Skip to content

Reference for ultralytics/utils/metrics.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/metrics.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.utils.metrics.ConfusionMatrix

ConfusionMatrix(
    names: dict[int, str] = [], task: str = "detect", save_matches: bool = False
)

Bases: DataExportMixin


              flowchart TD
              ultralytics.utils.metrics.ConfusionMatrix[ConfusionMatrix]
              ultralytics.utils.DataExportMixin[DataExportMixin]

                              ultralytics.utils.DataExportMixin --> ultralytics.utils.metrics.ConfusionMatrix
                


              click ultralytics.utils.metrics.ConfusionMatrix href "" "ultralytics.utils.metrics.ConfusionMatrix"
              click ultralytics.utils.DataExportMixin href "" "ultralytics.utils.DataExportMixin"
            

A class for calculating and updating a confusion matrix for object detection and classification tasks.

Attributes:

NameTypeDescription
task str

The type of task, either 'detect' or 'classify'.

matrix ndarray

The confusion matrix, with dimensions depending on the task.

nc int

The number of category.

names list[str]

The names of the classes, used as labels on the plot.

matches dict

Contains the indices of ground truths and predictions categorized into TP, FP and FN.

Parameters:

NameTypeDescriptionDefault
names dict[int, str]

Names of classes, used as labels on the plot.

[]
task str

Type of task, either 'detect' or 'classify'.

'detect'
save_matches bool

Save the indices of GTs, TPs, FPs, FNs for visualization.

False
Source code in ultralytics/utils/metrics.py
314
315
316
317
318
319
320
321
322
323
324
325
326
def __init__(self, names: dict[int, str] = [], task: str = "detect", save_matches: bool = False):
    """Initialize a ConfusionMatrix instance.

    Args:
        names (dict[int, str], optional): Names of classes, used as labels on the plot.
        task (str, optional): Type of task, either 'detect' or 'classify'.
        save_matches (bool, optional): Save the indices of GTs, TPs, FPs, FNs for visualization.
    """
    self.task = task
    self.nc = len(names)  # number of classes
    self.matrix = np.zeros((self.nc, self.nc)) if self.task == "classify" else np.zeros((self.nc + 1, self.nc + 1))
    self.names = names  # name of classes
    self.matches = {} if save_matches else None

matrix

matrix()

Return the confusion matrix.

Source code in ultralytics/utils/metrics.py
443
444
445
def matrix(self):
    """Return the confusion matrix."""
    return self.matrix

plot

plot(normalize: bool = True, save_dir: str = '', on_plot=None)

Plot the confusion matrix using matplotlib and save it to a file.

Parameters:

NameTypeDescriptionDefault
normalize bool

Whether to normalize the confusion matrix.

True
save_dir str

Directory where the plot will be saved.

''
on_plot callable

An optional callback to pass plots path and data when they are rendered.

None
Source code in ultralytics/utils/metrics.py
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
@TryExcept(msg="ConfusionMatrix plot failure")
@plt_settings()
def plot(self, normalize: bool = True, save_dir: str = "", on_plot=None):
    """Plot the confusion matrix using matplotlib and save it to a file.

    Args:
        normalize (bool, optional): Whether to normalize the confusion matrix.
        save_dir (str, optional): Directory where the plot will be saved.
        on_plot (callable, optional): An optional callback to pass plots path and data when they are rendered.
    """
    import matplotlib.pyplot as plt  # scope for faster 'import ultralytics'

    array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1e-9) if normalize else 1)  # normalize columns
    array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)

    fig, ax = plt.subplots(1, 1, figsize=(12, 9))
    names, n = list(self.names.values()), self.nc
    if self.nc >= 100:  # downsample for large class count
        k = max(2, self.nc // 60)  # step size for downsampling, always > 1
        keep_idx = slice(None, None, k)  # create slice instead of array
        names = names[keep_idx]  # slice class names
        array = array[keep_idx, :][:, keep_idx]  # slice matrix rows and cols
        n = (self.nc + k - 1) // k  # number of retained classes
    nc = nn = n if self.task == "classify" else n + 1  # adjust for background if needed
    ticklabels = ([*names, "background"]) if (0 < nn < 99) and (nn == nc) else "auto"
    xy_ticks = np.arange(len(ticklabels))
    tick_fontsize = max(6, 15 - 0.1 * nc)  # Minimum size is 6
    label_fontsize = max(6, 12 - 0.1 * nc)
    title_fontsize = max(6, 12 - 0.1 * nc)
    btm = max(0.1, 0.25 - 0.001 * nc)  # Minimum value is 0.1
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")  # suppress empty matrix RuntimeWarning: All-NaN slice encountered
        im = ax.imshow(array, cmap="Blues", vmin=0.0, interpolation="none")
        ax.xaxis.set_label_position("bottom")
        if nc < 30:  # Add score for each cell of confusion matrix
            color_threshold = 0.45 * (1 if normalize else np.nanmax(array))  # text color threshold
            for i, row in enumerate(array[:nc]):
                for j, val in enumerate(row[:nc]):
                    val = array[i, j]
                    if np.isnan(val):
                        continue
                    ax.text(
                        j,
                        i,
                        f"{val:.2f}" if normalize else f"{int(val)}",
                        ha="center",
                        va="center",
                        fontsize=10,
                        color="white" if val > color_threshold else "black",
                    )
        cbar = fig.colorbar(im, ax=ax, fraction=0.046, pad=0.05)
    title = "Confusion Matrix" + " Normalized" * normalize
    ax.set_xlabel("True", fontsize=label_fontsize, labelpad=10)
    ax.set_ylabel("Predicted", fontsize=label_fontsize, labelpad=10)
    ax.set_title(title, fontsize=title_fontsize, pad=20)
    ax.set_xticks(xy_ticks)
    ax.set_yticks(xy_ticks)
    ax.tick_params(axis="x", bottom=True, top=False, labelbottom=True, labeltop=False)
    ax.tick_params(axis="y", left=True, right=False, labelleft=True, labelright=False)
    if ticklabels != "auto":
        ax.set_xticklabels(ticklabels, fontsize=tick_fontsize, rotation=90, ha="center")
        ax.set_yticklabels(ticklabels, fontsize=tick_fontsize)
    for s in {"left", "right", "bottom", "top", "outline"}:
        if s != "outline":
            ax.spines[s].set_visible(False)  # Confusion matrix plot don't have outline
        cbar.ax.spines[s].set_visible(False)
    fig.subplots_adjust(left=0, right=0.84, top=0.94, bottom=btm)  # Adjust layout to ensure equal margins
    plot_fname = Path(save_dir) / f"{title.lower().replace(' ', '_')}.png"
    fig.savefig(plot_fname, dpi=250)
    plt.close(fig)
    if on_plot:
        on_plot(plot_fname)

plot_matches

plot_matches(img: Tensor, im_file: str, save_dir: Path) -> None

Plot grid of GT, TP, FP, FN for each image.

Parameters:

NameTypeDescriptionDefault
img Tensor

Image to plot onto.

required
im_file str

Image filename to save visualizations.

required
save_dir Path

Location to save the visualizations to.

required
Source code in ultralytics/utils/metrics.py
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
def plot_matches(self, img: torch.Tensor, im_file: str, save_dir: Path) -> None:
    """Plot grid of GT, TP, FP, FN for each image.

    Args:
        img (torch.Tensor): Image to plot onto.
        im_file (str): Image filename to save visualizations.
        save_dir (Path): Location to save the visualizations to.
    """
    if not self.matches:
        return
    from .ops import xyxy2xywh
    from .plotting import plot_images

    # Create batch of 4 (GT, TP, FP, FN)
    labels = defaultdict(list)
    for i, mtype in enumerate(["GT", "FP", "TP", "FN"]):
        mbatch = self.matches[mtype]
        if "conf" not in mbatch:
            mbatch["conf"] = torch.tensor([1.0] * len(mbatch["bboxes"]), device=img.device)
        mbatch["batch_idx"] = torch.ones(len(mbatch["bboxes"]), device=img.device) * i
        for k in mbatch.keys():
            labels[k] += mbatch[k]

    labels = {k: torch.stack(v, 0) if len(v) else torch.empty(0) for k, v in labels.items()}
    if self.task != "obb" and labels["bboxes"].shape[0]:
        labels["bboxes"] = xyxy2xywh(labels["bboxes"])
    (save_dir / "visualizations").mkdir(parents=True, exist_ok=True)
    plot_images(
        labels,
        img.repeat(4, 1, 1, 1),
        paths=["Ground Truth", "False Positives", "True Positives", "False Negatives"],
        fname=save_dir / "visualizations" / Path(im_file).name,
        names=self.names,
        max_subplots=4,
        conf_thres=0.001,
    )

print

print()

Print the confusion matrix to the console.

Source code in ultralytics/utils/metrics.py
569
570
571
572
def print(self):
    """Print the confusion matrix to the console."""
    for i in range(self.matrix.shape[0]):
        LOGGER.info(" ".join(map(str, self.matrix[i])))

process_batch

process_batch(
    detections: dict[str, Tensor],
    batch: dict[str, Any],
    conf: float = 0.25,
    iou_thres: float = 0.45,
) -> None

Update confusion matrix for object detection task.

Parameters:

NameTypeDescriptionDefault
detections dict[str, Tensor]

Dictionary containing detected bounding boxes and their associated information. Should contain 'cls', 'conf', and 'bboxes' keys, where 'bboxes' can be Array[N, 4] for regular boxes or Array[N, 5] for OBB with angle.

required
batch dict[str, Any]

Batch dictionary containing ground truth data with 'bboxes' (Array[M, 4]| Array[M, 5]) and 'cls' (Array[M]) keys, where M is the number of ground truth objects.

required
conf float

Confidence threshold for detections.

0.25
iou_thres float

IoU threshold for matching detections to ground truth.

0.45
Source code in ultralytics/utils/metrics.py
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
def process_batch(
    self,
    detections: dict[str, torch.Tensor],
    batch: dict[str, Any],
    conf: float = 0.25,
    iou_thres: float = 0.45,
) -> None:
    """Update confusion matrix for object detection task.

