictionary of class names.
box (Metric): An instance of the Metric class for storing detection results.
seg (Metric): An instance of the Metric class to calculate mask segmentation metrics.
speed (dict[str, float]): A dictionary for storing execution times of different parts of the detection process.
task (str): The task type, set to 'segment'.
stats (dict[str, list]): A dictionary containing lists for true positives, confidence scores, predicted classes,
target classes, and target images.
nt_per_class: Number of targets per class.
nt_per_image: Number of targets per image.
Methods:
process: Process the detection and segmentation metrics over the given set of predictions.
keys: Return a list of keys for accessing metrics.
mean_results: Return the mean metrics for bounding box and segmentation results.
class_result: Return classification results for a specified class index.
maps: Return mAP scores for object detection and semantic segmentation models.
fitness: Return the fitness score for both segmentation and bounding box models.
curves: Return a list of curves for accessing specific metrics curves.
curves_results: Provide a list of computed performance metrics and statistics.
summary: Generate a summarized representation of per-class segmentation metrics as a list of dictionaries.
"""
def __init__(self, names: dict[int, str] = {}) -> None:
"""Initialize a SegmentMetrics instance with a save directory, plot flag, and class names.
Args:
names (dict[int, str], optional): Dictionary of class names.
"""
DetMetrics.__init__(self, names)
self.seg = Metric()
self.task = "segment"
self.stats["tp_m"] = [] # add additional stats for masks
property ultralytics.utils.metrics.SegmentMetrics.keys
def keys(self) -> list[str]
Return a list of keys for accessing metrics.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def keys(self) -> list[str]:
"""Return a list of keys for accessing metrics."""
return [
*DetMetrics.keys.fget(self),
"metrics/precision(M)",
"metrics/recall(M)",
"metrics/mAP50(M)",
"metrics/mAP50-95(M)",
]
property ultralytics.utils.metrics.SegmentMetrics.maps
def maps(self) -> np.ndarray
Return mAP scores for object detection and semantic segmentation models.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def maps(self) -> np.ndarray:
"""Return mAP scores for object detection and semantic segmentation models."""
return DetMetrics.maps.fget(self) + self.seg.maps
property ultralytics.utils.metrics.SegmentMetrics.fitness
def fitness(self) -> float
Return the fitness score for both segmentation and bounding box models.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def fitness(self) -> float:
"""Return the fitness score for both segmentation and bounding box models."""
return self.seg.fitness() + DetMetrics.fitness.fget(self)
property ultralytics.utils.metrics.SegmentMetrics.curves
def curves(self) -> list[str]
Return a list of curves for accessing specific metrics curves.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def curves(self) -> list[str]:
"""Return a list of curves for accessing specific metrics curves."""
return [
*DetMetrics.curves.fget(self),
"Precision-Recall(M)",
"F1-Confidence(M)",
"Precision-Confidence(M)",
"Recall-Confidence(M)",
]
property ultralytics.utils.metrics.SegmentMetrics.curves_results
def curves_results(self) -> list[list]
Return a list of computed performance metrics and statistics.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def curves_results(self) -> list[list]:
"""Return a list of computed performance metrics and statistics."""
return DetMetrics.curves_results.fget(self) + self.seg.curves_results
method ultralytics.utils.metrics.SegmentMetrics.class_result
def class_result(self, i: int) -> list[float]
Return classification results for a specified class index.
Args
| Name | Type | Description | Default |
|---|---|---|---|
i | int | required |
Source code in ultralytics/utils/metrics.py
View on GitHubdef class_result(self, i: int) -> list[float]:
"""Return classification results for a specified class index."""
return DetMetrics.class_result(self, i) + self.seg.class_result(i)
method ultralytics.utils.metrics.SegmentMetrics.mean_results
def mean_results(self) -> list[float]
Return the mean metrics for bounding box and segmentation results.
Source code in ultralytics/utils/metrics.py
View on GitHubdef mean_results(self) -> list[float]:
"""Return the mean metrics for bounding box and segmentation results."""
return DetMetrics.mean_results(self) + self.seg.mean_results()
method ultralytics.utils.metrics.SegmentMetrics.process
def process(self, save_dir: Path = Path("."), plot: bool = False, on_plot = None) -> dict[str, np.ndarray]
Process the detection and segmentation metrics over the given set of predictions.
Args
| Name | Type | Description | Default |
|---|---|---|---|
save_dir | Path | Directory to save plots. Defaults to Path("."). | Path(".") |
plot | bool | Whether to plot precision-recall curves. Defaults to False. | False |
on_plot | callable, optional | Function to call after plots are generated. Defaults to None. | None |
Returns
| Type | Description |
|---|---|
dict[str, np.ndarray] | Dictionary containing concatenated statistics arrays. |
Source code in ultralytics/utils/metrics.py
View on GitHubdef process(self, save_dir: Path = Path("."), plot: bool = False, on_plot=None) -> dict[str, np.ndarray]:
"""Process the detection and segmentation metrics over the given set of predictions.
Args:
save_dir (Path): Directory to save plots. Defaults to Path(".").
plot (bool): Whether to plot precision-recall curves. Defaults to False.
on_plot (callable, optional): Function to call after plots are generated. Defaults to None.
Returns:
(dict[str, np.ndarray]): Dictionary containing concatenated statistics arrays.
"""
stats = DetMetrics.process(self, save_dir, plot, on_plot=on_plot) # process box stats
results_mask = ap_per_class(
stats["tp_m"],
stats["conf"],
stats["pred_cls"],
stats["target_cls"],
plot=plot,
on_plot=on_plot,
save_dir=save_dir,
names=self.names,
prefix="Mask",
)[2:]
self.seg.nc = len(self.names)
self.seg.update(results_mask)
return stats
method ultralytics.utils.metrics.SegmentMetrics.summary
def summary(self, normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]
Generate a summarized representation of per-class segmentation metrics as a list of dictionaries. Includes
both box and mask scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.
Args
| Name | Type | Description | Default |
|---|---|---|---|
normalize | bool | For Segment metrics, everything is normalized by default [0-1]. | True |
decimals | int | Number of decimal places to round the metrics values to. | 5 |
Returns
| Type | Description |
|---|---|
list[dict[str, Any]] | A list of dictionaries, each representing one class with corresponding metric |
Examples
>>> results = model.val(data="coco8-seg.yaml")
>>> seg_summary = results.summary(decimals=4)
>>> print(seg_summary)
Source code in ultralytics/utils/metrics.py
View on GitHubdef summary(self, normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]:
"""Generate a summarized representation of per-class segmentation metrics as a list of dictionaries. Includes
both box and mask scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for
each class.
Args:
normalize (bool): For Segment metrics, everything is normalized by default [0-1].
decimals (int): Number of decimal places to round the metrics values to.
Returns:
(list[dict[str, Any]]): A list of dictionaries, each representing one class with corresponding metric
values.
