Reference for ultralytics/utils/metrics.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/metrics.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.utils.metrics.ConfusionMatrix
ConfusionMatrix(
names: dict[int, str] = [], task: str = "detect", save_matches: bool = False
)
Bases: DataExportMixin
flowchart TD
ultralytics.utils.metrics.ConfusionMatrix[ConfusionMatrix]
ultralytics.utils.DataExportMixin[DataExportMixin]
ultralytics.utils.DataExportMixin --> ultralytics.utils.metrics.ConfusionMatrix
click ultralytics.utils.metrics.ConfusionMatrix href "" "ultralytics.utils.metrics.ConfusionMatrix"
click ultralytics.utils.DataExportMixin href "" "ultralytics.utils.DataExportMixin"
A class for calculating and updating a confusion matrix for object detection and classification tasks.
Attributes:
| Name | Type | Description |
|---|---|---|
task |
str
| The type of task, either 'detect' or 'classify'. |
matrix |
ndarray
| The confusion matrix, with dimensions depending on the task. |
nc |
int
| The number of category. |
names |
list[str]
| The names of the classes, used as labels on the plot. |
matches |
dict
| Contains the indices of ground truths and predictions categorized into TP, FP and FN. |
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
names
|
dict[int, str]
| Names of classes, used as labels on the plot. |
[]
|
task
|
str
| Type of task, either 'detect' or 'classify'. |
'detect'
|
save_matches
|
bool
| Save the indices of GTs, TPs, FPs, FNs for visualization. |
False
|
Source code in ultralytics/utils/metrics.py
314 315 316 317 318 319 320 321 322 323 324 325 326 | |
matrix
matrix()
Return the confusion matrix.
Source code in ultralytics/utils/metrics.py
443 444 445 | |
plot
plot(normalize: bool = True, save_dir: str = '', on_plot=None)
Plot the confusion matrix using matplotlib and save it to a file.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
normalize
|
bool
| Whether to normalize the confusion matrix. |
True
|
save_dir
|
str
| Directory where the plot will be saved. |
''
|
on_plot
|
callable
| An optional callback to pass plots path and data when they are rendered. |
None
|
Source code in ultralytics/utils/metrics.py
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 | |
plot_matches
plot_matches(img: Tensor, im_file: str, save_dir: Path) -> None
Plot grid of GT, TP, FP, FN for each image.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
img
|
Tensor
| Image to plot onto. | required |
im_file
|
str
| Image filename to save visualizations. | required |
save_dir
|
Path
| Location to save the visualizations to. | required |
Source code in ultralytics/utils/metrics.py
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 | |
print
print()
Print the confusion matrix to the console.
Source code in ultralytics/utils/metrics.py
569 570 571 572 | |
process_batch
process_batch(
detections: dict[str, Tensor],
batch: dict[str, Any],
conf: float = 0.25,
iou_thres: float = 0.45,
) -> None
Update confusion matrix for object detection task.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
detections
|
dict[str, Tensor]
| Dictionary containing detected bounding boxes and their associated information. Should contain 'cls', 'conf', and 'bboxes' keys, where 'bboxes' can be Array[N, 4] for regular boxes or Array[N, 5] for OBB with angle. | required |
batch
|
dict[str, Any]
| Batch dictionary containing ground truth data with 'bboxes' (Array[M, 4]| Array[M, 5]) and 'cls' (Array[M]) keys, where M is the number of ground truth objects. | required |
conf
|
float
| Confidence threshold for detections. |
0.25
|
iou_thres
|
float
| IoU threshold for matching detections to ground truth. |
0.45
|
Source code in ultralytics/utils/metrics.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 | |
process_cls_preds
process_cls_preds(preds: list[Tensor], targets: list[Tensor]) -> None
Update confusion matrix for classification task.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
preds
|
list[N, min(nc, 5)]
| Predicted class labels. | required |
targets
|
list[N, 1]
| Ground truth class labels. | required |
Source code in ultralytics/utils/metrics.py
353 354 355 356 357 358 359 360 361 362 | |
summary
summary(normalize: bool = False, decimals: int = 5) -> list[dict[str, float]]
Generate a summarized representation of the confusion matrix as a list of dictionaries, with optional normalization. This is useful for exporting the matrix to various formats such as CSV, XML, HTML, JSON, or SQL.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
normalize
|
bool
| Whether to normalize the confusion matrix values. |
False
|
decimals
|
int
| Number of decimal places to round the output values to. |
5
|
Returns:
| Type | Description |
|---|---|
list[dict[str, float]]
| A list of dictionaries, each representing one predicted class with corresponding values for all actual classes. |
Examples:
>>> results = model.val(data="coco8.yaml", plots=True)
>>> cm_dict = results.confusion_matrix.summary(normalize=True, decimals=5)
>>> print(cm_dict)
Source code in ultralytics/utils/metrics.py
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | |
tp_fp
tp_fp() -> tuple[np.ndarray, np.ndarray]
Return true positives and false positives.