    Args:
        detections (dict[str, torch.Tensor]): Dictionary containing detected bounding boxes and their associated
            information. Should contain 'cls', 'conf', and 'bboxes' keys, where 'bboxes' can be Array[N, 4] for
            regular boxes or Array[N, 5] for OBB with angle.
        batch (dict[str, Any]): Batch dictionary containing ground truth data with 'bboxes' (Array[M, 4]| Array[M,
            5]) and 'cls' (Array[M]) keys, where M is the number of ground truth objects.
        conf (float, optional): Confidence threshold for detections.
        iou_thres (float, optional): IoU threshold for matching detections to ground truth.
    """
    gt_cls, gt_bboxes = batch["cls"], batch["bboxes"]
    if self.matches is not None:  # only if visualization is enabled
        self.matches = {k: defaultdict(list) for k in {"TP", "FP", "FN", "GT"}}
        for i in range(gt_cls.shape[0]):
            self._append_matches("GT", batch, i)  # store GT
    is_obb = gt_bboxes.shape[1] == 5  # check if boxes contains angle for OBB
    conf = 0.25 if conf in {None, 0.01 if is_obb else 0.001} else conf  # apply 0.25 if default val conf is passed
    no_pred = detections["cls"].shape[0] == 0
    if gt_cls.shape[0] == 0:  # Check if labels is empty
        if not no_pred:
            detections = {k: detections[k][detections["conf"] > conf] for k in detections}
            detection_classes = detections["cls"].int().tolist()
            for i, dc in enumerate(detection_classes):
                self.matrix[dc, self.nc] += 1  # FP
                self._append_matches("FP", detections, i)
        return
    if no_pred:
        gt_classes = gt_cls.int().tolist()
        for i, gc in enumerate(gt_classes):
            self.matrix[self.nc, gc] += 1  # FN
            self._append_matches("FN", batch, i)
        return

    detections = {k: detections[k][detections["conf"] > conf] for k in detections}
    gt_classes = gt_cls.int().tolist()
    detection_classes = detections["cls"].int().tolist()
    bboxes = detections["bboxes"]
    iou = batch_probiou(gt_bboxes, bboxes) if is_obb else box_iou(gt_bboxes, bboxes)

    x = torch.where(iou > iou_thres)
    if x[0].shape[0]:
        matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
        if x[0].shape[0] > 1:
            matches = matches[matches[:, 2].argsort()[::-1]]
            matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
            matches = matches[matches[:, 2].argsort()[::-1]]
            matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
    else:
        matches = np.zeros((0, 3))

    n = matches.shape[0] > 0
    m0, m1, _ = matches.transpose().astype(int)
    for i, gc in enumerate(gt_classes):
        j = m0 == i
        if n and sum(j) == 1:
            dc = detection_classes[m1[j].item()]
            self.matrix[dc, gc] += 1  # TP if class is correct else both an FP and an FN
            if dc == gc:
                self._append_matches("TP", detections, m1[j].item())
            else:
                self._append_matches("FP", detections, m1[j].item())
                self._append_matches("FN", batch, i)
        else:
            self.matrix[self.nc, gc] += 1  # FN
            self._append_matches("FN", batch, i)

    for i, dc in enumerate(detection_classes):
        if not any(m1 == i):
            self.matrix[dc, self.nc] += 1  # FP
            self._append_matches("FP", detections, i)

process_cls_preds

process_cls_preds(preds: list[Tensor], targets: list[Tensor]) -> None

Update confusion matrix for classification task.

Parameters:

NameTypeDescriptionDefault
preds list[N, min(nc, 5)]

Predicted class labels.

required
targets list[N, 1]

Ground truth class labels.

required
Source code in ultralytics/utils/metrics.py
353
354
355
356
357
358
359
360
361
362
def process_cls_preds(self, preds: list[torch.Tensor], targets: list[torch.Tensor]) -> None:
    """Update confusion matrix for classification task.

    Args:
        preds (list[N, min(nc,5)]): Predicted class labels.
        targets (list[N, 1]): Ground truth class labels.
    """
    preds, targets = torch.cat(preds)[:, 0], torch.cat(targets)
    for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()):
        self.matrix[p][t] += 1

summary

summary(normalize: bool = False, decimals: int = 5) -> list[dict[str, float]]

Generate a summarized representation of the confusion matrix as a list of dictionaries, with optional normalization. This is useful for exporting the matrix to various formats such as CSV, XML, HTML, JSON, or SQL.

Parameters:

NameTypeDescriptionDefault
normalize bool

Whether to normalize the confusion matrix values.

False
decimals int

Number of decimal places to round the output values to.

5

Returns:

TypeDescription
list[dict[str, float]]

A list of dictionaries, each representing one predicted class with corresponding values for all actual classes.

Examples:

>>> results = model.val(data="coco8.yaml", plots=True)
>>> cm_dict = results.confusion_matrix.summary(normalize=True, decimals=5)
>>> print(cm_dict)
Source code in ultralytics/utils/metrics.py
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
def summary(self, normalize: bool = False, decimals: int = 5) -> list[dict[str, float]]:
    """Generate a summarized representation of the confusion matrix as a list of dictionaries, with optional
    normalization. This is useful for exporting the matrix to various formats such as CSV, XML, HTML, JSON,
    or SQL.

    Args:
        normalize (bool): Whether to normalize the confusion matrix values.
        decimals (int): Number of decimal places to round the output values to.

    Returns:
        (list[dict[str, float]]): A list of dictionaries, each representing one predicted class with corresponding
            values for all actual classes.

    Examples:
        >>> results = model.val(data="coco8.yaml", plots=True)
        >>> cm_dict = results.confusion_matrix.summary(normalize=True, decimals=5)
        >>> print(cm_dict)
    """
    import re

    names = list(self.names.values()) if self.task == "classify" else [*list(self.names.values()), "background"]
    clean_names, seen = [], set()
    for name in names:
        clean_name = re.sub(r"[^a-zA-Z0-9_]", "_", name)
        original_clean = clean_name
        counter = 1
        while clean_name.lower() in seen:
            clean_name = f"{original_clean}_{counter}"
            counter += 1
        seen.add(clean_name.lower())
        clean_names.append(clean_name)
    array = (self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1e-9) if normalize else 1)).round(decimals)
    return [
        dict({"Predicted": clean_names[i]}, **{clean_names[j]: array[i, j] for j in range(len(clean_names))})
        for i in range(len(clean_names))
    ]

tp_fp

tp_fp() -> tuple[np.ndarray, np.ndarray]

Return true positives and false positives.

Returns:

NameTypeDescription
tp ndarray

True positives.

fp ndarray

False positives.

Source code in ultralytics/utils/metrics.py
447
448
449
450
451
452
453
454
455
456
457
def tp_fp(self) -> tuple[np.ndarray, np.ndarray]:
    """Return true positives and false positives.

    Returns:
        tp (np.ndarray): True positives.
        fp (np.ndarray): False positives.
    """
    tp = self.matrix.diagonal()  # true positives
    fp = self.matrix.sum(1) - tp  # false positives
    # fn = self.matrix.sum(0) - tp  # false negatives (missed detections)
    return (tp, fp) if self.task == "classify" else (tp[:-1], fp[:-1])  # remove background class if task=detect





ultralytics.utils.metrics.Metric

Metric()

Bases: SimpleClass


              flowchart TD
              ultralytics.utils.metrics.Metric[Metric]
              ultralytics.utils.SimpleClass[SimpleClass]

                              ultralytics.utils.SimpleClass --> ultralytics.utils.metrics.Metric
                


              click ultralytics.utils.metrics.Metric href "" "ultralytics.utils.metrics.Metric"
              click ultralytics.utils.SimpleClass href "" "ultralytics.utils.SimpleClass"
            

Class for computing evaluation metrics for Ultralytics YOLO models.

Attributes:

NameTypeDescription
p list

Precision for each class. Shape: (nc,).

r list

Recall for each class. Shape: (nc,).

f1 list

F1 score for each class. Shape: (nc,).

all_ap list

AP scores for all classes and all IoU thresholds. Shape: (nc, 10).

ap_class_index list

Index of class for each AP score. Shape: (nc,).

nc int

Number of classes.

Methods:

NameDescription
ap50

AP at IoU threshold of 0.5 for all classes.

ap

AP at IoU thresholds from 0.5 to 0.95 for all classes.

mp

Mean precision of all classes.

mr

Mean recall of all classes.

map50

Mean AP at IoU threshold of 0.5 for all classes.

map75

Mean AP at IoU threshold of 0.75 for all classes.

map

Mean AP at IoU thresholds from 0.5 to 0.95 for all classes.

mean_results

Mean of results, returns mp, mr, map50, map.

class_result

Class-aware result, returns p[i], r[i], ap50[i], ap[i].

maps

mAP of each class.

fitness

Model fitness as a weighted combination of metrics.

update

Update metric attributes with new evaluation results.

curves

Provides a list of curves for accessing specific metrics like precision, recall, F1, etc.

curves_results

Provide a list of results for accessing specific metrics like precision, recall, F1, etc.

Source code in ultralytics/utils/metrics.py
864
865
866
867
868
869
870
871
def __init__(self) -> None:
    """Initialize a Metric instance for computing evaluation metrics for the YOLOv8 model."""
    self.p = []  # (nc, )
    self.r = []  # (nc, )
    self.f1 = []  # (nc, )
    self.all_ap = []  # (nc, 10)
    self.ap_class_index = []  # (nc, )
    self.nc = 0

approperty

ap: ndarray | list

Return the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes.

Returns:

TypeDescription
ndarray | list

Array of shape (nc,) with AP50-95 values per class, or an empty list if not available.

ap50property

ap50: ndarray | list

Return the Average Precision (AP) at an IoU threshold of 0.5 for all classes.

Returns:

TypeDescription
ndarray | list

Array of shape (nc,) with AP50 values per class, or an empty list if not available.

curvesproperty

curves: list

Return a list of curves for accessing specific metrics curves.

curves_resultsproperty

curves_results: list[list]

Return a list of curves for accessing specific metrics curves.

mapproperty

map: float

Return the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05.

Returns:

TypeDescription
float

The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05.

map50property

map50: float

Return the mean Average Precision (mAP) at an IoU threshold of 0.5.

Returns:

TypeDescription
float

The mAP at an IoU threshold of 0.5.

map75property

map75: float

Return the mean Average Precision (mAP) at an IoU threshold of 0.75.

Returns:

TypeDescription
float

The mAP at an IoU threshold of 0.75.

mapsproperty

maps: ndarray

Return mAP of each class.

mpproperty

mp: float

Return the Mean Precision of all classes.

Returns:

TypeDescription
float

The mean precision of all classes.

mrproperty

mr: float

Return the Mean Recall of all classes.