Examples:
>>> results = model.val(data="coco8-seg.yaml")
>>> seg_summary = results.summary(decimals=4)
>>> print(seg_summary)
"""
per_class = {
"Mask-P": self.seg.p,
"Mask-R": self.seg.r,
"Mask-F1": self.seg.f1,
}
summary = DetMetrics.summary(self, normalize, decimals) # get box summary
for i, s in enumerate(summary):
s.update({**{k: round(v[i], decimals) for k, v in per_class.items()}})
return summary
class ultralytics.utils.metrics.PoseMetrics
PoseMetrics(self, names: dict[int, str] = {}) -> None
Bases: DetMetrics
Calculate and aggregate detection and pose metrics over a given set of classes.
Args
| Name | Type | Description | Default |
|---|---|---|---|
names | dict[int, str], optional | Dictionary of class names. | {} |
Attributes
| Name | Type | Description |
|---|---|---|
names | dict[int, str] | Dictionary of class names. |
pose | Metric | An instance of the Metric class to calculate pose metrics. |
box | Metric | An instance of the Metric class for storing detection results. |
speed | dict[str, float] | A dictionary for storing execution times of different parts of the detection process. |
task | str | The task type, set to 'pose'. |
stats | dict[str, list] | A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images. |
nt_per_class | Number of targets per class. | |
nt_per_image | Number of targets per image. |
Methods
| Name | Description |
|---|---|
keys | Return a list of evaluation metric keys. |
maps | Return the mean average precision (mAP) per class for both box and pose detections. |
fitness | Return combined fitness score for pose and box detection. |
curves | Return a list of curves for accessing specific metrics curves. |
curves_results | Return a list of computed performance metrics and statistics. |
class_result | Return the class-wise detection results for a specific class i. |
mean_results | Return the mean results of box and pose. |
process | Process the detection and pose metrics over the given set of predictions. |
summary | Generate a summarized representation of per-class pose metrics as a list of dictionaries. Includes both box |
Source code in ultralytics/utils/metrics.py
View on GitHubclass PoseMetrics(DetMetrics):
"""Calculate and aggregate detection and pose metrics over a given set of classes.
Attributes:
names (dict[int, str]): Dictionary of class names.
pose (Metric): An instance of the Metric class to calculate pose metrics.
box (Metric): An instance of the Metric class for storing detection results.
speed (dict[str, float]): A dictionary for storing execution times of different parts of the detection process.
task (str): The task type, set to 'pose'.
stats (dict[str, list]): A dictionary containing lists for true positives, confidence scores, predicted classes,
target classes, and target images.
nt_per_class: Number of targets per class.
nt_per_image: Number of targets per image.
Methods:
process: Process the detection and pose metrics over the given set of predictions. R
keys: Return a list of keys for accessing metrics.
mean_results: Return the mean results of box and pose.
class_result: Return the class-wise detection results for a specific class i.
maps: Return the mean average precision (mAP) per class for both box and pose detections.
fitness: Return combined fitness score for pose and box detection.
curves: Return a list of curves for accessing specific metrics curves.
curves_results: Provide a list of computed performance metrics and statistics.
summary: Generate a summarized representation of per-class pose metrics as a list of dictionaries.
"""
def __init__(self, names: dict[int, str] = {}) -> None:
"""Initialize the PoseMetrics class with directory path, class names, and plotting options.
Args:
names (dict[int, str], optional): Dictionary of class names.
"""
super().__init__(names)
self.pose = Metric()
self.task = "pose"
self.stats["tp_p"] = [] # add additional stats for pose
property ultralytics.utils.metrics.PoseMetrics.keys
def keys(self) -> list[str]
Return a list of evaluation metric keys.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def keys(self) -> list[str]:
"""Return a list of evaluation metric keys."""
return [
*DetMetrics.keys.fget(self),
"metrics/precision(P)",
"metrics/recall(P)",
"metrics/mAP50(P)",
"metrics/mAP50-95(P)",
]
property ultralytics.utils.metrics.PoseMetrics.maps
def maps(self) -> np.ndarray
Return the mean average precision (mAP) per class for both box and pose detections.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def maps(self) -> np.ndarray:
"""Return the mean average precision (mAP) per class for both box and pose detections."""
return DetMetrics.maps.fget(self) + self.pose.maps
property ultralytics.utils.metrics.PoseMetrics.fitness
def fitness(self) -> float
Return combined fitness score for pose and box detection.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def fitness(self) -> float:
"""Return combined fitness score for pose and box detection."""
return self.pose.fitness() + DetMetrics.fitness.fget(self)
property ultralytics.utils.metrics.PoseMetrics.curves
def curves(self) -> list[str]
Return a list of curves for accessing specific metrics curves.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def curves(self) -> list[str]:
"""Return a list of curves for accessing specific metrics curves."""
return [
*DetMetrics.curves.fget(self),
"Precision-Recall(B)",
"F1-Confidence(B)",
"Precision-Confidence(B)",
"Recall-Confidence(B)",
"Precision-Recall(P)",
"F1-Confidence(P)",
"Precision-Confidence(P)",
"Recall-Confidence(P)",
]
property ultralytics.utils.metrics.PoseMetrics.curves_results
def curves_results(self) -> list[list]
Return a list of computed performance metrics and statistics.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def curves_results(self) -> list[list]:
"""Return a list of computed performance metrics and statistics."""
return DetMetrics.curves_results.fget(self) + self.pose.curves_results
method ultralytics.utils.metrics.PoseMetrics.class_result
def class_result(self, i: int) -> list[float]
Return the class-wise detection results for a specific class i.
Args
| Name | Type | Description | Default |
|---|---|---|---|
i | int | required |
Source code in ultralytics/utils/metrics.py
View on GitHubdef class_result(self, i: int) -> list[float]:
"""Return the class-wise detection results for a specific class i."""
return DetMetrics.class_result(self, i) + self.pose.class_result(i)
method ultralytics.utils.metrics.PoseMetrics.mean_results
def mean_results(self) -> list[float]
Return the mean results of box and pose.
Source code in ultralytics/utils/metrics.py
View on GitHubdef mean_results(self) -> list[float]:
"""Return the mean results of box and pose."""
return DetMetrics.mean_results(self) + self.pose.mean_results()
method ultralytics.utils.metrics.PoseMetrics.process
def process(self, save_dir: Path = Path("."), plot: bool = False, on_plot = None) -> dict[str, np.ndarray]
Process the detection and pose metrics over the given set of predictions.
Args
| Name | Type | Description | Default |
|---|---|---|---|
save_dir | Path | Directory to save plots. Defaults to Path("."). | Path(".") |
plot | bool | Whether to plot precision-recall curves. Defaults to False. | False |
on_plot | callable, optional | Function to call after plots are generated. | None |
Returns
| Type | Description |
|---|---|
dict[str, np.ndarray] | Dictionary containing concatenated statistics arrays. |
Source code in ultralytics/utils/metrics.py
View on GitHubdef process(self, save_dir: Path = Path("."), plot: bool = False, on_plot=None) -> dict[str, np.ndarray]:
"""Process the detection and pose metrics over the given set of predictions.