Returns:
| Name | Type | Description |
|---|---|---|
tp |
ndarray
| True positives. |
fp |
ndarray
| False positives. |
Source code in ultralytics/utils/metrics.py
447 448 449 450 451 452 453 454 455 456 457 | |
ultralytics.utils.metrics.Metric
Metric()
Bases: SimpleClass
flowchart TD
ultralytics.utils.metrics.Metric[Metric]
ultralytics.utils.SimpleClass[SimpleClass]
ultralytics.utils.SimpleClass --> ultralytics.utils.metrics.Metric
click ultralytics.utils.metrics.Metric href "" "ultralytics.utils.metrics.Metric"
click ultralytics.utils.SimpleClass href "" "ultralytics.utils.SimpleClass"
Class for computing evaluation metrics for Ultralytics YOLO models.
Attributes:
| Name | Type | Description |
|---|---|---|
p |
list
| Precision for each class. Shape: (nc,). |
r |
list
| Recall for each class. Shape: (nc,). |
f1 |
list
| F1 score for each class. Shape: (nc,). |
all_ap |
list
| AP scores for all classes and all IoU thresholds. Shape: (nc, 10). |
ap_class_index |
list
| Index of class for each AP score. Shape: (nc,). |
nc |
int
| Number of classes. |
Methods:
| Name | Description |
|---|---|
ap50 | AP at IoU threshold of 0.5 for all classes. |
ap | AP at IoU thresholds from 0.5 to 0.95 for all classes. |
mp | Mean precision of all classes. |
mr | Mean recall of all classes. |
map50 | Mean AP at IoU threshold of 0.5 for all classes. |
map75 | Mean AP at IoU threshold of 0.75 for all classes. |
map | Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. |
mean_results | Mean of results, returns mp, mr, map50, map. |
class_result | Class-aware result, returns p[i], r[i], ap50[i], ap[i]. |
maps | mAP of each class. |
fitness | Model fitness as a weighted combination of metrics. |
update | Update metric attributes with new evaluation results. |
curves | Provides a list of curves for accessing specific metrics like precision, recall, F1, etc. |
curves_results | Provide a list of results for accessing specific metrics like precision, recall, F1, etc. |
Source code in ultralytics/utils/metrics.py
864 865 866 867 868 869 870 871 | |
approperty
ap: ndarray | list
Return the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes.
Returns:
| Type | Description |
|---|---|
ndarray | list
| Array of shape (nc,) with AP50-95 values per class, or an empty list if not available. |
ap50property
ap50: ndarray | list
Return the Average Precision (AP) at an IoU threshold of 0.5 for all classes.
Returns:
| Type | Description |
|---|---|
ndarray | list
| Array of shape (nc,) with AP50 values per class, or an empty list if not available. |
curvesproperty
curves: list
Return a list of curves for accessing specific metrics curves.
curves_resultsproperty
curves_results: list[list]
Return a list of curves for accessing specific metrics curves.
mapproperty
map: float
Return the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
Returns:
| Type | Description |
|---|---|
float
| The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05. |
map50property
map50: float
Return the mean Average Precision (mAP) at an IoU threshold of 0.5.
Returns:
| Type | Description |
|---|---|
float
| The mAP at an IoU threshold of 0.5. |
map75property
map75: float
Return the mean Average Precision (mAP) at an IoU threshold of 0.75.
Returns:
| Type | Description |
|---|---|
float
| The mAP at an IoU threshold of 0.75. |
mapsproperty
maps: ndarray
Return mAP of each class.
mpproperty
mp: float
Return the Mean Precision of all classes.
Returns:
| Type | Description |
|---|---|
float
| The mean precision of all classes. |
mrproperty
mr: float
Return the Mean Recall of all classes.
Returns:
| Type | Description |
|---|---|
float
| The mean recall of all classes. |
class_result
class_result(i: int) -> tuple[float, float, float, float]
Return class-aware result, p[i], r[i], ap50[i], ap[i].
Source code in ultralytics/utils/metrics.py
940 941 942 | |
fitness
fitness() -> float
Return model fitness as a weighted combination of metrics.
Source code in ultralytics/utils/metrics.py
952 953 954 955 | |
mean_results
mean_results() -> list[float]
Return mean of results, mp, mr, map50, map.
Source code in ultralytics/utils/metrics.py
936 937 938 | |
update
update(results: tuple)
Update the evaluation metrics with a new set of results.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
results
|
tuple
| A tuple containing evaluation metrics: - p (list): Precision for each class. - r (list): Recall for each class. - f1 (list): F1 score for each class. - all_ap (list): AP scores for all classes and all IoU thresholds. - ap_class_index (list): Index of class for each AP score. - p_curve (list): Precision curve for each class. - r_curve (list): Recall curve for each class. - f1_curve (list): F1 curve for each class. - px (list): X values for the curves. - prec_values (list): Precision values for each class. | required |
Source code in ultralytics/utils/metrics.py
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 | |
ultralytics.utils.metrics.DetMetrics
DetMetrics(names: dict[int, str] = {})
Bases: SimpleClass, DataExportMixin
flowchart TD
ultralytics.utils.metrics.DetMetrics[DetMetrics]
ultralytics.utils.SimpleClass[SimpleClass]
ultralytics.utils.DataExportMixin[DataExportMixin]
ultralytics.utils.SimpleClass --> ultralytics.utils.metrics.DetMetrics
ultralytics.utils.DataExportMixin --> ultralytics.utils.metrics.DetMetrics
click ultralytics.utils.metrics.DetMetrics href "" "ultralytics.utils.metrics.DetMetrics"
click ultralytics.utils.SimpleClass href "" "ultralytics.utils.SimpleClass"
click ultralytics.utils.DataExportMixin href "" "ultralytics.utils.DataExportMixin"
Utility class for computing detection metrics such as precision, recall, and mean average precision (mAP).
