İçeriğe geç

TFLite, ONNX, CoreML, TensorRT İhracat

📚 Bu kılavuz, eğitilmiş bir YOLOv5 🚀 modelinin nasıl dışa aktarılacağını açıklamaktadır PyTorchONNX ve TorchScript formatlarına.

Başlamadan Önce

Repoyu klonlayın ve requirements.txt dosyasını bir Python>=3.8.0 ortamı dahil olmak üzere PyTorch>=1.8. Modeller ve veri setleri en son YOLOv5 sürümünden otomatik olarak indirilir.

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

İçin TensorRT ihracat örneği ( GPU gerektirir) Colab'ımıza bakın defter ekler bölümü. Colab'da Aç

Formatlar

YOLOv5 çıkarımı resmi olarak 11 formatta desteklenmektedir:

💡 ProTip: 3 kata kadar CPU hızlandırma için ONNX veya OpenVINO adresine aktarın. Bkz. CPU Benchmarks. 💡 ProTip: 5 kata kadar GPU hızlandırma için TensorRT adresine aktarın. Bkz. GPU Benchmarklar.

Biçim export.py --include Model
PyTorch - yolov5s.pt
TorchScript torchscript yolov5s.torchscript
ONNX onnx yolov5s.onnx
OpenVINO openvino yolov5s_openvino_model/
TensorRT engine yolov5s.engine
CoreML coreml yolov5s.mlmodel
TensorFlow SavedModel saved_model yolov5s_saved_model/
TensorFlow GraphDef pb yolov5s.pb
TensorFlow Lite tflite yolov5s.tflite
TensorFlow Kenar TPU edgetpu yolov5s_edgetpu.tflite
TensorFlow.js tfjs yolov5s_web_model/
PaddlePaddle paddle yolov5s_paddle_model/

Ölçütler

Aşağıdaki karşılaştırmalar YOLOv5 öğretici notebook ile Colab Pro üzerinde çalıştırılmıştır Colab'da Aç. Çoğaltmak için:

python benchmarks.py --weights yolov5s.pt --imgsz 640 --device 0

Colab Pro V100 GPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=0, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 46.7/166.8 GB disk)

Benchmarks complete (458.07s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623                10.19
1             TorchScript        0.4623                 6.85
2                    ONNX        0.4623                14.63
3                OpenVINO           NaN                  NaN
4                TensorRT        0.4617                 1.89
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623                21.28
7     TensorFlow GraphDef        0.4623                21.22
8         TensorFlow Lite           NaN                  NaN
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

Colab Pro CPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=cpu, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CPU
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 41.5/166.8 GB disk)

Benchmarks complete (241.20s)
                   Format  mAP@0.5:0.95  Inference time (ms)
0                 PyTorch        0.4623               127.61
1             TorchScript        0.4623               131.23
2                    ONNX        0.4623                69.34
3                OpenVINO        0.4623                66.52
4                TensorRT           NaN                  NaN
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623               123.79
7     TensorFlow GraphDef        0.4623               121.57
8         TensorFlow Lite        0.4623               316.61
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

Eğitilmiş bir YOLOv5 Modelini Dışa Aktarın

Bu komut, önceden eğitilmiş bir YOLOv5s modelini TorchScript ve ONNX biçimlerine aktarır. yolov5s.pt mevcut en küçük ikinci model olan 'küçük' modeldir. Diğer seçenekler şunlardır yolov5n.pt, yolov5m.pt, yolov5l.pt ve yolov5x.ptP6 muadilleri ile birlikte, yani yolov5s6.pt veya kendi özel eğitim kontrol noktanız, örn. runs/exp/weights/best.pt. Mevcut tüm modellerle ilgili ayrıntılar için lütfen README'ye bakın masa.

python export.py --weights yolov5s.pt --include torchscript onnx

💡 ProTip: Ekle --half FP16 yarısında model ihraç etmek hassas daha küçük dosya boyutları için

Çıktı:

export: data=data/coco128.yaml, weights=['yolov5s.pt'], imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx']
YOLOv5 🚀 v6.2-104-ge3e5122 Python-3.8.0 torch-1.12.1+cu113 CPU

Downloading https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 274MB/s]

Fusing layers...
YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients

PyTorch: starting from yolov5s.pt with output shape (1, 25200, 85) (14.1 MB)