Args:
save_dir (Path): Directory to save plots. Defaults to Path(".").
plot (bool): Whether to plot precision-recall curves. Defaults to False.
on_plot (callable, optional): Function to call after plots are generated.
Returns:
(dict[str, np.ndarray]): Dictionary containing concatenated statistics arrays.
"""
stats = DetMetrics.process(self, save_dir, plot, on_plot=on_plot) # process box stats
results_pose = ap_per_class(
stats["tp_p"],
stats["conf"],
stats["pred_cls"],
stats["target_cls"],
plot=plot,
on_plot=on_plot,
save_dir=save_dir,
names=self.names,
prefix="Pose",
)[2:]
self.pose.nc = len(self.names)
self.pose.update(results_pose)
return stats
method ultralytics.utils.metrics.PoseMetrics.summary
def summary(self, normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]
Generate a summarized representation of per-class pose metrics as a list of dictionaries. Includes both box
and pose scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.
Args
| Name | Type | Description | Default |
|---|---|---|---|
normalize | bool | For Pose metrics, everything is normalized by default [0-1]. | True |
decimals | int | Number of decimal places to round the metrics values to. | 5 |
Returns
| Type | Description |
|---|---|
list[dict[str, Any]] | A list of dictionaries, each representing one class with corresponding metric |
Examples
>>> results = model.val(data="coco8-pose.yaml")
>>> pose_summary = results.summary(decimals=4)
>>> print(pose_summary)
Source code in ultralytics/utils/metrics.py
View on GitHubdef summary(self, normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]:
"""Generate a summarized representation of per-class pose metrics as a list of dictionaries. Includes both box
and pose scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.
Args:
normalize (bool): For Pose metrics, everything is normalized by default [0-1].
decimals (int): Number of decimal places to round the metrics values to.
Returns:
(list[dict[str, Any]]): A list of dictionaries, each representing one class with corresponding metric
values.
Examples:
>>> results = model.val(data="coco8-pose.yaml")
>>> pose_summary = results.summary(decimals=4)
>>> print(pose_summary)
"""
per_class = {
"Pose-P": self.pose.p,
"Pose-R": self.pose.r,
"Pose-F1": self.pose.f1,
}
summary = DetMetrics.summary(self, normalize, decimals) # get box summary
for i, s in enumerate(summary):
s.update({**{k: round(v[i], decimals) for k, v in per_class.items()}})
return summary
class ultralytics.utils.metrics.ClassifyMetrics
ClassifyMetrics(self) -> None
Bases: SimpleClass, DataExportMixin
Class for computing classification metrics including top-1 and top-5 accuracy.
Attributes
| Name | Type | Description |
|---|---|---|
top1 | float | The top-1 accuracy. |
top5 | float | The top-5 accuracy. |
speed | dict | A dictionary containing the time taken for each step in the pipeline. |
task | str | The task type, set to 'classify'. |
Methods
| Name | Description |
|---|---|
fitness | Return mean of top-1 and top-5 accuracies as fitness score. |
results_dict | Return a dictionary with model's performance metrics and fitness score. |
keys | Return a list of keys for the results_dict property. |
curves | Return a list of curves for accessing specific metrics curves. |
curves_results | Return a list of curves for accessing specific metrics curves. |
process | Process target classes and predicted classes to compute metrics. |
summary | Generate a single-row summary of classification metrics (Top-1 and Top-5 accuracy). |
Source code in ultralytics/utils/metrics.py
View on GitHubclass ClassifyMetrics(SimpleClass, DataExportMixin):
"""Class for computing classification metrics including top-1 and top-5 accuracy.
Attributes:
top1 (float): The top-1 accuracy.
top5 (float): The top-5 accuracy.
speed (dict): A dictionary containing the time taken for each step in the pipeline.
task (str): The task type, set to 'classify'.
Methods:
process: Process target classes and predicted classes to compute metrics.
fitness: Return mean of top-1 and top-5 accuracies as fitness score.
results_dict: Return a dictionary with model's performance metrics and fitness score.
keys: Return a list of keys for the results_dict property.
curves: Return a list of curves for accessing specific metrics curves.
curves_results: Provide a list of computed performance metrics and statistics.
summary: Generate a single-row summary of classification metrics (Top-1 and Top-5 accuracy).
"""
def __init__(self) -> None:
"""Initialize a ClassifyMetrics instance."""
self.top1 = 0
self.top5 = 0
self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
self.task = "classify"
property ultralytics.utils.metrics.ClassifyMetrics.fitness
def fitness(self) -> float
Return mean of top-1 and top-5 accuracies as fitness score.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def fitness(self) -> float:
"""Return mean of top-1 and top-5 accuracies as fitness score."""
return (self.top1 + self.top5) / 2
property ultralytics.utils.metrics.ClassifyMetrics.results_dict
def results_dict(self) -> dict[str, float]
Return a dictionary with model's performance metrics and fitness score.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def results_dict(self) -> dict[str, float]:
"""Return a dictionary with model's performance metrics and fitness score."""
return dict(zip([*self.keys, "fitness"], [self.top1, self.top5, self.fitness]))
property ultralytics.utils.metrics.ClassifyMetrics.keys
def keys(self) -> list[str]
Return a list of keys for the results_dict property.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def keys(self) -> list[str]:
"""Return a list of keys for the results_dict property."""
return ["metrics/accuracy_top1", "metrics/accuracy_top5"]
property ultralytics.utils.metrics.ClassifyMetrics.curves
def curves(self) -> list
Return a list of curves for accessing specific metrics curves.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def curves(self) -> list:
"""Return a list of curves for accessing specific metrics curves."""
return []
property ultralytics.utils.metrics.ClassifyMetrics.curves_results
def curves_results(self) -> list
Return a list of curves for accessing specific metrics curves.
Source code in ultralytics/utils/metrics.py
View on GitHub@property
def curves_results(self) -> list:
"""Return a list of curves for accessing specific metrics curves."""
return []
method ultralytics.utils.metrics.ClassifyMetrics.process
def process(self, targets: torch.Tensor, pred: torch.Tensor)
Process target classes and predicted classes to compute metrics.
Args
| Name | Type | Description | Default |
|---|---|---|---|
targets | torch.Tensor | Target classes. | required |
pred | torch.Tensor | Predicted classes. | required |
Source code in ultralytics/utils/metrics.py
View on GitHubdef process(self, targets: torch.Tensor, pred: torch.Tensor):
"""Process target classes and predicted classes to compute metrics.
Args:
targets (torch.Tensor): Target classes.
pred (torch.Tensor): Predicted classes.
"""
pred, targets = torch.cat(pred), torch.cat(targets)
correct = (targets[:, None] == pred).float()
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
self.top1, self.top5 = acc.mean(0).tolist()
method ultralytics.utils.metrics.ClassifyMetrics.summary
def summary(self, normalize: bool = True, decimals: int = 5) -> list[dict[str, float]]
Generate a single-row summary of classification metrics (Top-1 and Top-5 accuracy).