Returns:

TypeDescription
float

The mean recall of all classes.

class_result

class_result(i: int) -> tuple[float, float, float, float]

Return class-aware result, p[i], r[i], ap50[i], ap[i].

Source code in ultralytics/utils/metrics.py
940
941
942
def class_result(self, i: int) -> tuple[float, float, float, float]:
    """Return class-aware result, p[i], r[i], ap50[i], ap[i]."""
    return self.p[i], self.r[i], self.ap50[i], self.ap[i]

fitness

fitness() -> float

Return model fitness as a weighted combination of metrics.

Source code in ultralytics/utils/metrics.py
952
953
954
955
def fitness(self) -> float:
    """Return model fitness as a weighted combination of metrics."""
    w = [0.0, 0.0, 0.0, 1.0]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
    return (np.nan_to_num(np.array(self.mean_results())) * w).sum()

mean_results

mean_results() -> list[float]

Return mean of results, mp, mr, map50, map.

Source code in ultralytics/utils/metrics.py
936
937
938
def mean_results(self) -> list[float]:
    """Return mean of results, mp, mr, map50, map."""
    return [self.mp, self.mr, self.map50, self.map]

update

update(results: tuple)

Update the evaluation metrics with a new set of results.

Parameters:

NameTypeDescriptionDefault
results tuple

A tuple containing evaluation metrics: - p (list): Precision for each class. - r (list): Recall for each class. - f1 (list): F1 score for each class. - all_ap (list): AP scores for all classes and all IoU thresholds. - ap_class_index (list): Index of class for each AP score. - p_curve (list): Precision curve for each class. - r_curve (list): Recall curve for each class. - f1_curve (list): F1 curve for each class. - px (list): X values for the curves. - prec_values (list): Precision values for each class.

required
Source code in ultralytics/utils/metrics.py
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
def update(self, results: tuple):
    """Update the evaluation metrics with a new set of results.

    Args:
        results (tuple): A tuple containing evaluation metrics:
            - p (list): Precision for each class.
            - r (list): Recall for each class.
            - f1 (list): F1 score for each class.
            - all_ap (list): AP scores for all classes and all IoU thresholds.
            - ap_class_index (list): Index of class for each AP score.
            - p_curve (list): Precision curve for each class.
            - r_curve (list): Recall curve for each class.
            - f1_curve (list): F1 curve for each class.
            - px (list): X values for the curves.
            - prec_values (list): Precision values for each class.
    """
    (
        self.p,
        self.r,
        self.f1,
        self.all_ap,
        self.ap_class_index,
        self.p_curve,
        self.r_curve,
        self.f1_curve,
        self.px,
        self.prec_values,
    ) = results





ultralytics.utils.metrics.DetMetrics

DetMetrics(names: dict[int, str] = {})

Bases: SimpleClass, DataExportMixin


              flowchart TD
              ultralytics.utils.metrics.DetMetrics[DetMetrics]
              ultralytics.utils.SimpleClass[SimpleClass]
              ultralytics.utils.DataExportMixin[DataExportMixin]

                              ultralytics.utils.SimpleClass --> ultralytics.utils.metrics.DetMetrics
                
                ultralytics.utils.DataExportMixin --> ultralytics.utils.metrics.DetMetrics
                


              click ultralytics.utils.metrics.DetMetrics href "" "ultralytics.utils.metrics.DetMetrics"
              click ultralytics.utils.SimpleClass href "" "ultralytics.utils.SimpleClass"
              click ultralytics.utils.DataExportMixin href "" "ultralytics.utils.DataExportMixin"
            

Utility class for computing detection metrics such as precision, recall, and mean average precision (mAP).

Attributes:

NameTypeDescription
names dict[int, str]

A dictionary of class names.

box Metric

An instance of the Metric class for storing detection results.

speed dict[str, float]

A dictionary for storing execution times of different parts of the detection process.

task str

The task type, set to 'detect'.

stats dict[str, list]

A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images.

nt_per_class

Number of targets per class.

nt_per_image

Number of targets per image.

Methods:

NameDescription
update_stats

Update statistics by appending new values to existing stat collections.

process

Process predicted results for object detection and update metrics.

clear_stats

Clear the stored statistics.

keys

Return a list of keys for accessing specific metrics.

mean_results

Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95.

class_result

Return the result of evaluating the performance of an object detection model on a specific class.

maps

Return mean Average Precision (mAP) scores per class.

fitness

Return the fitness of box object.

ap_class_index

Return the average precision index per class.

results_dict

Return dictionary of computed performance metrics and statistics.

curves

Return a list of curves for accessing specific metrics curves.

curves_results

Return a list of computed performance metrics and statistics.

summary

Generate a summarized representation of per-class detection metrics as a list of dictionaries.

Parameters:

NameTypeDescriptionDefault
names dict[int, str]

Dictionary of class names.

{}
Source code in ultralytics/utils/metrics.py
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
def __init__(self, names: dict[int, str] = {}) -> None:
    """Initialize a DetMetrics instance with a save directory, plot flag, and class names.

    Args:
        names (dict[int, str], optional): Dictionary of class names.
    """
    self.names = names
    self.box = Metric()
    self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
    self.task = "detect"
    self.stats = dict(tp=[], conf=[], pred_cls=[], target_cls=[], target_img=[])
    self.nt_per_class = None
    self.nt_per_image = None

ap_class_indexproperty

ap_class_index: list

Return the average precision index per class.

curvesproperty

curves: list[str]

Return a list of curves for accessing specific metrics curves.

curves_resultsproperty

curves_results: list[list]

Return a list of computed performance metrics and statistics.

fitnessproperty

fitness: float

Return the fitness of box object.

keysproperty

keys: list[str]

Return a list of keys for accessing specific metrics.

mapsproperty

maps: ndarray

Return mean Average Precision (mAP) scores per class.

results_dictproperty

results_dict: dict[str, float]

Return dictionary of computed performance metrics and statistics.

class_result

class_result(i: int) -> tuple[float, float, float, float]

Return the result of evaluating the performance of an object detection model on a specific class.

Source code in ultralytics/utils/metrics.py
1100
1101
1102
def class_result(self, i: int) -> tuple[float, float, float, float]:
    """Return the result of evaluating the performance of an object detection model on a specific class."""
    return self.box.class_result(i)

clear_stats

clear_stats()

Clear the stored statistics.

Source code in ultralytics/utils/metrics.py
1086
1087
1088
1089
def clear_stats(self):
    """Clear the stored statistics."""
    for v in self.stats.values():
        v.clear()

mean_results

mean_results() -> list[float]

Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95.

Source code in ultralytics/utils/metrics.py
1096
1097
1098
def mean_results(self) -> list[float]:
    """Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95."""
    return self.box.mean_results()

process

process(
    save_dir: Path = Path("."), plot: bool = False, on_plot=None
) -> dict[str, np.ndarray]

Process predicted results for object detection and update metrics.

Parameters:

NameTypeDescriptionDefault
save_dir Path

Directory to save plots. Defaults to Path(".").

Path('.')
plot bool

Whether to plot precision-recall curves. Defaults to False.

False
on_plot callable

Function to call after plots are generated. Defaults to None.

None

Returns:

TypeDescription
dict[str, ndarray]

Dictionary containing concatenated statistics arrays.

Source code in ultralytics/utils/metrics.py
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
def process(self, save_dir: Path = Path("."), plot: bool = False, on_plot=None) -> dict[str, np.ndarray]:
    """Process predicted results for object detection and update metrics.

    Args:
        save_dir (Path): Directory to save plots. Defaults to Path(".").
        plot (bool): Whether to plot precision-recall curves. Defaults to False.
        on_plot (callable, optional): Function to call after plots are generated. Defaults to None.

    Returns:
        (dict[str, np.ndarray]): Dictionary containing concatenated statistics arrays.
    """
    stats = {k: np.concatenate(v, 0) for k, v in self.stats.items()}  # to numpy
    if not stats:
        return stats
    results = ap_per_class(
        stats["tp"],
        stats["conf"],
        stats["pred_cls"],
        stats["target_cls"],
        plot=plot,
        save_dir=save_dir,
        names=self.names,
        on_plot=on_plot,
        prefix="Box",
    )[2:]
    self.box.nc = len(self.names)
    self.box.update(results)
    self.nt_per_class = np.bincount(stats["target_cls"].astype(int), minlength=len(self.names))
    self.nt_per_image = np.bincount(stats["target_img"].astype(int), minlength=len(self.names))
    return stats

summary

summary(normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]

Generate a summarized representation of per-class detection metrics as a list of dictionaries. Includes shared scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.

Parameters:

NameTypeDescriptionDefault
normalize bool

For Detect metrics, everything is normalized by default [0-1].

True
decimals int

Number of decimal places to round the metrics values to.

5

Returns:

TypeDescription
list[dict[str, Any]]

A list of dictionaries, each representing one class with corresponding metric values.

Examples:

>>> results = model.val(data="coco8.yaml")
>>> detection_summary = results.summary()
>>> print(detection_summary)
Source code in ultralytics/utils/metrics.py
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
def summary(self, normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]:
    """Generate a summarized representation of per-class detection metrics as a list of dictionaries. Includes
    shared scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.

    Args:
        normalize (bool): For Detect metrics, everything is normalized by default [0-1].
        decimals (int): Number of decimal places to round the metrics values to.

    Returns:
        (list[dict[str, Any]]): A list of dictionaries, each representing one class with corresponding metric
            values.

    Examples:
       >>> results = model.val(data="coco8.yaml")
       >>> detection_summary = results.summary()
       >>> print(detection_summary)
    """
    per_class = {
        "Box-P": self.box.p,
        "Box-R": self.box.r,
        "Box-F1": self.box.f1,
    }
    return [
        {
            "Class": self.names[self.ap_class_index[i]],
            "Images": self.nt_per_image[self.ap_class_index[i]],
            "Instances": self.nt_per_class[self.ap_class_index[i]],
            **{k: round(v[i], decimals) for k, v in per_class.items()},
            "mAP50": round(self.class_result(i)[2], decimals),
            "mAP50-95": round(self.class_result(i)[3], decimals),
        }
        for i in range(len(per_class["Box-P"]))
    ]

update_stats

update_stats(stat: dict[str, Any]) -> None

Update statistics by appending new values to existing stat collections.

Parameters:

NameTypeDescriptionDefault
stat dict[str, any]

Dictionary containing new statistical values to append. Keys should match existing keys in self.stats.

required
Source code in ultralytics/utils/metrics.py
1045
1046
1047
1048
1049
1050
1051
1052
1053
def update_stats(self, stat: dict[str, Any]) -> None:
    """Update statistics by appending new values to existing stat collections.