Attributes:
| Name | Type | Description |
|---|---|---|
names |
dict[int, str]
| A dictionary of class names. |
box |
Metric
| An instance of the Metric class for storing detection results. |
speed |
dict[str, float]
| A dictionary for storing execution times of different parts of the detection process. |
task |
str
| The task type, set to 'detect'. |
stats |
dict[str, list]
| A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images. |
nt_per_class | Number of targets per class. | |
nt_per_image | Number of targets per image. |
Methods:
| Name | Description |
|---|---|
update_stats | Update statistics by appending new values to existing stat collections. |
process | Process predicted results for object detection and update metrics. |
clear_stats | Clear the stored statistics. |
keys | Return a list of keys for accessing specific metrics. |
mean_results | Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95. |
class_result | Return the result of evaluating the performance of an object detection model on a specific class. |
maps | Return mean Average Precision (mAP) scores per class. |
fitness | Return the fitness of box object. |
ap_class_index | Return the average precision index per class. |
results_dict | Return dictionary of computed performance metrics and statistics. |
curves | Return a list of curves for accessing specific metrics curves. |
curves_results | Return a list of computed performance metrics and statistics. |
summary | Generate a summarized representation of per-class detection metrics as a list of dictionaries. |
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
names
|
dict[int, str]
| Dictionary of class names. |
{}
|
Source code in ultralytics/utils/metrics.py
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 | |
ap_class_indexproperty
ap_class_index: list
Return the average precision index per class.
curvesproperty
curves: list[str]
Return a list of curves for accessing specific metrics curves.
curves_resultsproperty
curves_results: list[list]
Return a list of computed performance metrics and statistics.
fitnessproperty
fitness: float
Return the fitness of box object.
keysproperty
keys: list[str]
Return a list of keys for accessing specific metrics.
mapsproperty
maps: ndarray
Return mean Average Precision (mAP) scores per class.
results_dictproperty
results_dict: dict[str, float]
Return dictionary of computed performance metrics and statistics.
class_result
class_result(i: int) -> tuple[float, float, float, float]
Return the result of evaluating the performance of an object detection model on a specific class.
Source code in ultralytics/utils/metrics.py
1100 1101 1102 | |
clear_stats
clear_stats()
Clear the stored statistics.
Source code in ultralytics/utils/metrics.py
1086 1087 1088 1089 | |
mean_results
mean_results() -> list[float]
Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95.
Source code in ultralytics/utils/metrics.py
1096 1097 1098 | |
process
process(
save_dir: Path = Path("."), plot: bool = False, on_plot=None
) -> dict[str, np.ndarray]
Process predicted results for object detection and update metrics.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
save_dir
|
Path
| Directory to save plots. Defaults to Path("."). |
Path('.')
|
plot
|
bool
| Whether to plot precision-recall curves. Defaults to False. |
False
|
on_plot
|
callable
| Function to call after plots are generated. Defaults to None. |
None
|
Returns:
| Type | Description |
|---|---|
dict[str, ndarray]
| Dictionary containing concatenated statistics arrays. |
Source code in ultralytics/utils/metrics.py
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 | |
summary
summary(normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]
Generate a summarized representation of per-class detection metrics as a list of dictionaries. Includes shared scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
normalize
|
bool
| For Detect metrics, everything is normalized by default [0-1]. |
True
|
decimals
|
int
| Number of decimal places to round the metrics values to. |
5
|
Returns:
| Type | Description |
|---|---|
list[dict[str, Any]]
| A list of dictionaries, each representing one class with corresponding metric values. |
Examples:
>>> results = model.val(data="coco8.yaml")
>>> detection_summary = results.summary()
>>> print(detection_summary)
Source code in ultralytics/utils/metrics.py
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 | |
update_stats
update_stats(stat: dict[str, Any]) -> None
Update statistics by appending new values to existing stat collections.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
stat
|
dict[str, any]
| Dictionary containing new statistical values to append. Keys should match existing keys in self.stats. | required |
Source code in ultralytics/utils/metrics.py
1045 1046 1047 1048 1049 1050 1051 1052 1053 | |
ultralytics.utils.metrics.SegmentMetrics
SegmentMetrics(names: dict[int, str] = {})
Bases: DetMetrics
flowchart TD
ultralytics.utils.metrics.SegmentMetrics[SegmentMetrics]
ultralytics.utils.metrics.DetMetrics[DetMetrics]
ultralytics.utils.SimpleClass[SimpleClass]
ultralytics.utils.DataExportMixin[DataExportMixin]
ultralytics.utils.metrics.DetMetrics --> ultralytics.utils.metrics.SegmentMetrics
ultralytics.utils.SimpleClass --> ultralytics.utils.metrics.DetMetrics
ultralytics.utils.DataExportMixin --> ultralytics.utils.metrics.DetMetrics
click ultralytics.utils.metrics.SegmentMetrics href "" "ultralytics.utils.metrics.SegmentMetrics"
click ultralytics.utils.metrics.DetMetrics href "" "ultralytics.utils.metrics.DetMetrics"
click ultralytics.utils.SimpleClass href "" "ultralytics.utils.SimpleClass"
click ultralytics.utils.DataExportMixin href "" "ultralytics.utils.DataExportMixin"
Calculate and aggregate detection and segmentation metrics over a given set of classes.
