Güvenlik Alarm Sistemi Projesi Kullanımı Ultralytics YOLO11
Ultralytics YOLO11 adresini kullanan Güvenlik Alarm Sistemi Projesi, güvenlik önlemlerini artırmak için gelişmiş bilgisayarla görme yeteneklerini entegre etmektedir. YOLO11 tarafından geliştirilen Ultralytics, gerçek zamanlı nesne tespiti sağlayarak sistemin potansiyel güvenlik tehditlerini anında tespit etmesine ve bunlara yanıt vermesine olanak tanır. Bu proje çeşitli avantajlar sunmaktadır:
- Gerçek Zamanlı Algılama: YOLO11'un verimliliği, Güvenlik Alarm Sisteminin güvenlik olaylarını gerçek zamanlı olarak algılamasını ve yanıt vermesini sağlayarak yanıt süresini en aza indirir.
- Doğruluk: YOLO11 nesne tespitindeki doğruluğu ile bilinir, yanlış pozitifleri azaltır ve güvenlik alarm sisteminin güvenilirliğini artırır.
- Entegrasyon Yetenekleri: Proje, mevcut güvenlik altyapısıyla sorunsuz bir şekilde entegre edilebilir ve yükseltilmiş bir akıllı gözetim katmanı sağlar.
İzle: Güvenlik Alarm Sistemi Projesi ile Ultralytics YOLO11 Nesne Algılama
Kod
Not
Uygulama Şifresi Oluşturma gereklidir
- Navigate to App Password Generator, designate an app name such as "security project," and obtain a 16-digit password. Copy this password and paste it into the designated
password
field in the code below.
Security Alarm System using YOLO11 Example
import cv2
from ultralytics import solutions
cap = cv2.VideoCapture("Path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
# Video writer
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
video_writer = cv2.VideoWriter("security_alarm_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
from_email = "abc@gmail.com" # The sender email address
password = "---- ---- ---- ----" # 16-digits password generated via: https://myaccount.google.com/apppasswords
to_email = "xyz@gmail.com" # The receiver email address
# Init SecurityAlarm
security = solutions.SecurityAlarm(
show=True, # Display the output
model="yolo11n.pt", # i.e. YOLO11s.pt
records=1, # Total detections count to send an email about security
)
security.authenticate(from_email, password, to_email) # Authenticate the email server
# Process video
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
im0 = security.monitor(im0)
video_writer.write(im0)
cap.release()
video_writer.release()
cv2.destroyAllWindows()
İşte bu kadar! Kodu çalıştırdığınızda, herhangi bir nesne tespit edilirse e-postanızda tek bir bildirim alırsınız. Bildirim tekrar tekrar değil, hemen gönderilir. Ancak, kodu proje gereksinimlerinize uyacak şekilde özelleştirmekten çekinmeyin.
Alınan E-posta Örneği
Argümanlar SecurityAlarm
İşte bir tablo SecurityAlarm
Argümanlar:
İsim | Tip | Varsayılan | Açıklama |
---|---|---|---|
model |
str |
None |
Ultralytics YOLO Model Dosyasının Yolu |
line_width |
int |
2 |
Sınırlayıcı kutular için çizgi kalınlığı. |
show |
bool |
False |
Video akışının görüntülenip görüntülenmeyeceğini kontrol etmek için bayrak. |
records |
int |
5 |
Total detections count to send an email about security. |
Argümanlar model.track
Tartışma | Tip | Varsayılan | Açıklama |
---|---|---|---|
source |
str |
None |
Resimler veya videolar için kaynak dizini belirtir. Dosya yollarını ve URL'leri destekler. |
persist |
bool |
False |
Video dizileri boyunca kimlikleri koruyarak nesnelerin kareler arasında kalıcı olarak izlenmesini sağlar. |
tracker |
str |
botsort.yaml |
Kullanılacak izleme algoritmasını belirtir, örn, bytetrack.yaml veya botsort.yaml . |
conf |
float |
0.3 |
Algılamalar için güven eşiğini ayarlar; düşük değerler daha fazla nesnenin izlenmesine izin verir ancak yanlış pozitifler içerebilir. |
iou |
float |
0.5 |
Çakışan algılamaları filtrelemek için Birlik üzerinde Kesişim (IoU) eşiğini ayarlar. |
classes |
list |
None |
Sonuçları sınıf dizinine göre filtreler. Örneğin, classes=[0, 2, 3] yalnızca belirtilen sınıfları izler. |
verbose |
bool |
True |
İzleme sonuçlarının görüntülenmesini kontrol ederek izlenen nesnelerin görsel bir çıktısını sağlar. |
SSS
Ultralytics YOLO11 bir güvenlik alarm sisteminin doğruluğunu nasıl artırır?