    Args:
        stat (dict[str, any]): Dictionary containing new statistical values to append. Keys should match existing
            keys in self.stats.
    """
    for k in self.stats.keys():
        self.stats[k].append(stat[k])





ultralytics.utils.metrics.SegmentMetrics

SegmentMetrics(names: dict[int, str] = {})

Bases: DetMetrics


              flowchart TD
              ultralytics.utils.metrics.SegmentMetrics[SegmentMetrics]
              ultralytics.utils.metrics.DetMetrics[DetMetrics]
              ultralytics.utils.SimpleClass[SimpleClass]
              ultralytics.utils.DataExportMixin[DataExportMixin]

                              ultralytics.utils.metrics.DetMetrics --> ultralytics.utils.metrics.SegmentMetrics
                                ultralytics.utils.SimpleClass --> ultralytics.utils.metrics.DetMetrics
                
                ultralytics.utils.DataExportMixin --> ultralytics.utils.metrics.DetMetrics
                



              click ultralytics.utils.metrics.SegmentMetrics href "" "ultralytics.utils.metrics.SegmentMetrics"
              click ultralytics.utils.metrics.DetMetrics href "" "ultralytics.utils.metrics.DetMetrics"
              click ultralytics.utils.SimpleClass href "" "ultralytics.utils.SimpleClass"
              click ultralytics.utils.DataExportMixin href "" "ultralytics.utils.DataExportMixin"
            

Calculate and aggregate detection and segmentation metrics over a given set of classes.

Attributes:

NameTypeDescription
names dict[int, str]

Dictionary of class names.

box Metric

An instance of the Metric class for storing detection results.

seg Metric

An instance of the Metric class to calculate mask segmentation metrics.

speed dict[str, float]

A dictionary for storing execution times of different parts of the detection process.

task str

The task type, set to 'segment'.

stats dict[str, list]

A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images.

nt_per_class

Number of targets per class.

nt_per_image

Number of targets per image.

Methods:

NameDescription
process

Process the detection and segmentation metrics over the given set of predictions.

keys

Return a list of keys for accessing metrics.

mean_results

Return the mean metrics for bounding box and segmentation results.

class_result

Return classification results for a specified class index.

maps

Return mAP scores for object detection and semantic segmentation models.

fitness

Return the fitness score for both segmentation and bounding box models.

curves

Return a list of curves for accessing specific metrics curves.

curves_results

Provide a list of computed performance metrics and statistics.

summary

Generate a summarized representation of per-class segmentation metrics as a list of dictionaries.

Parameters:

NameTypeDescriptionDefault
names dict[int, str]

Dictionary of class names.

{}
Source code in ultralytics/utils/metrics.py
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
def __init__(self, names: dict[int, str] = {}) -> None:
    """Initialize a SegmentMetrics instance with a save directory, plot flag, and class names.

    Args:
        names (dict[int, str], optional): Dictionary of class names.
    """
    DetMetrics.__init__(self, names)
    self.seg = Metric()
    self.task = "segment"
    self.stats["tp_m"] = []  # add additional stats for masks

curvesproperty

curves: list[str]

Return a list of curves for accessing specific metrics curves.

curves_resultsproperty

curves_results: list[list]

Return a list of computed performance metrics and statistics.

fitnessproperty

fitness: float

Return the fitness score for both segmentation and bounding box models.

keysproperty

keys: list[str]

Return a list of keys for accessing metrics.

mapsproperty

maps: ndarray

Return mAP scores for object detection and semantic segmentation models.

class_result

class_result(i: int) -> list[float]

Return classification results for a specified class index.

Source code in ultralytics/utils/metrics.py
1250
1251
1252
def class_result(self, i: int) -> list[float]:
    """Return classification results for a specified class index."""
    return DetMetrics.class_result(self, i) + self.seg.class_result(i)

mean_results

mean_results() -> list[float]

Return the mean metrics for bounding box and segmentation results.

Source code in ultralytics/utils/metrics.py
1246
1247
1248
def mean_results(self) -> list[float]:
    """Return the mean metrics for bounding box and segmentation results."""
    return DetMetrics.mean_results(self) + self.seg.mean_results()

process

process(
    save_dir: Path = Path("."), plot: bool = False, on_plot=None
) -> dict[str, np.ndarray]

Process the detection and segmentation metrics over the given set of predictions.

Parameters:

NameTypeDescriptionDefault
save_dir Path

Directory to save plots. Defaults to Path(".").

Path('.')
plot bool

Whether to plot precision-recall curves. Defaults to False.

False
on_plot callable

Function to call after plots are generated. Defaults to None.

None

Returns:

TypeDescription
dict[str, ndarray]

Dictionary containing concatenated statistics arrays.

Source code in ultralytics/utils/metrics.py
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
def process(self, save_dir: Path = Path("."), plot: bool = False, on_plot=None) -> dict[str, np.ndarray]:
    """Process the detection and segmentation metrics over the given set of predictions.

    Args:
        save_dir (Path): Directory to save plots. Defaults to Path(".").
        plot (bool): Whether to plot precision-recall curves. Defaults to False.
        on_plot (callable, optional): Function to call after plots are generated. Defaults to None.

    Returns:
        (dict[str, np.ndarray]): Dictionary containing concatenated statistics arrays.
    """
    stats = DetMetrics.process(self, save_dir, plot, on_plot=on_plot)  # process box stats
    results_mask = ap_per_class(
        stats["tp_m"],
        stats["conf"],
        stats["pred_cls"],
        stats["target_cls"],
        plot=plot,
        on_plot=on_plot,
        save_dir=save_dir,
        names=self.names,
        prefix="Mask",
    )[2:]
    self.seg.nc = len(self.names)
    self.seg.update(results_mask)
    return stats

summary

summary(normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]

Generate a summarized representation of per-class segmentation metrics as a list of dictionaries. Includes both box and mask scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.

Parameters:

NameTypeDescriptionDefault
normalize bool

For Segment metrics, everything is normalized by default [0-1].

True
decimals int

Number of decimal places to round the metrics values to.

5

Returns:

TypeDescription
list[dict[str, Any]]

A list of dictionaries, each representing one class with corresponding metric values.

Examples:

>>> results = model.val(data="coco8-seg.yaml")
>>> seg_summary = results.summary(decimals=4)
>>> print(seg_summary)
Source code in ultralytics/utils/metrics.py
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
def summary(self, normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]:
    """Generate a summarized representation of per-class segmentation metrics as a list of dictionaries. Includes
    both box and mask scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for
    each class.

    Args:
        normalize (bool): For Segment metrics, everything is normalized by default [0-1].
        decimals (int): Number of decimal places to round the metrics values to.

    Returns:
        (list[dict[str, Any]]): A list of dictionaries, each representing one class with corresponding metric
            values.

    Examples:
        >>> results = model.val(data="coco8-seg.yaml")
        >>> seg_summary = results.summary(decimals=4)
        >>> print(seg_summary)
    """
    per_class = {
        "Mask-P": self.seg.p,
        "Mask-R": self.seg.r,
        "Mask-F1": self.seg.f1,
    }
    summary = DetMetrics.summary(self, normalize, decimals)  # get box summary
    for i, s in enumerate(summary):
        s.update({**{k: round(v[i], decimals) for k, v in per_class.items()}})
    return summary





ultralytics.utils.metrics.PoseMetrics

PoseMetrics(names: dict[int, str] = {})

Bases: DetMetrics


              flowchart TD
              ultralytics.utils.metrics.PoseMetrics[PoseMetrics]
              ultralytics.utils.metrics.DetMetrics[DetMetrics]
              ultralytics.utils.SimpleClass[SimpleClass]
              ultralytics.utils.DataExportMixin[DataExportMixin]

                              ultralytics.utils.metrics.DetMetrics --> ultralytics.utils.metrics.PoseMetrics
                                ultralytics.utils.SimpleClass --> ultralytics.utils.metrics.DetMetrics
                
                ultralytics.utils.DataExportMixin --> ultralytics.utils.metrics.DetMetrics
                



              click ultralytics.utils.metrics.PoseMetrics href "" "ultralytics.utils.metrics.PoseMetrics"
              click ultralytics.utils.metrics.DetMetrics href "" "ultralytics.utils.metrics.DetMetrics"
              click ultralytics.utils.SimpleClass href "" "ultralytics.utils.SimpleClass"
              click ultralytics.utils.DataExportMixin href "" "ultralytics.utils.DataExportMixin"
            

Calculate and aggregate detection and pose metrics over a given set of classes.

Attributes:

NameTypeDescription
names dict[int, str]

Dictionary of class names.

pose Metric

An instance of the Metric class to calculate pose metrics.

box Metric

An instance of the Metric class for storing detection results.

speed dict[str, float]

A dictionary for storing execution times of different parts of the detection process.

task str

The task type, set to 'pose'.

stats dict[str, list]

A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images.

nt_per_class

Number of targets per class.

nt_per_image

Number of targets per image.

Methods:

NameDescription
process

Process the detection and pose metrics over the given set of predictions. R

keys

Return a list of keys for accessing metrics.

mean_results

Return the mean results of box and pose.

class_result

Return the class-wise detection results for a specific class i.

maps

Return the mean average precision (mAP) per class for both box and pose detections.

fitness

Return combined fitness score for pose and box detection.

curves

Return a list of curves for accessing specific metrics curves.

curves_results

Provide a list of computed performance metrics and statistics.

summary

Generate a summarized representation of per-class pose metrics as a list of dictionaries.

Parameters:

NameTypeDescriptionDefault
names dict[int, str]

Dictionary of class names.

{}
Source code in ultralytics/utils/metrics.py
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
def __init__(self, names: dict[int, str] = {}) -> None:
    """Initialize the PoseMetrics class with directory path, class names, and plotting options.

    Args:
        names (dict[int, str], optional): Dictionary of class names.
    """
    super().__init__(names)
    self.pose = Metric()
    self.task = "pose"
    self.stats["tp_p"] = []  # add additional stats for pose

curvesproperty

curves: list[str]

Return a list of curves for accessing specific metrics curves.

curves_resultsproperty

curves_results: list[list]

Return a list of computed performance metrics and statistics.

fitnessproperty

fitness: float

Return combined fitness score for pose and box detection.

keysproperty

keys: list[str]

Return a list of evaluation metric keys.

mapsproperty

maps: ndarray

Return the mean average precision (mAP) per class for both box and pose detections.

class_result

class_result(i: int) -> list[float]

Return the class-wise detection results for a specific class i.

