Bỏ để qua phần nội dung

Tài liệu tham khảo cho ultralytics/utils/callbacks/comet.py

Ghi

Tệp này có sẵn tại https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/comet.py. Nếu bạn phát hiện ra một vấn đề, vui lòng giúp khắc phục nó bằng cách đóng góp Yêu cầu 🛠️ kéo. Cảm ơn bạn 🙏 !



ultralytics.utils.callbacks.comet._get_comet_mode()

Trả về chế độ của comet Đặt trong các biến môi trường, mặc định là 'trực tuyến' nếu không được đặt.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _get_comet_mode():
    """Returns the mode of comet set in the environment variables, defaults to 'online' if not set."""
    return os.getenv("COMET_MODE", "online")



ultralytics.utils.callbacks.comet._get_comet_model_name()

Trả về tên model cho Comet từ biến môi trường 'COMET_MODEL_NAME' hoặc mặc định là 'YOLOv8'.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _get_comet_model_name():
    """Returns the model name for Comet from the environment variable 'COMET_MODEL_NAME' or defaults to 'YOLOv8'."""
    return os.getenv("COMET_MODEL_NAME", "YOLOv8")



ultralytics.utils.callbacks.comet._get_eval_batch_logging_interval()

Nhận khoảng thời gian ghi nhật ký hàng loạt đánh giá từ biến môi trường hoặc sử dụng giá trị mặc định 1.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _get_eval_batch_logging_interval():
    """Get the evaluation batch logging interval from environment variable or use default value 1."""
    return int(os.getenv("COMET_EVAL_BATCH_LOGGING_INTERVAL", 1))



ultralytics.utils.callbacks.comet._get_max_image_predictions_to_log()

Nhận số lượng dự đoán hình ảnh tối đa để ghi nhật ký từ các biến môi trường.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _get_max_image_predictions_to_log():
    """Get the maximum number of image predictions to log from the environment variables."""
    return int(os.getenv("COMET_MAX_IMAGE_PREDICTIONS", 100))



ultralytics.utils.callbacks.comet._scale_confidence_score(score)

Thang đo điểm tin cậy đã cho theo một yếu tố được chỉ định trong một biến môi trường.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _scale_confidence_score(score):
    """Scales the given confidence score by a factor specified in an environment variable."""
    scale = float(os.getenv("COMET_MAX_CONFIDENCE_SCORE", 100.0))
    return score * scale



ultralytics.utils.callbacks.comet._should_log_confusion_matrix()

Xác định xem ma trận nhầm lẫn có nên được ghi lại hay không dựa trên cài đặt biến môi trường.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _should_log_confusion_matrix():
    """Determines if the confusion matrix should be logged based on the environment variable settings."""
    return os.getenv("COMET_EVAL_LOG_CONFUSION_MATRIX", "false").lower() == "true"



ultralytics.utils.callbacks.comet._should_log_image_predictions()

Xác định xem có ghi nhật ký dự đoán hình ảnh dựa trên một biến môi trường được chỉ định hay không.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _should_log_image_predictions():
    """Determines whether to log image predictions based on a specified environment variable."""
    return os.getenv("COMET_EVAL_LOG_IMAGE_PREDICTIONS", "true").lower() == "true"



ultralytics.utils.callbacks.comet._get_experiment_type(mode, project_name)

Trả về thử nghiệm dựa trên chế độ và tên dự án.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _get_experiment_type(mode, project_name):
    """Return an experiment based on mode and project name."""
    if mode == "offline":
        return comet_ml.OfflineExperiment(project_name=project_name)

    return comet_ml.Experiment(project_name=project_name)



ultralytics.utils.callbacks.comet._create_experiment(args)

Đảm bảo rằng đối tượng thử nghiệm chỉ được tạo trong một quy trình duy nhất trong quá trình đào tạo phân tán.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _create_experiment(args):
    """Ensures that the experiment object is only created in a single process during distributed training."""
    if RANK not in {-1, 0}:
        return
    try:
        comet_mode = _get_comet_mode()
        _project_name = os.getenv("COMET_PROJECT_NAME", args.project)
        experiment = _get_experiment_type(comet_mode, _project_name)
        experiment.log_parameters(vars(args))
        experiment.log_others(
            {
                "eval_batch_logging_interval": _get_eval_batch_logging_interval(),
                "log_confusion_matrix_on_eval": _should_log_confusion_matrix(),
                "log_image_predictions": _should_log_image_predictions(),
                "max_image_predictions": _get_max_image_predictions_to_log(),
            }
        )
        experiment.log_other("Created from", "yolov8")

    except Exception as e:
        LOGGER.warning(f"WARNING ⚠️ Comet installed but not initialized correctly, not logging this run. {e}")



ultralytics.utils.callbacks.comet._fetch_trainer_metadata(trainer)