Ultralytics YOLO11 yüksek doğrulukta, gerçek zamanlı nesne algılama sağlayarak güvenlik alarm sistemlerini geliştirir. Gelişmiş algoritmaları yanlış pozitifleri önemli ölçüde azaltarak sistemin yalnızca gerçek tehditlere yanıt vermesini sağlar. Bu artan güvenilirlik, mevcut güvenlik altyapısına sorunsuz bir şekilde entegre edilebilir ve genel gözetim kalitesini yükseltir.
Ultralytics YOLO11 adresini mevcut güvenlik altyapımla entegre edebilir miyim?
Evet, Ultralytics YOLO11 mevcut güvenlik altyapınızla sorunsuz bir şekilde entegre edilebilir. Sistem çeşitli modları destekler ve özelleştirme için esneklik sağlayarak mevcut kurulumunuzu gelişmiş nesne algılama yetenekleriyle geliştirmenize olanak tanır. YOLO11 adresini projelerinize entegre etmeye ilişkin ayrıntılı talimatlar için entegrasyon bölümünü ziyaret edin.
Ultralytics YOLO11 çalıştırmak için depolama gereksinimleri nelerdir?
Standart bir kurulumda Ultralytics YOLO11 çalıştırmak genellikle yaklaşık 5 GB boş disk alanı gerektirir. Bu, YOLO11 modelini ve tüm ek bağımlılıkları depolamak için gereken alanı içerir. Bulut tabanlı çözümler için Ultralytics HUB, depolama ihtiyaçlarını optimize edebilen verimli proje yönetimi ve veri kümesi kullanımı sunar. Genişletilmiş depolama alanı da dahil olmak üzere gelişmiş özellikler için Pro Plan hakkında daha fazla bilgi edinin.
Ultralytics YOLO11 adresini Faster R-CNN veya SSD gibi diğer nesne algılama modellerinden farklı kılan nedir?
Ultralytics YOLO11 gerçek zamanlı algılama yetenekleri ve daha yüksek doğruluğu ile Faster R-CNN veya SSD gibi modellere göre üstünlük sağlar. Benzersiz mimarisi, hassasiyetten ödün vermeden görüntüleri çok daha hızlı işlemesine olanak tanır ve bu da onu güvenlik alarm sistemleri gibi zamana duyarlı uygulamalar için ideal hale getirir. Nesne algılama modellerinin kapsamlı bir karşılaştırması için kılavuzumuzu inceleyebilirsiniz.
Ultralytics YOLO11 adresini kullanarak güvenlik sistemimdeki yanlış pozitiflerin sıklığını nasıl azaltabilirim?
Yanlış pozitifleri azaltmak için Ultralytics YOLO11 modelinizin çeşitli ve iyi açıklanmış bir veri kümesiyle yeterince eğitildiğinden emin olun. Hiperparametrelerin ince ayarının yapılması ve modelin yeni verilerle düzenli olarak güncellenmesi tespit doğruluğunu önemli ölçüde artırabilir. Ayrıntılı hiperparametre ayarlama teknikleri hiperparametre ayarlama kılavuzumuzda bulunabilir.