Source code in ultralytics/utils/metrics.py
1388
1389
1390
def class_result(self, i: int) -> list[float]:
    """Return the class-wise detection results for a specific class i."""
    return DetMetrics.class_result(self, i) + self.pose.class_result(i)

mean_results

mean_results() -> list[float]

Return the mean results of box and pose.

Source code in ultralytics/utils/metrics.py
1384
1385
1386
def mean_results(self) -> list[float]:
    """Return the mean results of box and pose."""
    return DetMetrics.mean_results(self) + self.pose.mean_results()

process

process(
    save_dir: Path = Path("."), plot: bool = False, on_plot=None
) -> dict[str, np.ndarray]

Process the detection and pose metrics over the given set of predictions.

Parameters:

NameTypeDescriptionDefault
save_dir Path

Directory to save plots. Defaults to Path(".").

Path('.')
plot bool

Whether to plot precision-recall curves. Defaults to False.

False
on_plot callable

Function to call after plots are generated.

None

Returns:

TypeDescription
dict[str, ndarray]

Dictionary containing concatenated statistics arrays.

Source code in ultralytics/utils/metrics.py
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
def process(self, save_dir: Path = Path("."), plot: bool = False, on_plot=None) -> dict[str, np.ndarray]:
    """Process the detection and pose metrics over the given set of predictions.

    Args:
        save_dir (Path): Directory to save plots. Defaults to Path(".").
        plot (bool): Whether to plot precision-recall curves. Defaults to False.
        on_plot (callable, optional): Function to call after plots are generated.

    Returns:
        (dict[str, np.ndarray]): Dictionary containing concatenated statistics arrays.
    """
    stats = DetMetrics.process(self, save_dir, plot, on_plot=on_plot)  # process box stats
    results_pose = ap_per_class(
        stats["tp_p"],
        stats["conf"],
        stats["pred_cls"],
        stats["target_cls"],
        plot=plot,
        on_plot=on_plot,
        save_dir=save_dir,
        names=self.names,
        prefix="Pose",
    )[2:]
    self.pose.nc = len(self.names)
    self.pose.update(results_pose)
    return stats

summary

summary(normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]

Generate a summarized representation of per-class pose metrics as a list of dictionaries. Includes both box and pose scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.

Parameters:

NameTypeDescriptionDefault
normalize bool

For Pose metrics, everything is normalized by default [0-1].

True
decimals int

Number of decimal places to round the metrics values to.

5

Returns:

TypeDescription
list[dict[str, Any]]

A list of dictionaries, each representing one class with corresponding metric values.

Examples:

>>> results = model.val(data="coco8-pose.yaml")
>>> pose_summary = results.summary(decimals=4)
>>> print(pose_summary)
Source code in ultralytics/utils/metrics.py
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
def summary(self, normalize: bool = True, decimals: int = 5) -> list[dict[str, Any]]:
    """Generate a summarized representation of per-class pose metrics as a list of dictionaries. Includes both box
    and pose scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.

    Args:
        normalize (bool): For Pose metrics, everything is normalized by default [0-1].
        decimals (int): Number of decimal places to round the metrics values to.

    Returns:
        (list[dict[str, Any]]): A list of dictionaries, each representing one class with corresponding metric
            values.

    Examples:
        >>> results = model.val(data="coco8-pose.yaml")
        >>> pose_summary = results.summary(decimals=4)
        >>> print(pose_summary)
    """
    per_class = {
        "Pose-P": self.pose.p,
        "Pose-R": self.pose.r,
        "Pose-F1": self.pose.f1,
    }
    summary = DetMetrics.summary(self, normalize, decimals)  # get box summary
    for i, s in enumerate(summary):
        s.update({**{k: round(v[i], decimals) for k, v in per_class.items()}})
    return summary





ultralytics.utils.metrics.ClassifyMetrics

ClassifyMetrics()

Bases: SimpleClass, DataExportMixin


              flowchart TD
              ultralytics.utils.metrics.ClassifyMetrics[ClassifyMetrics]
              ultralytics.utils.SimpleClass[SimpleClass]
              ultralytics.utils.DataExportMixin[DataExportMixin]

                              ultralytics.utils.SimpleClass --> ultralytics.utils.metrics.ClassifyMetrics
                
                ultralytics.utils.DataExportMixin --> ultralytics.utils.metrics.ClassifyMetrics
                


              click ultralytics.utils.metrics.ClassifyMetrics href "" "ultralytics.utils.metrics.ClassifyMetrics"
              click ultralytics.utils.SimpleClass href "" "ultralytics.utils.SimpleClass"
              click ultralytics.utils.DataExportMixin href "" "ultralytics.utils.DataExportMixin"
            

Class for computing classification metrics including top-1 and top-5 accuracy.

Attributes:

NameTypeDescription
top1 float

The top-1 accuracy.

top5 float

The top-5 accuracy.

speed dict

A dictionary containing the time taken for each step in the pipeline.

task str

The task type, set to 'classify'.

Methods:

NameDescription
process

Process target classes and predicted classes to compute metrics.

fitness

Return mean of top-1 and top-5 accuracies as fitness score.

results_dict

Return a dictionary with model's performance metrics and fitness score.

keys

Return a list of keys for the results_dict property.

curves

Return a list of curves for accessing specific metrics curves.

curves_results

Provide a list of computed performance metrics and statistics.

summary

Generate a single-row summary of classification metrics (Top-1 and Top-5 accuracy).

Source code in ultralytics/utils/metrics.py
1469
1470
1471
1472
1473
1474
def __init__(self) -> None:
    """Initialize a ClassifyMetrics instance."""
    self.top1 = 0
    self.top5 = 0
    self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
    self.task = "classify"

curvesproperty

curves: list

Return a list of curves for accessing specific metrics curves.

curves_resultsproperty

curves_results: list

Return a list of curves for accessing specific metrics curves.

fitnessproperty

fitness: float

Return mean of top-1 and top-5 accuracies as fitness score.

keysproperty

keys: list[str]

Return a list of keys for the results_dict property.

results_dictproperty

results_dict: dict[str, float]

Return a dictionary with model's performance metrics and fitness score.

process

process(targets: Tensor, pred: Tensor)

Process target classes and predicted classes to compute metrics.

Parameters:

NameTypeDescriptionDefault
targets Tensor

Target classes.

required
pred Tensor

Predicted classes.

required
Source code in ultralytics/utils/metrics.py
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
def process(self, targets: torch.Tensor, pred: torch.Tensor):
    """Process target classes and predicted classes to compute metrics.

    Args:
        targets (torch.Tensor): Target classes.
        pred (torch.Tensor): Predicted classes.
    """
    pred, targets = torch.cat(pred), torch.cat(targets)
    correct = (targets[:, None] == pred).float()
    acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1)  # (top1, top5) accuracy
    self.top1, self.top5 = acc.mean(0).tolist()

summary

summary(normalize: bool = True, decimals: int = 5) -> list[dict[str, float]]

Generate a single-row summary of classification metrics (Top-1 and Top-5 accuracy).

Parameters:

NameTypeDescriptionDefault
normalize bool

For Classify metrics, everything is normalized by default [0-1].

True
decimals int

Number of decimal places to round the metrics values to.

5

Returns:

TypeDescription
list[dict[str, float]]

A list with one dictionary containing Top-1 and Top-5 classification accuracy.

Examples:

>>> results = model.val(data="imagenet10")
>>> classify_summary = results.summary(decimals=4)
>>> print(classify_summary)
Source code in ultralytics/utils/metrics.py
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
def summary(self, normalize: bool = True, decimals: int = 5) -> list[dict[str, float]]:
    """Generate a single-row summary of classification metrics (Top-1 and Top-5 accuracy).

    Args:
        normalize (bool): For Classify metrics, everything is normalized by default [0-1].
        decimals (int): Number of decimal places to round the metrics values to.

    Returns:
        (list[dict[str, float]]): A list with one dictionary containing Top-1 and Top-5 classification accuracy.

    Examples:
        >>> results = model.val(data="imagenet10")
        >>> classify_summary = results.summary(decimals=4)
        >>> print(classify_summary)
    """
    return [{"top1_acc": round(self.top1, decimals), "top5_acc": round(self.top5, decimals)}]





ultralytics.utils.metrics.OBBMetrics

OBBMetrics(names: dict[int, str] = {})

Bases: DetMetrics


              flowchart TD
              ultralytics.utils.metrics.OBBMetrics[OBBMetrics]
              ultralytics.utils.metrics.DetMetrics[DetMetrics]
              ultralytics.utils.SimpleClass[SimpleClass]
              ultralytics.utils.DataExportMixin[DataExportMixin]

                              ultralytics.utils.metrics.DetMetrics --> ultralytics.utils.metrics.OBBMetrics
                                ultralytics.utils.SimpleClass --> ultralytics.utils.metrics.DetMetrics
                
                ultralytics.utils.DataExportMixin --> ultralytics.utils.metrics.DetMetrics
                



              click ultralytics.utils.metrics.OBBMetrics href "" "ultralytics.utils.metrics.OBBMetrics"
              click ultralytics.utils.metrics.DetMetrics href "" "ultralytics.utils.metrics.DetMetrics"
              click ultralytics.utils.SimpleClass href "" "ultralytics.utils.SimpleClass"
              click ultralytics.utils.DataExportMixin href "" "ultralytics.utils.DataExportMixin"
            

Metrics for evaluating oriented bounding box (OBB) detection.

Attributes:

NameTypeDescription
names dict[int, str]

Dictionary of class names.

box Metric

An instance of the Metric class for storing detection results.

speed dict[str, float]

A dictionary for storing execution times of different parts of the detection process.

task str

The task type, set to 'obb'.

stats dict[str, list]

A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images.

nt_per_class

Number of targets per class.

nt_per_image

Number of targets per image.

References

https://arxiv.org/pdf/2106.06072.pdf

Parameters:

NameTypeDescriptionDefault
names dict[int, str]

Dictionary of class names.

{}
Source code in ultralytics/utils/metrics.py
1548
1549
1550
1551
1552
1553
1554
1555
1556
def __init__(self, names: dict[int, str] = {}) -> None:
    """Initialize an OBBMetrics instance with directory, plotting, and class names.