Args
| Name | Type | Description | Default |
|---|---|---|---|
normalize | bool | For Classify metrics, everything is normalized by default [0-1]. | True |
decimals | int | Number of decimal places to round the metrics values to. | 5 |
Returns
| Type | Description |
|---|---|
list[dict[str, float]] | A list with one dictionary containing Top-1 and Top-5 classification accuracy. |
Examples
>>> results = model.val(data="imagenet10")
>>> classify_summary = results.summary(decimals=4)
>>> print(classify_summary)
Source code in ultralytics/utils/metrics.py
View on GitHubdef summary(self, normalize: bool = True, decimals: int = 5) -> list[dict[str, float]]:
"""Generate a single-row summary of classification metrics (Top-1 and Top-5 accuracy).
Args:
normalize (bool): For Classify metrics, everything is normalized by default [0-1].
decimals (int): Number of decimal places to round the metrics values to.
Returns:
(list[dict[str, float]]): A list with one dictionary containing Top-1 and Top-5 classification accuracy.
Examples:
>>> results = model.val(data="imagenet10")
>>> classify_summary = results.summary(decimals=4)
>>> print(classify_summary)
"""
return [{"top1_acc": round(self.top1, decimals), "top5_acc": round(self.top5, decimals)}]
class ultralytics.utils.metrics.OBBMetrics
OBBMetrics(self, names: dict[int, str] = {}) -> None
Bases: DetMetrics
Metrics for evaluating oriented bounding box (OBB) detection.
Args
| Name | Type | Description | Default |
|---|---|---|---|
names | dict[int, str], optional | Dictionary of class names. | {} |
Attributes
| Name | Type | Description |
|---|---|---|
names | dict[int, str] | Dictionary of class names. |
box | Metric | An instance of the Metric class for storing detection results. |
speed | dict[str, float] | A dictionary for storing execution times of different parts of the detection process. |
task | str | The task type, set to 'obb'. |
stats | dict[str, list] | A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images. |
nt_per_class | Number of targets per class. | |
nt_per_image | Number of targets per image. | |
References | ||
https | //arxiv.org/pdf/2106.06072.pdf |
Source code in ultralytics/utils/metrics.py
View on GitHubclass OBBMetrics(DetMetrics):
"""Metrics for evaluating oriented bounding box (OBB) detection.
Attributes:
names (dict[int, str]): Dictionary of class names.
box (Metric): An instance of the Metric class for storing detection results.
speed (dict[str, float]): A dictionary for storing execution times of different parts of the detection process.
task (str): The task type, set to 'obb'.
stats (dict[str, list]): A dictionary containing lists for true positives, confidence scores, predicted classes,
target classes, and target images.
nt_per_class: Number of targets per class.
nt_per_image: Number of targets per image.
References:
https://arxiv.org/pdf/2106.06072.pdf
"""
def __init__(self, names: dict[int, str] = {}) -> None:
"""Initialize an OBBMetrics instance with directory, plotting, and class names.
Args:
names (dict[int, str], optional): Dictionary of class names.
"""
DetMetrics.__init__(self, names)
# TODO: probably remove task as well
self.task = "obb"
function ultralytics.utils.metrics.bbox_ioa
def bbox_ioa(box1: np.ndarray, box2: np.ndarray, iou: bool = False, eps: float = 1e-7) -> np.ndarray
Calculate the intersection over box2 area given box1 and box2.
Args
| Name | Type | Description | Default |
|---|---|---|---|
box1 | np.ndarray | A numpy array of shape (N, 4) representing N bounding boxes in x1y1x2y2 format. | required |
box2 | np.ndarray | A numpy array of shape (M, 4) representing M bounding boxes in x1y1x2y2 format. | required |
iou | bool, optional | Calculate the standard IoU if True else return inter_area/box2_area. | False |
eps | float, optional | A small value to avoid division by zero. | 1e-7 |
Returns
| Type | Description |
|---|---|
np.ndarray | A numpy array of shape (N, M) representing the intersection over box2 area. |
Source code in ultralytics/utils/metrics.py
View on GitHubdef bbox_ioa(box1: np.ndarray, box2: np.ndarray, iou: bool = False, eps: float = 1e-7) -> np.ndarray:
"""Calculate the intersection over box2 area given box1 and box2.
Args:
box1 (np.ndarray): A numpy array of shape (N, 4) representing N bounding boxes in x1y1x2y2 format.
box2 (np.ndarray): A numpy array of shape (M, 4) representing M bounding boxes in x1y1x2y2 format.
iou (bool, optional): Calculate the standard IoU if True else return inter_area/box2_area.
eps (float, optional): A small value to avoid division by zero.
Returns:
(np.ndarray): A numpy array of shape (N, M) representing the intersection over box2 area.
"""
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
# Intersection area
inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * (
np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)
).clip(0)
# Box2 area
area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
if iou:
box1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
area = area + box1_area[:, None] - inter_area
# Intersection over box2 area
return inter_area / (area + eps)
function ultralytics.utils.metrics.box_iou
def box_iou(box1: torch.Tensor, box2: torch.Tensor, eps: float = 1e-7) -> torch.Tensor
Calculate intersection-over-union (IoU) of boxes.
Args
| Name | Type | Description | Default |
|---|---|---|---|
box1 | torch.Tensor | A tensor of shape (N, 4) representing N bounding boxes in (x1, y1, x2, y2) format. | required |
box2 | torch.Tensor | A tensor of shape (M, 4) representing M bounding boxes in (x1, y1, x2, y2) format. | required |
eps | float, optional | A small value to avoid division by zero. | 1e-7 |
Returns
| Type | Description |
|---|---|
torch.Tensor | An NxM tensor containing the pairwise IoU values for every element in box1 and box2. |
References | |
https | //github.com/pytorch/vision/blob/main/torchvision/ops/boxes.py |
Source code in ultralytics/utils/metrics.py
View on GitHubdef box_iou(box1: torch.Tensor, box2: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
"""Calculate intersection-over-union (IoU) of boxes.
Args:
box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes in (x1, y1, x2, y2) format.
box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes in (x1, y1, x2, y2) format.
eps (float, optional): A small value to avoid division by zero.
Returns:
(torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2.
References:
https://github.com/pytorch/vision/blob/main/torchvision/ops/boxes.py
"""
# NOTE: Need .float() to get accurate iou values
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
(a1, a2), (b1, b2) = box1.float().unsqueeze(1).chunk(2, 2), box2.float().unsqueeze(0).chunk(2, 2)
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2)
# IoU = inter / (area1 + area2 - inter)
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
function ultralytics.utils.metrics.bbox_iou
def bbox_iou(
box1: torch.Tensor,
box2: torch.Tensor,
xywh: bool = True,
GIoU: bool = False,
DIoU: bool = False,
CIoU: bool = False,
eps: float = 1e-7,
) -> torch.Tensor
Calculate the Intersection over Union (IoU) between bounding boxes.