Trả về siêu dữ liệu cho YOLO Đào tạo bao gồm thời đại và tình trạng tiết kiệm tài sản.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _fetch_trainer_metadata(trainer):
    """Returns metadata for YOLO training including epoch and asset saving status."""
    curr_epoch = trainer.epoch + 1

    train_num_steps_per_epoch = len(trainer.train_loader.dataset) // trainer.batch_size
    curr_step = curr_epoch * train_num_steps_per_epoch
    final_epoch = curr_epoch == trainer.epochs

    save = trainer.args.save
    save_period = trainer.args.save_period
    save_interval = curr_epoch % save_period == 0
    save_assets = save and save_period > 0 and save_interval and not final_epoch

    return dict(curr_epoch=curr_epoch, curr_step=curr_step, save_assets=save_assets, final_epoch=final_epoch)



ultralytics.utils.callbacks.comet._scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad)

YOLOv8 Thay đổi kích thước hình ảnh trong quá trình đào tạo và các giá trị nhãn được chuẩn hóa dựa trên hình dạng thay đổi kích thước này.

Chức năng này thay đổi tỷ lệ các nhãn hộp giới hạn thành hình dạng hình ảnh gốc.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad):
    """
    YOLOv8 resizes images during training and the label values are normalized based on this resized shape.

    This function rescales the bounding box labels to the original image shape.
    """

    resized_image_height, resized_image_width = resized_image_shape

    # Convert normalized xywh format predictions to xyxy in resized scale format
    box = ops.xywhn2xyxy(box, h=resized_image_height, w=resized_image_width)
    # Scale box predictions from resized image scale back to original image scale
    box = ops.scale_boxes(resized_image_shape, box, original_image_shape, ratio_pad)
    # Convert bounding box format from xyxy to xywh for Comet logging
    box = ops.xyxy2xywh(box)
    # Adjust xy center to correspond top-left corner
    box[:2] -= box[2:] / 2
    box = box.tolist()

    return box



ultralytics.utils.callbacks.comet._format_ground_truth_annotations_for_detection(img_idx, image_path, batch, class_name_map=None)

Định dạng chú thích sự thật cơ bản để phát hiện.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _format_ground_truth_annotations_for_detection(img_idx, image_path, batch, class_name_map=None):
    """Format ground truth annotations for detection."""
    indices = batch["batch_idx"] == img_idx
    bboxes = batch["bboxes"][indices]
    if len(bboxes) == 0:
        LOGGER.debug(f"COMET WARNING: Image: {image_path} has no bounding boxes labels")
        return None

    cls_labels = batch["cls"][indices].squeeze(1).tolist()
    if class_name_map:
        cls_labels = [str(class_name_map[label]) for label in cls_labels]

    original_image_shape = batch["ori_shape"][img_idx]
    resized_image_shape = batch["resized_shape"][img_idx]
    ratio_pad = batch["ratio_pad"][img_idx]

    data = []
    for box, label in zip(bboxes, cls_labels):
        box = _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad)
        data.append(
            {
                "boxes": [box],
                "label": f"gt_{label}",
                "score": _scale_confidence_score(1.0),
            }
        )

    return {"name": "ground_truth", "data": data}



ultralytics.utils.callbacks.comet._format_prediction_annotations_for_detection(image_path, metadata, class_label_map=None)