    Args:
        names (dict[int, str], optional): Dictionary of class names.
    """
    DetMetrics.__init__(self, names)
    # TODO: probably remove task as well
    self.task = "obb"





ultralytics.utils.metrics.bbox_ioa

bbox_ioa(
    box1: ndarray, box2: ndarray, iou: bool = False, eps: float = 1e-07
) -> np.ndarray

Calculate the intersection over box2 area given box1 and box2.

Parameters:

NameTypeDescriptionDefault
box1 ndarray

A numpy array of shape (N, 4) representing N bounding boxes in x1y1x2y2 format.

required
box2 ndarray

A numpy array of shape (M, 4) representing M bounding boxes in x1y1x2y2 format.

required
iou bool

Calculate the standard IoU if True else return inter_area/box2_area.

False
eps float

A small value to avoid division by zero.

1e-07

Returns:

TypeDescription
ndarray

A numpy array of shape (N, M) representing the intersection over box2 area.

Source code in ultralytics/utils/metrics.py
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def bbox_ioa(box1: np.ndarray, box2: np.ndarray, iou: bool = False, eps: float = 1e-7) -> np.ndarray:
    """Calculate the intersection over box2 area given box1 and box2.

    Args:
        box1 (np.ndarray): A numpy array of shape (N, 4) representing N bounding boxes in x1y1x2y2 format.
        box2 (np.ndarray): A numpy array of shape (M, 4) representing M bounding boxes in x1y1x2y2 format.
        iou (bool, optional): Calculate the standard IoU if True else return inter_area/box2_area.
        eps (float, optional): A small value to avoid division by zero.

    Returns:
        (np.ndarray): A numpy array of shape (N, M) representing the intersection over box2 area.
    """
    # Get the coordinates of bounding boxes
    b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
    b2_x1, b2_y1, b2_x2, b2_y2 = box2.T

    # Intersection area
    inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * (
        np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)
    ).clip(0)

    # Box2 area
    area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
    if iou:
        box1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
        area = area + box1_area[:, None] - inter_area

    # Intersection over box2 area
    return inter_area / (area + eps)





ultralytics.utils.metrics.box_iou

box_iou(box1: Tensor, box2: Tensor, eps: float = 1e-07) -> torch.Tensor

Calculate intersection-over-union (IoU) of boxes.

Parameters:

NameTypeDescriptionDefault
box1 Tensor

A tensor of shape (N, 4) representing N bounding boxes in (x1, y1, x2, y2) format.

required
box2 Tensor

A tensor of shape (M, 4) representing M bounding boxes in (x1, y1, x2, y2) format.

required
eps float

A small value to avoid division by zero.

1e-07

Returns:

TypeDescription
Tensor

An NxM tensor containing the pairwise IoU values for every element in box1 and box2.

References

https://github.com/pytorch/vision/blob/main/torchvision/ops/boxes.py

Source code in ultralytics/utils/metrics.py
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
def box_iou(box1: torch.Tensor, box2: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
    """Calculate intersection-over-union (IoU) of boxes.

    Args:
        box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes in (x1, y1, x2, y2) format.
        box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes in (x1, y1, x2, y2) format.
        eps (float, optional): A small value to avoid division by zero.

    Returns:
        (torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2.

    References:
        https://github.com/pytorch/vision/blob/main/torchvision/ops/boxes.py
    """
    # NOTE: Need .float() to get accurate iou values
    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    (a1, a2), (b1, b2) = box1.float().unsqueeze(1).chunk(2, 2), box2.float().unsqueeze(0).chunk(2, 2)
    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2)

    # IoU = inter / (area1 + area2 - inter)
    return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)





ultralytics.utils.metrics.bbox_iou

bbox_iou(
    box1: Tensor,
    box2: Tensor,
    xywh: bool = True,
    GIoU: bool = False,
    DIoU: bool = False,
    CIoU: bool = False,
    eps: float = 1e-07,
) -> torch.Tensor

Calculate the Intersection over Union (IoU) between bounding boxes.

This function supports various shapes for box1 and box2 as long as the last dimension is 4. For instance, you may pass tensors shaped like (4,), (N, 4), (B, N, 4), or (B, N, 1, 4). Internally, the code will split the last dimension into (x, y, w, h) if xywh=True, or (x1, y1, x2, y2) if xywh=False.

Parameters:

NameTypeDescriptionDefault
box1 Tensor

A tensor representing one or more bounding boxes, with the last dimension being 4.

required
box2 Tensor

A tensor representing one or more bounding boxes, with the last dimension being 4.

required
xywh bool

If True, input boxes are in (x, y, w, h) format. If False, input boxes are in (x1, y1, x2, y2) format.

True
GIoU bool

If True, calculate Generalized IoU.

False
DIoU bool

If True, calculate Distance IoU.

False
CIoU bool

If True, calculate Complete IoU.

False
eps float

A small value to avoid division by zero.

1e-07

Returns:

TypeDescription
Tensor

IoU, GIoU, DIoU, or CIoU values depending on the specified flags.

Source code in ultralytics/utils/metrics.py
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def bbox_iou(
    box1: torch.Tensor,
    box2: torch.Tensor,
    xywh: bool = True,
    GIoU: bool = False,
    DIoU: bool = False,
    CIoU: bool = False,
    eps: float = 1e-7,
) -> torch.Tensor:
    """Calculate the Intersection over Union (IoU) between bounding boxes.

    This function supports various shapes for `box1` and `box2` as long as the last dimension is 4. For instance, you
    may pass tensors shaped like (4,), (N, 4), (B, N, 4), or (B, N, 1, 4). Internally, the code will split the last
    dimension into (x, y, w, h) if `xywh=True`, or (x1, y1, x2, y2) if `xywh=False`.

    Args:
        box1 (torch.Tensor): A tensor representing one or more bounding boxes, with the last dimension being 4.
        box2 (torch.Tensor): A tensor representing one or more bounding boxes, with the last dimension being 4.
        xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in (x1, y1,
            x2, y2) format.
        GIoU (bool, optional): If True, calculate Generalized IoU.
        DIoU (bool, optional): If True, calculate Distance IoU.
        CIoU (bool, optional): If True, calculate Complete IoU.
        eps (float, optional): A small value to avoid division by zero.

    Returns:
        (torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags.
    """
    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
        w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * (
        b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)
    ).clamp_(0)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps

    # IoU
    iou = inter / union
    if CIoU or DIoU or GIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw.pow(2) + ch.pow(2) + eps  # convex diagonal squared
            rho2 = (
                (b2_x1 + b2_x2 - b1_x1 - b1_x2).pow(2) + (b2_y1 + b2_y2 - b1_y1 - b1_y2).pow(2)
            ) / 4  # center dist**2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi**2) * ((w2 / h2).atan() - (w1 / h1).atan()).pow(2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
            return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    return iou  # IoU





ultralytics.utils.metrics.mask_iou

mask_iou(mask1: Tensor, mask2: Tensor, eps: float = 1e-07) -> torch.Tensor

Calculate masks IoU.

Parameters:

NameTypeDescriptionDefault
mask1 Tensor

A tensor of shape (N, n) where N is the number of ground truth objects and n is the product of image width and height.

required
mask2 Tensor

A tensor of shape (M, n) where M is the number of predicted objects and n is the product of image width and height.

required
eps float

A small value to avoid division by zero.

1e-07

Returns:

TypeDescription
Tensor

A tensor of shape (N, M) representing masks IoU.

Source code in ultralytics/utils/metrics.py
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def mask_iou(mask1: torch.Tensor, mask2: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
    """Calculate masks IoU.

    Args:
        mask1 (torch.Tensor): A tensor of shape (N, n) where N is the number of ground truth objects and n is the
            product of image width and height.
        mask2 (torch.Tensor): A tensor of shape (M, n) where M is the number of predicted objects and n is the product
            of image width and height.
        eps (float, optional): A small value to avoid division by zero.

    Returns:
        (torch.Tensor): A tensor of shape (N, M) representing masks IoU.
    """
    intersection = torch.matmul(mask1, mask2.T).clamp_(0)
    union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection  # (area1 + area2) - intersection
    return intersection / (union + eps)





ultralytics.utils.metrics.kpt_iou

kpt_iou(
    kpt1: Tensor,
    kpt2: Tensor,
    area: Tensor,
    sigma: list[float],
    eps: float = 1e-07,
) -> torch.Tensor

Calculate Object Keypoint Similarity (OKS).

Parameters:

NameTypeDescriptionDefault
kpt1 Tensor

A tensor of shape (N, 17, 3) representing ground truth keypoints.

required
kpt2 Tensor

A tensor of shape (M, 17, 3) representing predicted keypoints.

required
area Tensor

A tensor of shape (N,) representing areas from ground truth.

required
sigma list

A list containing 17 values representing keypoint scales.

required
eps float

A small value to avoid division by zero.

1e-07

Returns:

TypeDescription
Tensor

A tensor of shape (N, M) representing keypoint similarities.

Source code in ultralytics/utils/metrics.py
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def kpt_iou(
    kpt1: torch.Tensor, kpt2: torch.Tensor, area: torch.Tensor, sigma: list[float], eps: float = 1e-7
) -> torch.Tensor:
    """Calculate Object Keypoint Similarity (OKS).

    Args:
        kpt1 (torch.Tensor): A tensor of shape (N, 17, 3) representing ground truth keypoints.
        kpt2 (torch.Tensor): A tensor of shape (M, 17, 3) representing predicted keypoints.
        area (torch.Tensor): A tensor of shape (N,) representing areas from ground truth.
        sigma (list): A list containing 17 values representing keypoint scales.
        eps (float, optional): A small value to avoid division by zero.

    Returns:
        (torch.Tensor): A tensor of shape (N, M) representing keypoint similarities.
    """
    d = (kpt1[:, None, :, 0] - kpt2[..., 0]).pow(2) + (kpt1[:, None, :, 1] - kpt2[..., 1]).pow(2)  # (N, M, 17)
    sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype)  # (17, )
    kpt_mask = kpt1[..., 2] != 0  # (N, 17)
    e = d / ((2 * sigma).pow(2) * (area[:, None, None] + eps) * 2)  # from cocoeval
    # e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2  # from formula
    return ((-e).exp() * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps)





ultralytics.utils.metrics._get_covariance_matrix

_get_covariance_matrix(
    boxes: Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]

Generate covariance matrix from oriented bounding boxes.

Parameters:

NameTypeDescriptionDefault
boxes Tensor

A tensor of shape (N, 5) representing rotated bounding boxes, with xywhr format.

required

Returns:

TypeDescription
Tensor

Covariance matrices corresponding to original rotated bounding boxes.