Attributes:
| Name | Type | Description |
|---|---|---|
names |
dict[int, str]
| Dictionary of class names. |
box |
Metric
| An instance of the Metric class for storing detection results. |
seg |
Metric
| An instance of the Metric class to calculate mask segmentation metrics. |
speed |
dict[str, float]
| A dictionary for storing execution times of different parts of the detection process. |
task |
str
| The task type, set to 'segment'. |
stats |
dict[str, list]
| A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images. |
nt_per_class | Number of targets per class. | |
nt_per_image | Number of targets per image. |
Methods:
| Name | Description |
|---|---|
process | Process the detection and segmentation metrics over the given set of predictions. |
keys | Return a list of keys for accessing metrics. |
mean_results | Return the mean metrics for bounding box and segmentation results. |
class_result | Return classification results for a specified class index. |
maps | Return mAP scores for object detection and semantic segmentation models. |
fitness | Return the fitness score for both segmentation and bounding box models. |
curves | Return a list of curves for accessing specific metrics curves. |
curves_results | Provide a list of computed performance metrics and statistics. |
summary | Generate a summarized representation of per-class segmentation metrics as a list of dictionaries. |
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
names
|
dict[int, str]
| Dictionary of class names. |
{}
|
Source code in ultralytics/utils/metrics.py
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 | |
curvesproperty
curves: list[str]
Return a list of curves for accessing specific metrics curves.
curves_resultsproperty
curves_results: list[list]
Return a list of computed performance metrics and statistics.
fitnessproperty
fitness: float
Return the fitness score for both segmentation and bounding box models.
keysproperty
keys: list[str]
Return a list of keys for accessing metrics.
mapsproperty
maps: ndarray
Return mAP scores for object detection and semantic segmentation models.
class_result
class_result(i: int) -> list[float]
Return classification results for a specified class index.
Source code in ultralytics/utils/metrics.py
1250 1251 1252 | |
mean_results
mean_results() -> list[float]
Return the mean metrics for bounding box and segmentation results.
Source code in ultralytics/utils/metrics.py
1246 1247 1248 | |
process
process(
save_dir: Path = Path("."), plot: bool = False, on_plot=None
) -> dict[str, np.ndarray]
Process the detection and segmentation metrics over the given set of predictions.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
save_dir
|
Path
| Directory to save plots. Defaults to Path("."). |
Path('.')
|
plot
|
bool
| Whether to plot precision-recall curves. Defaults to False. |
False
|
on_plot
|
callable
| Function to call after plots are generated. Defaults to None. |
None
|
Returns:
| Type | Description |
|---|---|
dict[str, ndarray]
| Dictionary containing concatenated statistics arrays. |
Source code in ultralytics/utils/metrics.py
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 | |
summary
summary(normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]
Generate a summarized representation of per-class segmentation metrics as a list of dictionaries. Includes both box and mask scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
normalize
|
bool
| For Segment metrics, everything is normalized by default [0-1]. |
True
|
decimals
|
int
| Number of decimal places to round the metrics values to. |
5
|
Returns:
| Type | Description |
|---|---|
list[dict[str, Any]]
| A list of dictionaries, each representing one class with corresponding metric values. |
Examples:
>>> results = model.val(data="coco8-seg.yaml")
>>> seg_summary = results.summary(decimals=4)
>>> print(seg_summary)
Source code in ultralytics/utils/metrics.py
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 | |
ultralytics.utils.metrics.PoseMetrics
PoseMetrics(names: dict[int, str] = {})
Bases: DetMetrics
flowchart TD
ultralytics.utils.metrics.PoseMetrics[PoseMetrics]
ultralytics.utils.metrics.DetMetrics[DetMetrics]
ultralytics.utils.SimpleClass[SimpleClass]
ultralytics.utils.DataExportMixin[DataExportMixin]
ultralytics.utils.metrics.DetMetrics --> ultralytics.utils.metrics.PoseMetrics
ultralytics.utils.SimpleClass --> ultralytics.utils.metrics.DetMetrics
ultralytics.utils.DataExportMixin --> ultralytics.utils.metrics.DetMetrics
click ultralytics.utils.metrics.PoseMetrics href "" "ultralytics.utils.metrics.PoseMetrics"
click ultralytics.utils.metrics.DetMetrics href "" "ultralytics.utils.metrics.DetMetrics"
click ultralytics.utils.SimpleClass href "" "ultralytics.utils.SimpleClass"
click ultralytics.utils.DataExportMixin href "" "ultralytics.utils.DataExportMixin"
Calculate and aggregate detection and pose metrics over a given set of classes.