Định dạng YOLO Dự đoán để trực quan hóa phát hiện đối tượng.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _format_prediction_annotations_for_detection(image_path, metadata, class_label_map=None):
    """Format YOLO predictions for object detection visualization."""
    stem = image_path.stem
    image_id = int(stem) if stem.isnumeric() else stem

    predictions = metadata.get(image_id)
    if not predictions:
        LOGGER.debug(f"COMET WARNING: Image: {image_path} has no bounding boxes predictions")
        return None

    data = []
    for prediction in predictions:
        boxes = prediction["bbox"]
        score = _scale_confidence_score(prediction["score"])
        cls_label = prediction["category_id"]
        if class_label_map:
            cls_label = str(class_label_map[cls_label])

        data.append({"boxes": [boxes], "label": cls_label, "score": score})

    return {"name": "prediction", "data": data}



ultralytics.utils.callbacks.comet._fetch_annotations(img_idx, image_path, batch, prediction_metadata_map, class_label_map)

Tham gia các chú thích dự đoán và sự thật cơ bản nếu chúng tồn tại.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _fetch_annotations(img_idx, image_path, batch, prediction_metadata_map, class_label_map):
    """Join the ground truth and prediction annotations if they exist."""
    ground_truth_annotations = _format_ground_truth_annotations_for_detection(
        img_idx, image_path, batch, class_label_map
    )
    prediction_annotations = _format_prediction_annotations_for_detection(
        image_path, prediction_metadata_map, class_label_map
    )

    annotations = [
        annotation for annotation in [ground_truth_annotations, prediction_annotations] if annotation is not None
    ]
    return [annotations] if annotations else None



ultralytics.utils.callbacks.comet._create_prediction_metadata_map(model_predictions)

Tạo bản đồ siêu dữ liệu cho các dự đoán mô hình bằng cách nhóm chúng dựa trên ID hình ảnh.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _create_prediction_metadata_map(model_predictions):
    """Create metadata map for model predictions by groupings them based on image ID."""
    pred_metadata_map = {}
    for prediction in model_predictions:
        pred_metadata_map.setdefault(prediction["image_id"], [])
        pred_metadata_map[prediction["image_id"]].append(prediction)

    return pred_metadata_map



ultralytics.utils.callbacks.comet._log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)

Đăng nhập ma trận nhầm lẫn vào Comet thí nghiệm.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch):
    """Log the confusion matrix to Comet experiment."""
    conf_mat = trainer.validator.confusion_matrix.matrix
    names = list(trainer.data["names"].values()) + ["background"]
    experiment.log_confusion_matrix(
        matrix=conf_mat, labels=names, max_categories=len(names), epoch=curr_epoch, step=curr_step
    )



ultralytics.utils.callbacks.comet._log_images(experiment, image_paths, curr_step, annotations=None)

Ghi nhật ký hình ảnh vào thử nghiệm với các chú thích tùy chọn.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _log_images(experiment, image_paths, curr_step, annotations=None):
    """Logs images to the experiment with optional annotations."""
    if annotations:
        for image_path, annotation in zip(image_paths, annotations):
            experiment.log_image(image_path, name=image_path.stem, step=curr_step, annotations=annotation)

    else:
        for image_path in image_paths:
            experiment.log_image(image_path, name=image_path.stem, step=curr_step)



ultralytics.utils.callbacks.comet._log_image_predictions(experiment, validator, curr_step)

Nhật ký dự đoán các hộp cho một hình ảnh duy nhất trong quá trình đào tạo.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _log_image_predictions(experiment, validator, curr_step):
    """Logs predicted boxes for a single image during training."""
    global _comet_image_prediction_count

    task = validator.args.task
    if task not in COMET_SUPPORTED_TASKS:
        return

    jdict = validator.jdict
    if not jdict:
        return

    predictions_metadata_map = _create_prediction_metadata_map(jdict)
    dataloader = validator.dataloader
    class_label_map = validator.names

    batch_logging_interval = _get_eval_batch_logging_interval()
    max_image_predictions = _get_max_image_predictions_to_log()

    for batch_idx, batch in enumerate(dataloader):
        if (batch_idx + 1) % batch_logging_interval != 0:
            continue

        image_paths = batch["im_file"]
        for img_idx, image_path in enumerate(image_paths):
            if _comet_image_prediction_count >= max_image_predictions:
                return

            image_path = Path(image_path)
            annotations = _fetch_annotations(
                img_idx,
                image_path,
                batch,
                predictions_metadata_map,
                class_label_map,
            )
            _log_images(
                experiment,
                [image_path],
                curr_step,
                annotations=annotations,
            )
            _comet_image_prediction_count += 1



ultralytics.utils.callbacks.comet._log_plots(experiment, trainer)