Source code in ultralytics/utils/metrics.py
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def _get_covariance_matrix(boxes: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    """Generate covariance matrix from oriented bounding boxes.

    Args:
        boxes (torch.Tensor): A tensor of shape (N, 5) representing rotated bounding boxes, with xywhr format.

    Returns:
        (torch.Tensor): Covariance matrices corresponding to original rotated bounding boxes.
    """
    # Gaussian bounding boxes, ignore the center points (the first two columns) because they are not needed here.
    gbbs = torch.cat((boxes[:, 2:4].pow(2) / 12, boxes[:, 4:]), dim=-1)
    a, b, c = gbbs.split(1, dim=-1)
    cos = c.cos()
    sin = c.sin()
    cos2 = cos.pow(2)
    sin2 = sin.pow(2)
    return a * cos2 + b * sin2, a * sin2 + b * cos2, (a - b) * cos * sin





ultralytics.utils.metrics.probiou

probiou(
    obb1: Tensor, obb2: Tensor, CIoU: bool = False, eps: float = 1e-07
) -> torch.Tensor

Calculate probabilistic IoU between oriented bounding boxes.

Parameters:

NameTypeDescriptionDefault
obb1 Tensor

Ground truth OBBs, shape (N, 5), format xywhr.

required
obb2 Tensor

Predicted OBBs, shape (N, 5), format xywhr.

required
CIoU bool

If True, calculate CIoU.

False
eps float

Small value to avoid division by zero.

1e-07

Returns:

TypeDescription
Tensor

OBB similarities, shape (N,).

Notes

OBB format: [center_x, center_y, width, height, rotation_angle].

References

https://arxiv.org/pdf/2106.06072v1.pdf

Source code in ultralytics/utils/metrics.py
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
def probiou(obb1: torch.Tensor, obb2: torch.Tensor, CIoU: bool = False, eps: float = 1e-7) -> torch.Tensor:
    """Calculate probabilistic IoU between oriented bounding boxes.

    Args:
        obb1 (torch.Tensor): Ground truth OBBs, shape (N, 5), format xywhr.
        obb2 (torch.Tensor): Predicted OBBs, shape (N, 5), format xywhr.
        CIoU (bool, optional): If True, calculate CIoU.
        eps (float, optional): Small value to avoid division by zero.

    Returns:
        (torch.Tensor): OBB similarities, shape (N,).

    Notes:
        OBB format: [center_x, center_y, width, height, rotation_angle].

    References:
        https://arxiv.org/pdf/2106.06072v1.pdf
    """
    x1, y1 = obb1[..., :2].split(1, dim=-1)
    x2, y2 = obb2[..., :2].split(1, dim=-1)
    a1, b1, c1 = _get_covariance_matrix(obb1)
    a2, b2, c2 = _get_covariance_matrix(obb2)

    t1 = (
        ((a1 + a2) * (y1 - y2).pow(2) + (b1 + b2) * (x1 - x2).pow(2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)
    ) * 0.25
    t2 = (((c1 + c2) * (x2 - x1) * (y1 - y2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)) * 0.5
    t3 = (
        ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2))
        / (4 * ((a1 * b1 - c1.pow(2)).clamp_(0) * (a2 * b2 - c2.pow(2)).clamp_(0)).sqrt() + eps)
        + eps
    ).log() * 0.5
    bd = (t1 + t2 + t3).clamp(eps, 100.0)
    hd = (1.0 - (-bd).exp() + eps).sqrt()
    iou = 1 - hd
    if CIoU:  # only include the wh aspect ratio part
        w1, h1 = obb1[..., 2:4].split(1, dim=-1)
        w2, h2 = obb2[..., 2:4].split(1, dim=-1)
        v = (4 / math.pi**2) * ((w2 / h2).atan() - (w1 / h1).atan()).pow(2)
        with torch.no_grad():
            alpha = v / (v - iou + (1 + eps))
        return iou - v * alpha  # CIoU
    return iou





ultralytics.utils.metrics.batch_probiou

batch_probiou(
    obb1: Tensor | ndarray, obb2: Tensor | ndarray, eps: float = 1e-07
) -> torch.Tensor

Calculate the probabilistic IoU between oriented bounding boxes.

Parameters:

NameTypeDescriptionDefault
obb1 Tensor | ndarray

A tensor of shape (N, 5) representing ground truth obbs, with xywhr format.

required
obb2 Tensor | ndarray

A tensor of shape (M, 5) representing predicted obbs, with xywhr format.

required
eps float

A small value to avoid division by zero.

1e-07

Returns:

TypeDescription
Tensor

A tensor of shape (N, M) representing obb similarities.

References

https://arxiv.org/pdf/2106.06072v1.pdf

Source code in ultralytics/utils/metrics.py
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
def batch_probiou(obb1: torch.Tensor | np.ndarray, obb2: torch.Tensor | np.ndarray, eps: float = 1e-7) -> torch.Tensor:
    """Calculate the probabilistic IoU between oriented bounding boxes.

    Args:
        obb1 (torch.Tensor | np.ndarray): A tensor of shape (N, 5) representing ground truth obbs, with xywhr format.
        obb2 (torch.Tensor | np.ndarray): A tensor of shape (M, 5) representing predicted obbs, with xywhr format.
        eps (float, optional): A small value to avoid division by zero.

    Returns:
        (torch.Tensor): A tensor of shape (N, M) representing obb similarities.

    References:
        https://arxiv.org/pdf/2106.06072v1.pdf
    """
    obb1 = torch.from_numpy(obb1) if isinstance(obb1, np.ndarray) else obb1
    obb2 = torch.from_numpy(obb2) if isinstance(obb2, np.ndarray) else obb2

    x1, y1 = obb1[..., :2].split(1, dim=-1)
    x2, y2 = (x.squeeze(-1)[None] for x in obb2[..., :2].split(1, dim=-1))
    a1, b1, c1 = _get_covariance_matrix(obb1)
    a2, b2, c2 = (x.squeeze(-1)[None] for x in _get_covariance_matrix(obb2))

    t1 = (
        ((a1 + a2) * (y1 - y2).pow(2) + (b1 + b2) * (x1 - x2).pow(2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)
    ) * 0.25
    t2 = (((c1 + c2) * (x2 - x1) * (y1 - y2)) / ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2) + eps)) * 0.5
    t3 = (
        ((a1 + a2) * (b1 + b2) - (c1 + c2).pow(2))
        / (4 * ((a1 * b1 - c1.pow(2)).clamp_(0) * (a2 * b2 - c2.pow(2)).clamp_(0)).sqrt() + eps)
        + eps
    ).log() * 0.5
    bd = (t1 + t2 + t3).clamp(eps, 100.0)
    hd = (1.0 - (-bd).exp() + eps).sqrt()
    return 1 - hd





ultralytics.utils.metrics.smooth_bce

smooth_bce(eps: float = 0.1) -> tuple[float, float]

Compute smoothed positive and negative Binary Cross-Entropy targets.

Parameters:

NameTypeDescriptionDefault
eps float

The epsilon value for label smoothing.

0.1

Returns:

NameTypeDescription
pos float

Positive label smoothing BCE target.

neg float

Negative label smoothing BCE target.

References

https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441

Source code in ultralytics/utils/metrics.py
287
288
289
290
291
292
293
294
295
296
297
298
299
300
def smooth_bce(eps: float = 0.1) -> tuple[float, float]:
    """Compute smoothed positive and negative Binary Cross-Entropy targets.

    Args:
        eps (float, optional): The epsilon value for label smoothing.

    Returns:
        pos (float): Positive label smoothing BCE target.
        neg (float): Negative label smoothing BCE target.

    References:
        https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
    """
    return 1.0 - 0.5 * eps, 0.5 * eps





ultralytics.utils.metrics.smooth

smooth(y: ndarray, f: float = 0.05) -> np.ndarray

Box filter of fraction f.

Source code in ultralytics/utils/metrics.py
612
613
614
615
616
617
def smooth(y: np.ndarray, f: float = 0.05) -> np.ndarray:
    """Box filter of fraction f."""
    nf = round(len(y) * f * 2) // 2 + 1  # number of filter elements (must be odd)
    p = np.ones(nf // 2)  # ones padding
    yp = np.concatenate((p * y[0], y, p * y[-1]), 0)  # y padded
    return np.convolve(yp, np.ones(nf) / nf, mode="valid")  # y-smoothed





ultralytics.utils.metrics.plot_pr_curve

plot_pr_curve(
    px: ndarray,
    py: ndarray,
    ap: ndarray,
    save_dir: Path = Path("pr_curve.png"),
    names: dict[int, str] = {},
    on_plot=None,
)

Plot precision-recall curve.

Parameters:

NameTypeDescriptionDefault
px ndarray

X values for the PR curve.

required
py ndarray

Y values for the PR curve.

required
ap ndarray

Average precision values.

required
save_dir Path

Path to save the plot.

Path('pr_curve.png')
names dict[int, str]

Dictionary mapping class indices to class names.

{}
on_plot callable

Function to call after plot is saved.

None
Source code in ultralytics/utils/metrics.py
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
@plt_settings()
def plot_pr_curve(
    px: np.ndarray,
    py: np.ndarray,
    ap: np.ndarray,
    save_dir: Path = Path("pr_curve.png"),
    names: dict[int, str] = {},
    on_plot=None,
):
    """Plot precision-recall curve.

    Args:
        px (np.ndarray): X values for the PR curve.
        py (np.ndarray): Y values for the PR curve.
        ap (np.ndarray): Average precision values.
        save_dir (Path, optional): Path to save the plot.
        names (dict[int, str], optional): Dictionary mapping class indices to class names.
        on_plot (callable, optional): Function to call after plot is saved.
    """
    import matplotlib.pyplot as plt  # scope for faster 'import ultralytics'

    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
    py = np.stack(py, axis=1)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py.T):
            ax.plot(px, y, linewidth=1, label=f"{names[i]} {ap[i, 0]:.3f}")  # plot(recall, precision)
    else:
        ax.plot(px, py, linewidth=1, color="gray")  # plot(recall, precision)

    ax.plot(px, py.mean(1), linewidth=3, color="blue", label=f"all classes {ap[:, 0].mean():.3f} mAP@0.5")
    ax.set_xlabel("Recall")
    ax.set_ylabel("Precision")
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    ax.set_title("Precision-Recall Curve")
    fig.savefig(save_dir, dpi=250)
    plt.close(fig)
    if on_plot:
        on_plot(save_dir)





ultralytics.utils.metrics.plot_mc_curve

plot_mc_curve(
    px: ndarray,
    py: ndarray,
    save_dir: Path = Path("mc_curve.png"),
    names: dict[int, str] = {},
    xlabel: str = "Confidence",
    ylabel: str = "Metric",
    on_plot=None,
)

Plot metric-confidence curve.