This function supports various shapes for box1 and box2 as long as the last dimension is 4. For instance, you may pass tensors shaped like (4,), (N, 4), (B, N, 4), or (B, N, 1, 4). Internally, the code will split the last dimension into (x, y, w, h) if xywh=True, or (x1, y1, x2, y2) if xywh=False.
Args
| Name | Type | Description | Default |
|---|---|---|---|
box1 | torch.Tensor | A tensor representing one or more bounding boxes, with the last dimension being 4. | required |
box2 | torch.Tensor | A tensor representing one or more bounding boxes, with the last dimension being 4. | required |
xywh | bool, optional | If True, input boxes are in (x, y, w, h) format. If False, input boxes are in (x1, y1, x2, y2) format. | True |
GIoU | bool, optional | If True, calculate Generalized IoU. | False |
DIoU | bool, optional | If True, calculate Distance IoU. | False |
CIoU | bool, optional | If True, calculate Complete IoU. | False |
eps | float, optional | A small value to avoid division by zero. | 1e-7 |
Returns
| Type | Description |
|---|---|
torch.Tensor | IoU, GIoU, DIoU, or CIoU values depending on the specified flags. |
Source code in ultralytics/utils/metrics.py
View on GitHubdef bbox_iou(
box1: torch.Tensor,
box2: torch.Tensor,
xywh: bool = True,
GIoU: bool = False,
DIoU: bool = False,
CIoU: bool = False,
eps: float = 1e-7,
) -> torch.Tensor:
"""Calculate the Intersection over Union (IoU) between bounding boxes.
This function supports various shapes for `box1` and `box2` as long as the last dimension is 4. For instance, you
may pass tensors shaped like (4,), (N, 4), (B, N, 4), or (B, N, 1, 4). Internally, the code will split the last
dimension into (x, y, w, h) if `xywh=True`, or (x1, y1, x2, y2) if `xywh=False`.
Args:
box1 (torch.Tensor): A tensor representing one or more bounding boxes, with the last dimension being 4.
box2 (torch.Tensor): A tensor representing one or more bounding boxes, with the last dimension being 4.
xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in (x1, y1,
x2, y2) format.
GIoU (bool, optional): If True, calculate Generalized IoU.
DIoU (bool, optional): If True, calculate Distance IoU.
CIoU (bool, optional): If True, calculate Complete IoU.
eps (float, optional): A small value to avoid division by zero.
Returns:
(torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags.
"""
# Get the coordinates of bounding boxes
if xywh: # transform from xywh to xyxy
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
else: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
# Intersection area
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * (
b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)
).clamp_(0)
# Union Area
union = w1 * h1 + w2 * h2 - inter + eps
# IoU
iou = inter / union
if CIoU or DIoU or GIoU:
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw.pow(2) + ch.pow(2) + eps # convex diagonal squared
rho2 = (
(b2_x1 + b2_x2 - b1_x1 - b1_x2).pow(2) + (b2_y1 + b2_y2 - b1_y1 - b1_y2).pow(2)
) / 4 # center dist**2
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi**2) * ((w2 / h2).atan() - (w1 / h1).atan()).pow(2)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
return iou - rho2 / c2 # DIoU
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
return iou # IoU
function ultralytics.utils.metrics.mask_iou
def mask_iou(mask1: torch.Tensor, mask2: torch.Tensor, eps: float = 1e-7) -> torch.Tensor
Calculate masks IoU.
Args
| Name | Type | Description | Default |
|---|---|---|---|
mask1 | torch.Tensor | A tensor of shape (N, n) where N is the number of ground truth objects and n is the product of image width and height. | required |
mask2 | torch.Tensor | A tensor of shape (M, n) where M is the number of predicted objects and n is the product of image width and height. | required |
eps | float, optional | A small value to avoid division by zero. | 1e-7 |
Returns
| Type | Description |
|---|---|
torch.Tensor | A tensor of shape (N, M) representing masks IoU. |
Source code in ultralytics/utils/metrics.py
View on GitHubdef mask_iou(mask1: torch.Tensor, mask2: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
"""Calculate masks IoU.
Args:
mask1 (torch.Tensor): A tensor of shape (N, n) where N is the number of ground truth objects and n is the
product of image width and height.
mask2 (torch.Tensor): A tensor of shape (M, n) where M is the number of predicted objects and n is the product
of image width and height.
eps (float, optional): A small value to avoid division by zero.
Returns:
(torch.Tensor): A tensor of shape (N, M) representing masks IoU.
"""
intersection = torch.matmul(mask1, mask2.T).clamp_(0)
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
return intersection / (union + eps)
function ultralytics.utils.metrics.kpt_iou
def kpt_iou(
kpt1: torch.Tensor, kpt2: torch.Tensor, area: torch.Tensor, sigma: list[float], eps: float = 1e-7
) -> torch.Tensor
Calculate Object Keypoint Similarity (OKS).
Args
| Name | Type | Description | Default |
|---|---|---|---|
kpt1 | torch.Tensor | A tensor of shape (N, 17, 3) representing ground truth keypoints. | required |
kpt2 | torch.Tensor | A tensor of shape (M, 17, 3) representing predicted keypoints. | required |
area | torch.Tensor | A tensor of shape (N,) representing areas from ground truth. | required |
sigma | list | A list containing 17 values representing keypoint scales. | required |
eps | float, optional | A small value to avoid division by zero. | 1e-7 |
Returns
| Type | Description |
|---|---|
torch.Tensor | A tensor of shape (N, M) representing keypoint similarities. |
Source code in ultralytics/utils/metrics.py
View on GitHubdef kpt_iou(
kpt1: torch.Tensor, kpt2: torch.Tensor, area: torch.Tensor, sigma: list[float], eps: float = 1e-7
) -> torch.Tensor:
"""Calculate Object Keypoint Similarity (OKS).
Args:
kpt1 (torch.Tensor): A tensor of shape (N, 17, 3) representing ground truth keypoints.
kpt2 (torch.Tensor): A tensor of shape (M, 17, 3) representing predicted keypoints.
area (torch.Tensor): A tensor of shape (N,) representing areas from ground truth.
sigma (list): A list containing 17 values representing keypoint scales.
eps (float, optional): A small value to avoid division by zero.
Returns:
(torch.Tensor): A tensor of shape (N, M) representing keypoint similarities.
"""
d = (kpt1[:, None, :, 0] - kpt2[..., 0]).pow(2) + (kpt1[:, None, :, 1] - kpt2[..., 1]).pow(2) # (N, M, 17)
sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype) # (17, )
kpt_mask = kpt1[..., 2] != 0 # (N, 17)
e = d / ((2 * sigma).pow(2) * (area[:, None, None] + eps) * 2) # from cocoeval
# e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2 # from formula
return ((-e).exp() * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps)
function ultralytics.utils.metrics._get_covariance_matrix
def _get_covariance_matrix(boxes: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]
Generate covariance matrix from oriented bounding boxes.