Ghi nhật ký, lô đánh giá và biểu đồ nhãn cho thử nghiệm.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _log_plots(experiment, trainer):
    """Logs evaluation plots and label plots for the experiment."""
    plot_filenames = [trainer.save_dir / f"{plots}.png" for plots in EVALUATION_PLOT_NAMES]
    _log_images(experiment, plot_filenames, None)

    label_plot_filenames = [trainer.save_dir / f"{labels}.jpg" for labels in LABEL_PLOT_NAMES]
    _log_images(experiment, label_plot_filenames, None)



ultralytics.utils.callbacks.comet._log_model(experiment, trainer)

Đăng nhập mô hình được đào tạo tốt nhất để Comet.Ml.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def _log_model(experiment, trainer):
    """Log the best-trained model to Comet.ml."""
    model_name = _get_comet_model_name()
    experiment.log_model(model_name, file_or_folder=str(trainer.best), file_name="best.pt", overwrite=True)



ultralytics.utils.callbacks.comet.on_pretrain_routine_start(trainer)

Tạo hoặc tiếp tục thử nghiệm CometML khi bắt đầu YOLO thói quen trước khi đào tạo.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def on_pretrain_routine_start(trainer):
    """Creates or resumes a CometML experiment at the start of a YOLO pre-training routine."""
    experiment = comet_ml.get_global_experiment()
    is_alive = getattr(experiment, "alive", False)
    if not experiment or not is_alive:
        _create_experiment(trainer.args)



ultralytics.utils.callbacks.comet.on_train_epoch_end(trainer)

Ghi nhật ký số liệu và lưu hình ảnh hàng loạt vào cuối kỷ nguyên đào tạo.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def on_train_epoch_end(trainer):
    """Log metrics and save batch images at the end of training epochs."""
    experiment = comet_ml.get_global_experiment()
    if not experiment:
        return

    metadata = _fetch_trainer_metadata(trainer)
    curr_epoch = metadata["curr_epoch"]
    curr_step = metadata["curr_step"]

    experiment.log_metrics(trainer.label_loss_items(trainer.tloss, prefix="train"), step=curr_step, epoch=curr_epoch)

    if curr_epoch == 1:
        _log_images(experiment, trainer.save_dir.glob("train_batch*.jpg"), curr_step)



ultralytics.utils.callbacks.comet.on_fit_epoch_end(trainer)

Ghi nhật ký mô hình tài sản vào cuối mỗi kỷ nguyên.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def on_fit_epoch_end(trainer):
    """Logs model assets at the end of each epoch."""
    experiment = comet_ml.get_global_experiment()
    if not experiment:
        return

    metadata = _fetch_trainer_metadata(trainer)
    curr_epoch = metadata["curr_epoch"]
    curr_step = metadata["curr_step"]
    save_assets = metadata["save_assets"]

    experiment.log_metrics(trainer.metrics, step=curr_step, epoch=curr_epoch)
    experiment.log_metrics(trainer.lr, step=curr_step, epoch=curr_epoch)
    if curr_epoch == 1:
        from ultralytics.utils.torch_utils import model_info_for_loggers

        experiment.log_metrics(model_info_for_loggers(trainer), step=curr_step, epoch=curr_epoch)

    if not save_assets:
        return

    _log_model(experiment, trainer)
    if _should_log_confusion_matrix():
        _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)
    if _should_log_image_predictions():
        _log_image_predictions(experiment, trainer.validator, curr_step)



ultralytics.utils.callbacks.comet.on_train_end(trainer)

Thực hiện các thao tác khi kết thúc đào tạo.

Mã nguồn trong ultralytics/utils/callbacks/comet.py
def on_train_end(trainer):
    """Perform operations at the end of training."""
    experiment = comet_ml.get_global_experiment()
    if not experiment:
        return

    metadata = _fetch_trainer_metadata(trainer)
    curr_epoch = metadata["curr_epoch"]
    curr_step = metadata["curr_step"]
    plots = trainer.args.plots

    _log_model(experiment, trainer)
    if plots:
        _log_plots(experiment, trainer)

    _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch)
    _log_image_predictions(experiment, trainer.validator, curr_step)
    experiment.end()

    global _comet_image_prediction_count
    _comet_image_prediction_count = 0





Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (5), Burhan-Q (1), Laughing-q (1)