Parameters:

NameTypeDescriptionDefault
px ndarray

X values for the metric-confidence curve.

required
py ndarray

Y values for the metric-confidence curve.

required
save_dir Path

Path to save the plot.

Path('mc_curve.png')
names dict[int, str]

Dictionary mapping class indices to class names.

{}
xlabel str

X-axis label.

'Confidence'
ylabel str

Y-axis label.

'Metric'
on_plot callable

Function to call after plot is saved.

None
Source code in ultralytics/utils/metrics.py
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
@plt_settings()
def plot_mc_curve(
    px: np.ndarray,
    py: np.ndarray,
    save_dir: Path = Path("mc_curve.png"),
    names: dict[int, str] = {},
    xlabel: str = "Confidence",
    ylabel: str = "Metric",
    on_plot=None,
):
    """Plot metric-confidence curve.

    Args:
        px (np.ndarray): X values for the metric-confidence curve.
        py (np.ndarray): Y values for the metric-confidence curve.
        save_dir (Path, optional): Path to save the plot.
        names (dict[int, str], optional): Dictionary mapping class indices to class names.
        xlabel (str, optional): X-axis label.
        ylabel (str, optional): Y-axis label.
        on_plot (callable, optional): Function to call after plot is saved.
    """
    import matplotlib.pyplot as plt  # scope for faster 'import ultralytics'

    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py):
            ax.plot(px, y, linewidth=1, label=f"{names[i]}")  # plot(confidence, metric)
    else:
        ax.plot(px, py.T, linewidth=1, color="gray")  # plot(confidence, metric)

    y = smooth(py.mean(0), 0.1)
    ax.plot(px, y, linewidth=3, color="blue", label=f"all classes {y.max():.2f} at {px[y.argmax()]:.3f}")
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    ax.set_title(f"{ylabel}-Confidence Curve")
    fig.savefig(save_dir, dpi=250)
    plt.close(fig)
    if on_plot:
        on_plot(save_dir)





ultralytics.utils.metrics.compute_ap

compute_ap(
    recall: list[float], precision: list[float]
) -> tuple[float, np.ndarray, np.ndarray]

Compute the average precision (AP) given the recall and precision curves.

Parameters:

NameTypeDescriptionDefault
recall list

The recall curve.

required
precision list

The precision curve.

required

Returns:

NameTypeDescription
ap float

Average precision.

mpre ndarray

Precision envelope curve.

mrec ndarray

Modified recall curve with sentinel values added at the beginning and end.

Source code in ultralytics/utils/metrics.py
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
def compute_ap(recall: list[float], precision: list[float]) -> tuple[float, np.ndarray, np.ndarray]:
    """Compute the average precision (AP) given the recall and precision curves.

    Args:
        recall (list): The recall curve.
        precision (list): The precision curve.

    Returns:
        ap (float): Average precision.
        mpre (np.ndarray): Precision envelope curve.
        mrec (np.ndarray): Modified recall curve with sentinel values added at the beginning and end.
    """
    # Append sentinel values to beginning and end
    mrec = np.concatenate(([0.0], recall, [1.0]))
    mpre = np.concatenate(([1.0], precision, [0.0]))

    # Compute the precision envelope
    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))

    # Integrate area under curve
    method = "interp"  # methods: 'continuous', 'interp'
    if method == "interp":
        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
        func = np.trapezoid if checks.check_version(np.__version__, ">=2.0") else np.trapz  # np.trapz deprecated
        ap = func(np.interp(x, mrec, mpre), x)  # integrate
    else:  # 'continuous'
        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x-axis (recall) changes
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve

    return ap, mpre, mrec





ultralytics.utils.metrics.ap_per_class

ap_per_class(
    tp: ndarray,
    conf: ndarray,
    pred_cls: ndarray,
    target_cls: ndarray,
    plot: bool = False,
    on_plot=None,
    save_dir: Path = Path(),
    names: dict[int, str] = {},
    eps: float = 1e-16,
    prefix: str = "",
) -> tuple

Compute the average precision per class for object detection evaluation.

Parameters:

NameTypeDescriptionDefault
tp ndarray

Binary array indicating whether the detection is correct (True) or not (False).

required
conf ndarray

Array of confidence scores of the detections.

required
pred_cls ndarray

Array of predicted classes of the detections.

required
target_cls ndarray

Array of true classes of the detections.

required
plot bool

Whether to plot PR curves or not.

False
on_plot callable

A callback to pass plots path and data when they are rendered.

None
save_dir Path

Directory to save the PR curves.

Path()
names dict[int, str]

Dictionary of class names to plot PR curves.

{}
eps float

A small value to avoid division by zero.

1e-16
prefix str

A prefix string for saving the plot files.

''

Returns:

NameTypeDescription
tp ndarray

True positive counts at threshold given by max F1 metric for each class.

fp ndarray

False positive counts at threshold given by max F1 metric for each class.

p ndarray

Precision values at threshold given by max F1 metric for each class.

r ndarray

Recall values at threshold given by max F1 metric for each class.

f1 ndarray

F1-score values at threshold given by max F1 metric for each class.

ap ndarray

Average precision for each class at different IoU thresholds.

unique_classes ndarray

An array of unique classes that have data.

p_curve ndarray

Precision curves for each class.

r_curve ndarray

Recall curves for each class.

f1_curve ndarray

F1-score curves for each class.

x ndarray

X-axis values for the curves.

prec_values ndarray

Precision values at mAP@0.5 for each class.

Source code in ultralytics/utils/metrics.py
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
def ap_per_class(
    tp: np.ndarray,
    conf: np.ndarray,
    pred_cls: np.ndarray,
    target_cls: np.ndarray,
    plot: bool = False,
    on_plot=None,
    save_dir: Path = Path(),
    names: dict[int, str] = {},
    eps: float = 1e-16,
    prefix: str = "",
) -> tuple:
    """Compute the average precision per class for object detection evaluation.

    Args:
        tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False).
        conf (np.ndarray): Array of confidence scores of the detections.
        pred_cls (np.ndarray): Array of predicted classes of the detections.
        target_cls (np.ndarray): Array of true classes of the detections.
        plot (bool, optional): Whether to plot PR curves or not.
        on_plot (callable, optional): A callback to pass plots path and data when they are rendered.
        save_dir (Path, optional): Directory to save the PR curves.
        names (dict[int, str], optional): Dictionary of class names to plot PR curves.
        eps (float, optional): A small value to avoid division by zero.
        prefix (str, optional): A prefix string for saving the plot files.

    Returns:
        tp (np.ndarray): True positive counts at threshold given by max F1 metric for each class.
        fp (np.ndarray): False positive counts at threshold given by max F1 metric for each class.
        p (np.ndarray): Precision values at threshold given by max F1 metric for each class.
        r (np.ndarray): Recall values at threshold given by max F1 metric for each class.
        f1 (np.ndarray): F1-score values at threshold given by max F1 metric for each class.
        ap (np.ndarray): Average precision for each class at different IoU thresholds.
        unique_classes (np.ndarray): An array of unique classes that have data.
        p_curve (np.ndarray): Precision curves for each class.
        r_curve (np.ndarray): Recall curves for each class.
        f1_curve (np.ndarray): F1-score curves for each class.
        x (np.ndarray): X-axis values for the curves.
        prec_values (np.ndarray): Precision values at mAP@0.5 for each class.
    """
    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes, nt = np.unique(target_cls, return_counts=True)
    nc = unique_classes.shape[0]  # number of classes, number of detections

    # Create Precision-Recall curve and compute AP for each class
    x, prec_values = np.linspace(0, 1, 1000), []

    # Average precision, precision and recall curves
    ap, p_curve, r_curve = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
    for ci, c in enumerate(unique_classes):
        i = pred_cls == c
        n_l = nt[ci]  # number of labels
        n_p = i.sum()  # number of predictions
        if n_p == 0 or n_l == 0:
            continue

        # Accumulate FPs and TPs
        fpc = (1 - tp[i]).cumsum(0)
        tpc = tp[i].cumsum(0)

        # Recall
        recall = tpc / (n_l + eps)  # recall curve
        r_curve[ci] = np.interp(-x, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases

        # Precision
        precision = tpc / (tpc + fpc)  # precision curve
        p_curve[ci] = np.interp(-x, -conf[i], precision[:, 0], left=1)  # p at pr_score

        # AP from recall-precision curve
        for j in range(tp.shape[1]):
            ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
            if j == 0:
                prec_values.append(np.interp(x, mrec, mpre))  # precision at mAP@0.5

    prec_values = np.array(prec_values) if prec_values else np.zeros((1, 1000))  # (nc, 1000)

    # Compute F1 (harmonic mean of precision and recall)
    f1_curve = 2 * p_curve * r_curve / (p_curve + r_curve + eps)
    names = {i: names[k] for i, k in enumerate(unique_classes) if k in names}  # dict: only classes that have data
    if plot:
        plot_pr_curve(x, prec_values, ap, save_dir / f"{prefix}PR_curve.png", names, on_plot=on_plot)
        plot_mc_curve(x, f1_curve, save_dir / f"{prefix}F1_curve.png", names, ylabel="F1", on_plot=on_plot)
        plot_mc_curve(x, p_curve, save_dir / f"{prefix}P_curve.png", names, ylabel="Precision", on_plot=on_plot)
        plot_mc_curve(x, r_curve, save_dir / f"{prefix}R_curve.png", names, ylabel="Recall", on_plot=on_plot)

    i = smooth(f1_curve.mean(0), 0.1).argmax()  # max F1 index
    p, r, f1 = p_curve[:, i], r_curve[:, i], f1_curve[:, i]  # max-F1 precision, recall, F1 values
    tp = (r * nt).round()  # true positives
    fp = (tp / (p + eps) - tp).round()  # false positives
    return tp, fp, p, r, f1, ap, unique_classes.astype(int), p_curve, r_curve, f1_curve, x, prec_values





📅 Created 2 years ago ✏️ Updated 10 months ago
glenn-jocherRizwanMunawarjk4eBurhan-QLaughing-q