Args
| Name | Type | Description | Default |
|---|---|---|---|
boxes | torch.Tensor | A tensor of shape (N, 5) representing rotated bounding boxes, with xywhr format. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Covariance matrices corresponding to original rotated bounding boxes. |
Source code in ultralytics/utils/metrics.py
View on GitHubdef _get_covariance_matrix(boxes: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Generate covariance matrix from oriented bounding boxes.
Args:
boxes (torch.Tensor): A tensor of shape (N, 5) representing rotated bounding boxes, with xywhr format.
Returns:
(torch.Tensor): Covariance matrices corresponding to original rotated bounding boxes.
"""
# Gaussian bounding boxes, ignore the center points (the first two columns) because they are not needed here.
gbbs = torch.cat((boxes[:, 2:4].pow(2) / 12, boxes[:, 4:]), dim=-1)
a, b, c = gbbs.split(1, dim=-1)
cos = c.cos()
sin = c.sin()
cos2 = cos.pow(2)
sin2 = sin.pow(2)
return a * cos2 + b * sin2, a * sin2 + b * cos2, (a - b) * cos * sin
function ultralytics.utils.metrics.probiou
def probiou(obb1: torch.Tensor, obb2: torch.Tensor, CIoU: bool = False, eps: float = 1e-7) -> torch.Tensor
Calculate probabilistic IoU between oriented bounding boxes.
Args
| Name | Type | Description | Default |
|---|---|---|---|
obb1 | torch.Tensor | Ground truth OBBs, shape (N, 5), format xywhr. | required |
obb2 | torch.Tensor | Predicted OBBs, shape (N, 5), format xywhr. | required |
CIoU | bool, optional | If True, calculate CIoU. | False |
eps | float, optional | Small value to avoid division by zero. | 1e-7 |
Returns
| Type | Description |
|---|---|
torch.Tensor | OBB similarities, shape (N,). |
Notes
OBB format: [center_x, center_y, width, height, rotation_angle].
References: https://arxiv.org/pdf/2106.06072v1.pdf
Source code in ultralytics/utils/metrics.py
View on GitHubdef probiou(obb1: torch.Tensor, obb2: torch.Tensor, CIoU: bool = False, eps: float = 1e-7) -> torch.Tensor:
"""Calculate probabilistic IoU between oriented bounding boxes.
Args:
obb1 (torch.Tensor): Ground truth OBBs, shape (N, 5), format xywhr.
obb2 (torch.Tensor): Predicted OBBs, shape (N, 5), format xywhr.
CIoU (bool, optional): If True, calculate CIoU.
eps (float, optional): Small value to avoid division by zero.
Returns:
(torch.Tensor): OBB similarities, shape (N,).
Notes:
OBB format: [center_x, center_y, width, height, rotation_angle].
References:
https://arxiv.org/pdf/2106.06072v1.pdf
"""
x1, y1 = obb1[..., :2].split(1, dim=-1)
x2, y2 = obb2[..., :2].split(1, dim=-1)
a1, b1, c1 = _get_covariance_matrix(obb1)
a2, b2, c2 = _get_covariance_matrix(obb2)
t1 = (
((a1 + a2) * (y1 - y2).pow(2) + (b1 + b2) * (x1 - x2).pow(2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)
) * 0.25
t2 = (((c1 + c2) * (x2 - x1) * (y1 - y2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)) * 0.5
t3 = (
((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2))
/ (4 * ((a1 * b1 - c1.pow(2)).clamp_(0) * (a2 * b2 - c2.pow(2)).clamp_(0)).sqrt() + eps)
+ eps
).log() * 0.5
bd = (t1 + t2 + t3).clamp(eps, 100.0)
hd = (1.0 - (-bd).exp() + eps).sqrt()
iou = 1 - hd
if CIoU: # only include the wh aspect ratio part
w1, h1 = obb1[..., 2:4].split(1, dim=-1)
w2, h2 = obb2[..., 2:4].split(1, dim=-1)
v = (4 / math.pi**2) * ((w2 / h2).atan() - (w1 / h1).atan()).pow(2)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - v * alpha # CIoU
return iou
function ultralytics.utils.metrics.batch_probiou
def batch_probiou(obb1: torch.Tensor | np.ndarray, obb2: torch.Tensor | np.ndarray, eps: float = 1e-7) -> torch.Tensor
Calculate the probabilistic IoU between oriented bounding boxes.
Args
| Name | Type | Description | Default |
|---|---|---|---|
obb1 | torch.Tensor | np.ndarray | A tensor of shape (N, 5) representing ground truth obbs, with xywhr format. | required |
obb2 | torch.Tensor | np.ndarray | A tensor of shape (M, 5) representing predicted obbs, with xywhr format. | required |
eps | float, optional | A small value to avoid division by zero. | 1e-7 |
Returns
| Type | Description |
|---|---|
torch.Tensor | A tensor of shape (N, M) representing obb similarities. |
References | |
https | //arxiv.org/pdf/2106.06072v1.pdf |
Source code in ultralytics/utils/metrics.py
View on GitHubdef batch_probiou(obb1: torch.Tensor | np.ndarray, obb2: torch.Tensor | np.ndarray, eps: float = 1e-7) -> torch.Tensor:
"""Calculate the probabilistic IoU between oriented bounding boxes.
Args:
obb1 (torch.Tensor | np.ndarray): A tensor of shape (N, 5) representing ground truth obbs, with xywhr format.
obb2 (torch.Tensor | np.ndarray): A tensor of shape (M, 5) representing predicted obbs, with xywhr format.
eps (float, optional): A small value to avoid division by zero.
Returns:
(torch.Tensor): A tensor of shape (N, M) representing obb similarities.
References:
https://arxiv.org/pdf/2106.06072v1.pdf
"""
obb1 = torch.from_numpy(obb1) if isinstance(obb1, np.ndarray) else obb1
obb2 = torch.from_numpy(obb2) if isinstance(obb2, np.ndarray) else obb2
x1, y1 = obb1[..., :2].split(1, dim=-1)
x2, y2 = (x.squeeze(-1)[None] for x in obb2[..., :2].split(1, dim=-1))
a1, b1, c1 = _get_covariance_matrix(obb1)
a2, b2, c2 = (x.squeeze(-1)[None] for x in _get_covariance_matrix(obb2))
t1 = (
((a1 + a2) * (y1 - y2).pow(2) + (b1 + b2) * (x1 - x2).pow(2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)
) * 0.25
t2 = (((c1 + c2) * (x2 - x1) * (y1 - y2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)) * 0.5
t3 = (
((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2))
/ (4 * ((a1 * b1 - c1.pow(2)).clamp_(0) * (a2 * b2 - c2.pow(2)).clamp_(0)).sqrt() + eps)
+ eps
).log() * 0.5
bd = (t1 + t2 + t3).clamp(eps, 100.0)
hd = (1.0 - (-bd).exp() + eps).sqrt()
return 1 - hd
function ultralytics.utils.metrics.smooth_bce
def smooth_bce(eps: float = 0.1) -> tuple[float, float]
Compute smoothed positive and negative Binary Cross-Entropy targets.