Attributes:
| Name | Type | Description |
|---|---|---|
names |
dict[int, str]
| Dictionary of class names. |
pose |
Metric
| An instance of the Metric class to calculate pose metrics. |
box |
Metric
| An instance of the Metric class for storing detection results. |
speed |
dict[str, float]
| A dictionary for storing execution times of different parts of the detection process. |
task |
str
| The task type, set to 'pose'. |
stats |
dict[str, list]
| A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images. |
nt_per_class | Number of targets per class. | |
nt_per_image | Number of targets per image. |
Methods:
| Name | Description |
|---|---|
process | Process the detection and pose metrics over the given set of predictions. R |
keys | Return a list of keys for accessing metrics. |
mean_results | Return the mean results of box and pose. |
class_result | Return the class-wise detection results for a specific class i. |
maps | Return the mean average precision (mAP) per class for both box and pose detections. |
fitness | Return combined fitness score for pose and box detection. |
curves | Return a list of curves for accessing specific metrics curves. |
curves_results | Provide a list of computed performance metrics and statistics. |
summary | Generate a summarized representation of per-class pose metrics as a list of dictionaries. |
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
names
|
dict[int, str]
| Dictionary of class names. |
{}
|
Source code in ultralytics/utils/metrics.py
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 | |
curvesproperty
curves: list[str]
Return a list of curves for accessing specific metrics curves.
curves_resultsproperty
curves_results: list[list]
Return a list of computed performance metrics and statistics.
fitnessproperty
fitness: float
Return combined fitness score for pose and box detection.
keysproperty
keys: list[str]
Return a list of evaluation metric keys.
mapsproperty
maps: ndarray
Return the mean average precision (mAP) per class for both box and pose detections.
class_result
class_result(i: int) -> list[float]
Return the class-wise detection results for a specific class i.
Source code in ultralytics/utils/metrics.py
1388 1389 1390 | |
mean_results
mean_results() -> list[float]
Return the mean results of box and pose.
Source code in ultralytics/utils/metrics.py
1384 1385 1386 | |
process
process(
save_dir: Path = Path("."), plot: bool = False, on_plot=None
) -> dict[str, np.ndarray]
Process the detection and pose metrics over the given set of predictions.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
save_dir
|
Path
| Directory to save plots. Defaults to Path("."). |
Path('.')
|
plot
|
bool
| Whether to plot precision-recall curves. Defaults to False. |
False
|
on_plot
|
callable
| Function to call after plots are generated. |
None
|
Returns:
| Type | Description |
|---|---|
dict[str, ndarray]
| Dictionary containing concatenated statistics arrays. |
Source code in ultralytics/utils/metrics.py
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 | |
summary
summary(normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]
Generate a summarized representation of per-class pose metrics as a list of dictionaries. Includes both box and pose scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
normalize
|
bool
| For Pose metrics, everything is normalized by default [0-1]. |
True
|
decimals
|
int
| Number of decimal places to round the metrics values to. |
5
|
Returns:
| Type | Description |
|---|---|
list[dict[str, Any]]
| A list of dictionaries, each representing one class with corresponding metric values. |
Examples:
>>> results = model.val(data="coco8-pose.yaml")
>>> pose_summary = results.summary(decimals=4)
>>> print(pose_summary)
Source code in ultralytics/utils/metrics.py
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 | |
ultralytics.utils.metrics.ClassifyMetrics
ClassifyMetrics()
Bases: SimpleClass, DataExportMixin
flowchart TD
ultralytics.utils.metrics.ClassifyMetrics[ClassifyMetrics]
ultralytics.utils.SimpleClass[SimpleClass]
ultralytics.utils.DataExportMixin[DataExportMixin]
ultralytics.utils.SimpleClass --> ultralytics.utils.metrics.ClassifyMetrics
ultralytics.utils.DataExportMixin --> ultralytics.utils.metrics.ClassifyMetrics
click ultralytics.utils.metrics.ClassifyMetrics href "" "ultralytics.utils.metrics.ClassifyMetrics"
click ultralytics.utils.SimpleClass href "" "ultralytics.utils.SimpleClass"
click ultralytics.utils.DataExportMixin href "" "ultralytics.utils.DataExportMixin"
Class for computing classification metrics including top-1 and top-5 accuracy.