TorchScript: starting export with torch 1.12.1+cu113...
TorchScript: export success  1.7s, saved as yolov5s.torchscript (28.1 MB)

ONNX: starting export with onnx 1.12.0...
ONNX: export success  2.3s, saved as yolov5s.onnx (28.0 MB)

Export complete (5.5s)
Results saved to /content/yolov5
Detect:          python detect.py --weights yolov5s.onnx
Validate:        python val.py --weights yolov5s.onnx
PyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.onnx')
Visualize:       https://netron.app/

Dışa aktarılan 3 model orijinal PyTorch modelinin yanına kaydedilecektir:

YOLO i̇hracat lokasyonlari

Dışa aktarılan modelleri görselleştirmek için Netron Viewer önerilir:

YOLO model görselleştirme

Dışa Aktarılan Model Kullanım Örnekleri

detect.py dışa aktarılan modeller üzerinde çıkarım yapar:

python detect.py --weights yolov5s.pt                 # PyTorch
                           yolov5s.torchscript        # TorchScript
                           yolov5s.onnx               # ONNX Runtime or OpenCV DNN with dnn=True
                           yolov5s_openvino_model     # OpenVINO
                           yolov5s.engine             # TensorRT
                           yolov5s.mlmodel            # CoreML (macOS only)
                           yolov5s_saved_model        # TensorFlow SavedModel
                           yolov5s.pb                 # TensorFlow GraphDef
                           yolov5s.tflite             # TensorFlow Lite
                           yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
                           yolov5s_paddle_model       # PaddlePaddle

val.py dışa aktarılan modeller üzerinde doğrulama çalıştırır:

python val.py --weights yolov5s.pt                 # PyTorch
                        yolov5s.torchscript        # TorchScript
                        yolov5s.onnx               # ONNX Runtime or OpenCV DNN with dnn=True
                        yolov5s_openvino_model     # OpenVINO
                        yolov5s.engine             # TensorRT
                        yolov5s.mlmodel            # CoreML (macOS Only)
                        yolov5s_saved_model        # TensorFlow SavedModel
                        yolov5s.pb                 # TensorFlow GraphDef
                        yolov5s.tflite             # TensorFlow Lite
                        yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
                        yolov5s_paddle_model       # PaddlePaddle

Dışa aktarılan YOLOv5 modelleri ile PyTorch Hub'ı kullanın:

import torch

# Model
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pt")
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.torchscript ")  # TorchScript
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.onnx")  # ONNX Runtime
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_openvino_model")  # OpenVINO
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.engine")  # TensorRT
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.mlmodel")  # CoreML (macOS Only)
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_saved_model")  # TensorFlow SavedModel
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pb")  # TensorFlow GraphDef
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.tflite")  # TensorFlow Lite
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_edgetpu.tflite")  # TensorFlow Edge TPU
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_paddle_model")  # PaddlePaddle

# Images
img = "https://ultralytics.com/images/zidane.jpg"  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

OpenCV DNN çıkarımı

ONNX modelleri ile OpenCV çıkarımı:

python export.py --weights yolov5s.pt --include onnx

python detect.py --weights yolov5s.onnx --dnn  # detect
python val.py --weights yolov5s.onnx --dnn  # validate

C++ Çıkarım

YOLOv5 Dışa aktarılan ONNX model örnekleri üzerinde OpenCV DNN C++ çıkarımı:

YOLOv5 OpenVINO C++ çıkarım örnekleri:

TensorFlow.js Web Tarayıcı Çıkarsaması

Desteklenen Ortamlar

Ultralytics gibi temel bağımlılıklarla önceden yüklenmiş bir dizi kullanıma hazır ortam sağlar. CUDA, CUDNN, Pythonve PyTorchProjelerinizi başlatmak için.

Proje Durumu

YOLOv5 CI

Bu rozet, tüm YOLOv5 GitHub Actions Sürekli Entegrasyon (CI) testlerinin başarıyla geçtiğini gösterir. Bu CI testleri, YOLOv5 'un işlevselliğini ve performansını çeşitli temel yönlerden titizlikle kontrol eder: eğitim, doğrulama, çıkarım, dışa aktarma ve kıyaslamalar. Her 24 saatte bir ve her yeni işlemde yapılan testlerle macOS, Windows ve Ubuntu üzerinde tutarlı ve güvenilir çalışma sağlarlar.

📅1 yıl önce oluşturuldu ✏️ 3 gün önce güncellendi

Yorumlar