Args
| Name | Type | Description | Default |
|---|---|---|---|
eps | float, optional | The epsilon value for label smoothing. | 0.1 |
Returns
| Type | Description |
|---|---|
pos (float) | Positive label smoothing BCE target. |
neg (float) | Negative label smoothing BCE target. |
References | |
https | //github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 |
Source code in ultralytics/utils/metrics.py
View on GitHubdef smooth_bce(eps: float = 0.1) -> tuple[float, float]:
"""Compute smoothed positive and negative Binary Cross-Entropy targets.
Args:
eps (float, optional): The epsilon value for label smoothing.
Returns:
pos (float): Positive label smoothing BCE target.
neg (float): Negative label smoothing BCE target.
References:
https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
"""
return 1.0 - 0.5 * eps, 0.5 * eps
function ultralytics.utils.metrics.smooth
def smooth(y: np.ndarray, f: float = 0.05) -> np.ndarray
Box filter of fraction f.
Args
| Name | Type | Description | Default |
|---|---|---|---|
y | np.ndarray | required | |
f | float | 0.05 |
Source code in ultralytics/utils/metrics.py
View on GitHubdef smooth(y: np.ndarray, f: float = 0.05) -> np.ndarray:
"""Box filter of fraction f."""
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
p = np.ones(nf // 2) # ones padding
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
return np.convolve(yp, np.ones(nf) / nf, mode="valid") # y-smoothed
function ultralytics.utils.metrics.plot_pr_curve
def plot_pr_curve(
px: np.ndarray,
py: np.ndarray,
ap: np.ndarray,
save_dir: Path = Path("pr_curve.png"),
names: dict[int, str] = {},
on_plot=None,
)
Plot precision-recall curve.
Args
| Name | Type | Description | Default |
|---|---|---|---|
px | np.ndarray | X values for the PR curve. | required |
py | np.ndarray | Y values for the PR curve. | required |
ap | np.ndarray | Average precision values. | required |
save_dir | Path, optional | Path to save the plot. | Path("pr_curve.png") |
names | dict[int, str], optional | Dictionary mapping class indices to class names. | {} |
on_plot | callable, optional | Function to call after plot is saved. | None |
Source code in ultralytics/utils/metrics.py
View on GitHub@plt_settings()
def plot_pr_curve(
px: np.ndarray,
py: np.ndarray,
ap: np.ndarray,
save_dir: Path = Path("pr_curve.png"),
names: dict[int, str] = {},
on_plot=None,
):
"""Plot precision-recall curve.
Args:
px (np.ndarray): X values for the PR curve.
py (np.ndarray): Y values for the PR curve.
ap (np.ndarray): Average precision values.
save_dir (Path, optional): Path to save the plot.
names (dict[int, str], optional): Dictionary mapping class indices to class names.
on_plot (callable, optional): Function to call after plot is saved.
"""
import matplotlib.pyplot as plt # scope for faster 'import ultralytics'
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
py = np.stack(py, axis=1)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py.T):
ax.plot(px, y, linewidth=1, label=f"{names[i]} {ap[i, 0]:.3f}") # plot(recall, precision)
else:
ax.plot(px, py, linewidth=1, color="gray") # plot(recall, precision)
ax.plot(px, py.mean(1), linewidth=3, color="blue", label=f"all classes {ap[:, 0].mean():.3f} mAP@0.5")
ax.set_xlabel("Recall")
ax.set_ylabel("Precision")
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
ax.set_title("Precision-Recall Curve")
fig.savefig(save_dir, dpi=250)
plt.close(fig)
if on_plot:
on_plot(save_dir)
function ultralytics.utils.metrics.plot_mc_curve
def plot_mc_curve(
px: np.ndarray,
py: np.ndarray,
save_dir: Path = Path("mc_curve.png"),
names: dict[int, str] = {},
xlabel: str = "Confidence",
ylabel: str = "Metric",
on_plot=None,
)
Plot metric-confidence curve.
Args
| Name | Type | Description | Default |
|---|---|---|---|
px | np.ndarray | X values for the metric-confidence curve. | required |
py | np.ndarray | Y values for the metric-confidence curve. | required |
save_dir | Path, optional | Path to save the plot. | Path("mc_curve.png") |
names | dict[int, str], optional | Dictionary mapping class indices to class names. | {} |
xlabel | str, optional | X-axis label. | "Confidence" |
ylabel | str, optional | Y-axis label. | "Metric" |
on_plot | callable, optional | Function to call after plot is saved. | None |
Source code in ultralytics/utils/metrics.py
View on GitHub@plt_settings()
def plot_mc_curve(
px: np.ndarray,
py: np.ndarray,
save_dir: Path = Path("mc_curve.png"),
names: dict[int, str] = {},
xlabel: str = "Confidence",
ylabel: str = "Metric",
on_plot=None,
):
"""Plot metric-confidence curve.
Args:
px (np.ndarray): X values for the metric-confidence curve.
py (np.ndarray): Y values for the metric-confidence curve.
save_dir (Path, optional): Path to save the plot.
names (dict[int, str], optional): Dictionary mapping class indices to class names.
xlabel (str, optional): X-axis label.
ylabel (str, optional): Y-axis label.
on_plot (callable, optional): Function to call after plot is saved.
"""
import matplotlib.pyplot as plt # scope for faster 'import ultralytics'
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py):
ax.plot(px, y, linewidth=1, label=f"{names[i]}") # plot(confidence, metric)
else:
ax.plot(px, py.T, linewidth=1, color="gray") # plot(confidence, metric)
y = smooth(py.mean(0), 0.1)
ax.plot(px, y, linewidth=3, color="blue", label=f"all classes {y.max():.2f} at {px[y.argmax()]:.3f}")
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
ax.set_title(f"{ylabel}-Confidence Curve")
fig.savefig(save_dir, dpi=250)
plt.close(fig)
if on_plot:
on_plot(save_dir)
function ultralytics.utils.metrics.compute_ap
def compute_ap(recall: list[float], precision: list[float]) -> tuple[float, np.ndarray, np.ndarray]
Compute the average precision (AP) given the recall and precision curves.
Args
| Name | Type | Description | Default |
|---|---|---|---|
recall | list | The recall curve. | required |
precision | list | The precision curve. | required |
Returns
| Type | Description |
|---|---|
ap (float) | Average precision. |
mpre (np.ndarray) | Precision envelope curve. |
mrec (np.ndarray) | Modified recall curve with sentinel values added at the beginning and end. |
Source code in ultralytics/utils/metrics.py
View on GitHubdef compute_ap(recall: list[float], precision: list[float]) -> tuple[float, np.ndarray, np.ndarray]:
"""Compute the average precision (AP) given the recall and precision curves.
Args:
recall (list): The recall curve.
precision (list): The precision curve.