Attributes:
| Name | Type | Description |
|---|---|---|
top1 |
float
| The top-1 accuracy. |
top5 |
float
| The top-5 accuracy. |
speed |
dict
| A dictionary containing the time taken for each step in the pipeline. |
task |
str
| The task type, set to 'classify'. |
Methods:
| Name | Description |
|---|---|
process | Process target classes and predicted classes to compute metrics. |
fitness | Return mean of top-1 and top-5 accuracies as fitness score. |
results_dict | Return a dictionary with model's performance metrics and fitness score. |
keys | Return a list of keys for the results_dict property. |
curves | Return a list of curves for accessing specific metrics curves. |
curves_results | Provide a list of computed performance metrics and statistics. |
summary | Generate a single-row summary of classification metrics (Top-1 and Top-5 accuracy). |
Source code in ultralytics/utils/metrics.py
1469 1470 1471 1472 1473 1474 | |
curvesproperty
curves: list
Return a list of curves for accessing specific metrics curves.
curves_resultsproperty
curves_results: list
Return a list of curves for accessing specific metrics curves.
fitnessproperty
fitness: float
Return mean of top-1 and top-5 accuracies as fitness score.
keysproperty
keys: list[str]
Return a list of keys for the results_dict property.
results_dictproperty
results_dict: dict[str, float]
Return a dictionary with model's performance metrics and fitness score.
process
process(targets: Tensor, pred: Tensor)
Process target classes and predicted classes to compute metrics.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
targets
|
Tensor
| Target classes. | required |
pred
|
Tensor
| Predicted classes. | required |
Source code in ultralytics/utils/metrics.py
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 | |
summary
summary(normalize: bool = True, decimals: int = 5) -> list[dict[str, float]]
Generate a single-row summary of classification metrics (Top-1 and Top-5 accuracy).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
normalize
|
bool
| For Classify metrics, everything is normalized by default [0-1]. |
True
|
decimals
|
int
| Number of decimal places to round the metrics values to. |
5
|
Returns:
| Type | Description |
|---|---|
list[dict[str, float]]
| A list with one dictionary containing Top-1 and Top-5 classification accuracy. |
Examples:
>>> results = model.val(data="imagenet10")
>>> classify_summary = results.summary(decimals=4)
>>> print(classify_summary)
Source code in ultralytics/utils/metrics.py
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 | |
ultralytics.utils.metrics.OBBMetrics
OBBMetrics(names: dict[int, str] = {})
Bases: DetMetrics
flowchart TD
ultralytics.utils.metrics.OBBMetrics[OBBMetrics]
ultralytics.utils.metrics.DetMetrics[DetMetrics]
ultralytics.utils.SimpleClass[SimpleClass]
ultralytics.utils.DataExportMixin[DataExportMixin]
ultralytics.utils.metrics.DetMetrics --> ultralytics.utils.metrics.OBBMetrics
ultralytics.utils.SimpleClass --> ultralytics.utils.metrics.DetMetrics
ultralytics.utils.DataExportMixin --> ultralytics.utils.metrics.DetMetrics
click ultralytics.utils.metrics.OBBMetrics href "" "ultralytics.utils.metrics.OBBMetrics"
click ultralytics.utils.metrics.DetMetrics href "" "ultralytics.utils.metrics.DetMetrics"
click ultralytics.utils.SimpleClass href "" "ultralytics.utils.SimpleClass"
click ultralytics.utils.DataExportMixin href "" "ultralytics.utils.DataExportMixin"
Metrics for evaluating oriented bounding box (OBB) detection.
Attributes:
| Name | Type | Description |
|---|---|---|
names |
dict[int, str]
| Dictionary of class names. |
box |
Metric
| An instance of the Metric class for storing detection results. |
speed |
dict[str, float]
| A dictionary for storing execution times of different parts of the detection process. |
task |
str
| The task type, set to 'obb'. |
stats |
dict[str, list]
| A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images. |
nt_per_class | Number of targets per class. | |
nt_per_image | Number of targets per image. |
References
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
names
|
dict[int, str]
| Dictionary of class names. |
{}
|
Source code in ultralytics/utils/metrics.py
1548 1549 1550 1551 1552 1553 1554 1555 1556 | |
ultralytics.utils.metrics.bbox_ioa
bbox_ioa(
box1: ndarray, box2: ndarray, iou: bool = False, eps: float = 1e-07
) -> np.ndarray
Calculate the intersection over box2 area given box1 and box2.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
box1
|
ndarray
| A numpy array of shape (N, 4) representing N bounding boxes in x1y1x2y2 format. | required |
box2
|
ndarray
| A numpy array of shape (M, 4) representing M bounding boxes in x1y1x2y2 format. | required |
iou
|
bool
| Calculate the standard IoU if True else return inter_area/box2_area. |
False
|
eps
|
float
| A small value to avoid division by zero. |
1e-07
|
Returns:
| Type | Description |
|---|---|
ndarray
| A numpy array of shape (N, M) representing the intersection over box2 area. |
Source code in ultralytics/utils/metrics.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | |
ultralytics.utils.metrics.box_iou
box_iou(box1: Tensor, box2: Tensor, eps: float = 1e-07) -> torch.Tensor
Calculate intersection-over-union (IoU) of boxes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
box1
|
Tensor
| A tensor of shape (N, 4) representing N bounding boxes in (x1, y1, x2, y2) format. | required |
box2
|
Tensor
| A tensor of shape (M, 4) representing M bounding boxes in (x1, y1, x2, y2) format. | required |
eps
|
float
| A small value to avoid division by zero. |
1e-07
|
Returns:
| Type | Description |
|---|---|
Tensor
| An NxM tensor containing the pairwise IoU values for every element in box1 and box2. |
Source code in ultralytics/utils/metrics.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | |
ultralytics.utils.metrics.bbox_iou
bbox_iou(
box1: Tensor,
box2: Tensor,
xywh: bool = True,
GIoU: bool = False,
DIoU: bool = False,
CIoU: bool = False,
eps: float = 1e-07,
) -> torch.Tensor
Calculate the Intersection over Union (IoU) between bounding boxes.