Returns:
ap (float): Average precision.
mpre (np.ndarray): Precision envelope curve.
mrec (np.ndarray): Modified recall curve with sentinel values added at the beginning and end.
"""
# Append sentinel values to beginning and end
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([1.0], precision, [0.0]))
# Compute the precision envelope
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
# Integrate area under curve
method = "interp" # methods: 'continuous', 'interp'
if method == "interp":
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
func = np.trapezoid if checks.check_version(np.__version__, ">=2.0") else np.trapz # np.trapz deprecated
ap = func(np.interp(x, mrec, mpre), x) # integrate
else: # 'continuous'
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x-axis (recall) changes
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
return ap, mpre, mrec
function ultralytics.utils.metrics.ap_per_class
def ap_per_class(
tp: np.ndarray,
conf: np.ndarray,
pred_cls: np.ndarray,
target_cls: np.ndarray,
plot: bool = False,
on_plot=None,
save_dir: Path = Path(),
names: dict[int, str] = {},
eps: float = 1e-16,
prefix: str = "",
) -> tuple
Compute the average precision per class for object detection evaluation.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tp | np.ndarray | Binary array indicating whether the detection is correct (True) or not (False). | required |
conf | np.ndarray | Array of confidence scores of the detections. | required |
pred_cls | np.ndarray | Array of predicted classes of the detections. | required |
target_cls | np.ndarray | Array of true classes of the detections. | required |
plot | bool, optional | Whether to plot PR curves or not. | False |
on_plot | callable, optional | A callback to pass plots path and data when they are rendered. | None |
save_dir | Path, optional | Directory to save the PR curves. | Path() |
names | dict[int, str], optional | Dictionary of class names to plot PR curves. | {} |
eps | float, optional | A small value to avoid division by zero. | 1e-16 |
prefix | str, optional | A prefix string for saving the plot files. | "" |
Returns
| Type | Description |
|---|---|
tp (np.ndarray) | True positive counts at threshold given by max F1 metric for each class. |
fp (np.ndarray) | False positive counts at threshold given by max F1 metric for each class. |
p (np.ndarray) | Precision values at threshold given by max F1 metric for each class. |
r (np.ndarray) | Recall values at threshold given by max F1 metric for each class. |
f1 (np.ndarray) | F1-score values at threshold given by max F1 metric for each class. |
ap (np.ndarray) | Average precision for each class at different IoU thresholds. |
unique_classes (np.ndarray) | An array of unique classes that have data. |
p_curve (np.ndarray) | Precision curves for each class. |
r_curve (np.ndarray) | Recall curves for each class. |
f1_curve (np.ndarray) | F1-score curves for each class. |
x (np.ndarray) | X-axis values for the curves. |
prec_values (np.ndarray) | Precision values at mAP@0.5 for each class. |
Source code in ultralytics/utils/metrics.py
View on GitHubdef ap_per_class(
tp: np.ndarray,
conf: np.ndarray,
pred_cls: np.ndarray,
target_cls: np.ndarray,
plot: bool = False,
on_plot=None,
save_dir: Path = Path(),
names: dict[int, str] = {},
eps: float = 1e-16,
prefix: str = "",
) -> tuple:
"""Compute the average precision per class for object detection evaluation.
Args:
tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False).
conf (np.ndarray): Array of confidence scores of the detections.
pred_cls (np.ndarray): Array of predicted classes of the detections.
target_cls (np.ndarray): Array of true classes of the detections.
plot (bool, optional): Whether to plot PR curves or not.
on_plot (callable, optional): A callback to pass plots path and data when they are rendered.
save_dir (Path, optional): Directory to save the PR curves.
names (dict[int, str], optional): Dictionary of class names to plot PR curves.
eps (float, optional): A small value to avoid division by zero.
prefix (str, optional): A prefix string for saving the plot files.
Returns:
tp (np.ndarray): True positive counts at threshold given by max F1 metric for each class.
fp (np.ndarray): False positive counts at threshold given by max F1 metric for each class.
p (np.ndarray): Precision values at threshold given by max F1 metric for each class.
r (np.ndarray): Recall values at threshold given by max F1 metric for each class.
f1 (np.ndarray): F1-score values at threshold given by max F1 metric for each class.
ap (np.ndarray): Average precision for each class at different IoU thresholds.
unique_classes (np.ndarray): An array of unique classes that have data.
p_curve (np.ndarray): Precision curves for each class.
r_curve (np.ndarray): Recall curves for each class.
f1_curve (np.ndarray): F1-score curves for each class.
x (np.ndarray): X-axis values for the curves.
prec_values (np.ndarray): Precision values at mAP@0.5 for each class.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes, nt = np.unique(target_cls, return_counts=True)
nc = unique_classes.shape[0] # number of classes, number of detections
# Create Precision-Recall curve and compute AP for each class
x, prec_values = np.linspace(0, 1, 1000), []
# Average precision, precision and recall curves
ap, p_curve, r_curve = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
for ci, c in enumerate(unique_classes):
i = pred_cls == c
n_l = nt[ci] # number of labels
n_p = i.sum() # number of predictions
if n_p == 0 or n_l == 0:
continue
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum(0)
tpc = tp[i].cumsum(0)
# Recall
recall = tpc / (n_l + eps) # recall curve
r_curve[ci] = np.interp(-x, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
# Precision
precision = tpc / (tpc + fpc) # precision curve
p_curve[ci] = np.interp(-x, -conf[i], precision[:, 0], left=1) # p at pr_score
# AP from recall-precision curve
for j in range(tp.shape[1]):
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
if j == 0:
prec_values.append(np.interp(x, mrec, mpre)) # precision at mAP@0.5
prec_values = np.array(prec_values) if prec_values else np.zeros((1, 1000)) # (nc, 1000)
# Compute F1 (harmonic mean of precision and recall)
f1_curve = 2 * p_curve * r_curve / (p_curve + r_curve + eps)
names = {i: names[k] for i, k in enumerate(unique_classes) if k in names} # dict: only classes that have data
if plot:
plot_pr_curve(x, prec_values, ap, save_dir / f"{prefix}PR_curve.png", names, on_plot=on_plot)
plot_mc_curve(x, f1_curve, save_dir / f"{prefix}F1_curve.png", names, ylabel="F1", on_plot=on_plot)
plot_mc_curve(x, p_curve, save_dir / f"{prefix}P_curve.png", names, ylabel="Precision", on_plot=on_plot)
plot_mc_curve(x, r_curve, save_dir / f"{prefix}R_curve.png", names, ylabel="Recall", on_plot=on_plot)
i = smooth(f1_curve.mean(0), 0.1).argmax() # max F1 index
p, r, f1 = p_curve[:, i], r_curve[:, i], f1_curve[:, i] # max-F1 precision, recall, F1 values
tp = (r * nt).round() # true positives
fp = (tp / (p + eps) - tp).round() # false positives
return tp, fp, p, r, f1, ap, unique_classes.astype(int), p_curve, r_curve, f1_curve, x, prec_values