This function supports various shapes for box1 and box2 as long as the last dimension is 4. For instance, you
may pass tensors shaped like (4,), (N, 4), (B, N, 4), or (B, N, 1, 4). Internally, the code will split the last
dimension into (x, y, w, h) if xywh=True, or (x1, y1, x2, y2) if xywh=False.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
box1
|
Tensor
| A tensor representing one or more bounding boxes, with the last dimension being 4. | required |
box2
|
Tensor
| A tensor representing one or more bounding boxes, with the last dimension being 4. | required |
xywh
|
bool
| If True, input boxes are in (x, y, w, h) format. If False, input boxes are in (x1, y1, x2, y2) format. |
True
|
GIoU
|
bool
| If True, calculate Generalized IoU. |
False
|
DIoU
|
bool
| If True, calculate Distance IoU. |
False
|
CIoU
|
bool
| If True, calculate Complete IoU. |
False
|
eps
|
float
| A small value to avoid division by zero. |
1e-07
|
Returns:
| Type | Description |
|---|---|
Tensor
| IoU, GIoU, DIoU, or CIoU values depending on the specified flags. |
Source code in ultralytics/utils/metrics.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | |
ultralytics.utils.metrics.mask_iou
mask_iou(mask1: Tensor, mask2: Tensor, eps: float = 1e-07) -> torch.Tensor
Calculate masks IoU.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
mask1
|
Tensor
| A tensor of shape (N, n) where N is the number of ground truth objects and n is the product of image width and height. | required |
mask2
|
Tensor
| A tensor of shape (M, n) where M is the number of predicted objects and n is the product of image width and height. | required |
eps
|
float
| A small value to avoid division by zero. |
1e-07
|
Returns:
| Type | Description |
|---|---|
Tensor
| A tensor of shape (N, M) representing masks IoU. |
Source code in ultralytics/utils/metrics.py
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | |
ultralytics.utils.metrics.kpt_iou
kpt_iou(
kpt1: Tensor,
kpt2: Tensor,
area: Tensor,
sigma: list[float],
eps: float = 1e-07,
) -> torch.Tensor
Calculate Object Keypoint Similarity (OKS).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
kpt1
|
Tensor
| A tensor of shape (N, 17, 3) representing ground truth keypoints. | required |
kpt2
|
Tensor
| A tensor of shape (M, 17, 3) representing predicted keypoints. | required |
area
|
Tensor
| A tensor of shape (N,) representing areas from ground truth. | required |
sigma
|
list
| A list containing 17 values representing keypoint scales. | required |
eps
|
float
| A small value to avoid division by zero. |
1e-07
|
Returns:
| Type | Description |
|---|---|
Tensor
| A tensor of shape (N, M) representing keypoint similarities. |
Source code in ultralytics/utils/metrics.py
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | |
ultralytics.utils.metrics._get_covariance_matrix
_get_covariance_matrix(
boxes: Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]
Generate covariance matrix from oriented bounding boxes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
boxes
|
Tensor
| A tensor of shape (N, 5) representing rotated bounding boxes, with xywhr format. | required |
Returns:
| Type | Description |
|---|---|
Tensor
| Covariance matrices corresponding to original rotated bounding boxes. |
Source code in ultralytics/utils/metrics.py
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | |
ultralytics.utils.metrics.probiou
probiou(
obb1: Tensor, obb2: Tensor, CIoU: bool = False, eps: float = 1e-07
) -> torch.Tensor
Calculate probabilistic IoU between oriented bounding boxes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
obb1
|
Tensor
| Ground truth OBBs, shape (N, 5), format xywhr. | required |
obb2
|
Tensor
| Predicted OBBs, shape (N, 5), format xywhr. | required |
CIoU
|
bool
| If True, calculate CIoU. |
False
|
eps
|
float
| Small value to avoid division by zero. |
1e-07
|
Returns:
| Type | Description |
|---|---|
Tensor
| OBB similarities, shape (N,). |
Notes
OBB format: [center_x, center_y, width, height, rotation_angle].
References
Source code in ultralytics/utils/metrics.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | |
ultralytics.utils.metrics.batch_probiou
batch_probiou(
obb1: Tensor | ndarray, obb2: Tensor | ndarray, eps: float = 1e-07
) -> torch.Tensor
Calculate the probabilistic IoU between oriented bounding boxes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
obb1
|
Tensor | ndarray
| A tensor of shape (N, 5) representing ground truth obbs, with xywhr format. | required |
obb2
|
Tensor | ndarray
| A tensor of shape (M, 5) representing predicted obbs, with xywhr format. | required |
eps
|
float
| A small value to avoid division by zero. |
1e-07
|
Returns:
| Type | Description |
|---|---|
Tensor
| A tensor of shape (N, M) representing obb similarities. |
References
Source code in ultralytics/utils/metrics.py
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | |
ultralytics.utils.metrics.smooth_bce
smooth_bce(eps: float = 0.1) -> tuple[float, float]
Compute smoothed positive and negative Binary Cross-Entropy targets.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
eps
|
float
| The epsilon value for label smoothing. |
0.1
|
Returns:
| Name | Type | Description |
|---|---|---|
pos |
float
| Positive label smoothing BCE target. |
neg |
float
| Negative label smoothing BCE target. |
Source code in ultralytics/utils/metrics.py
287 288 289 290 291 292 293 294 295 296 297 298 299 300 | |
ultralytics.utils.metrics.smooth
smooth(y: ndarray, f: float = 0.05) -> np.ndarray
Box filter of fraction f.
Source code in ultralytics/utils/metrics.py
612 613 614 615 616 617 | |
ultralytics.utils.metrics.plot_pr_curve
plot_pr_curve(
px: ndarray,
py: ndarray,
ap: ndarray,
save_dir: Path = Path("pr_curve.png"),
names: dict[int, str] = {},
on_plot=None,
)
Plot precision-recall curve.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
px
|
ndarray
| X values for the PR curve. | required |
py
|
ndarray
| Y values for the PR curve. | required |
ap
|
ndarray
| Average precision values. | required |
save_dir
|
Path
| Path to save the plot. |
Path('pr_curve.png')
|
names
|
dict[int, str]
| Dictionary mapping class indices to class names. |
{}
|
on_plot
|
callable
| Function to call after plot is saved. |
None
|
Source code in ultralytics/utils/metrics.py
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 | |
ultralytics.utils.metrics.plot_mc_curve
plot_mc_curve(
px: ndarray,
py: ndarray,
save_dir: Path = Path("mc_curve.png"),
names: dict[int, str] = {},
xlabel: str = "Confidence",
ylabel: str = "Metric",
on_plot=None,
)
Plot metric-confidence curve.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
px
|
ndarray
| X values for the metric-confidence curve. | required |
py
|
ndarray
| Y values for the metric-confidence curve. | required |
save_dir
|
Path
| Path to save the plot. |
Path('mc_curve.png')
|
names
|
dict[int, str]
| Dictionary mapping class indices to class names. |
{}
|
xlabel
|
str
| X-axis label. |
'Confidence'
|
ylabel
|
str
| Y-axis label. |
'Metric'
|
on_plot
|
callable
| Function to call after plot is saved. |
None
|
Source code in ultralytics/utils/metrics.py
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 | |
ultralytics.utils.metrics.compute_ap
compute_ap(
recall: list[float], precision: list[float]
) -> tuple[float, np.ndarray, np.ndarray]
Compute the average precision (AP) given the recall and precision curves.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
recall
|
list
| The recall curve. | required |
precision
|
list
| The precision curve. | required |
Returns:
| Name | Type | Description |
|---|---|---|
ap |
float
| Average precision. |
mpre |
ndarray
| Precision envelope curve. |
mrec |
ndarray
| Modified recall curve with sentinel values added at the beginning and end. |
Source code in ultralytics/utils/metrics.py
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 | |
ultralytics.utils.metrics.ap_per_class
ap_per_class(
tp: ndarray,
conf: ndarray,
pred_cls: ndarray,
target_cls: ndarray,
plot: bool = False,
on_plot=None,
save_dir: Path = Path(),
names: dict[int, str] = {},
eps: float = 1e-16,
prefix: str = "",
) -> tuple
Compute the average precision per class for object detection evaluation.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
tp
|
ndarray
| Binary array indicating whether the detection is correct (True) or not (False). | required |
conf
|
ndarray
| Array of confidence scores of the detections. | required |
pred_cls
|
ndarray
| Array of predicted classes of the detections. | required |
target_cls
|
ndarray
| Array of true classes of the detections. | required |
plot
|
bool
| Whether to plot PR curves or not. |
False
|
on_plot
|
callable
| A callback to pass plots path and data when they are rendered. |
None
|
save_dir
|
Path
| Directory to save the PR curves. |
Path()
|
names
|
dict[int, str]
| Dictionary of class names to plot PR curves. |
{}
|
eps
|
float
| A small value to avoid division by zero. |
1e-16
|
prefix
|
str
| A prefix string for saving the plot files. |
''
|
Returns:
| Name | Type | Description |
|---|---|---|
tp |
ndarray
| True positive counts at threshold given by max F1 metric for each class. |
fp |
ndarray
| False positive counts at threshold given by max F1 metric for each class. |
p |
ndarray
| Precision values at threshold given by max F1 metric for each class. |
r |
ndarray
| Recall values at threshold given by max F1 metric for each class. |
f1 |
ndarray
| F1-score values at threshold given by max F1 metric for each class. |
ap |
ndarray
| Average precision for each class at different IoU thresholds. |
unique_classes |
ndarray
| An array of unique classes that have data. |
p_curve |
ndarray
| Precision curves for each class. |
r_curve |
ndarray
| Recall curves for each class. |
f1_curve |
ndarray
| F1-score curves for each class. |
x |
ndarray
| X-axis values for the curves. |
prec_values |
ndarray
| Precision values at mAP@0.5 for each class. |
Source code in ultralytics/utils/metrics.py
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 | |