انتقل إلى المحتوى

Ultralytics YOLO11 Tasks


Ultralytics YOLO المهام المدعومة

YOLO11 is an AI framework that supports multiple computer vision tasks. The framework can be used to perform detection, segmentation, obb, classification, and pose estimation. Each of these tasks has a different objective and use case.



شاهد: Explore Ultralytics YOLO Tasks: كشف الكائن, Segmentation, OBB, Tracking, and Pose Estimation.

الكشف

Detection is the primary task supported by YOLO11. It involves detecting objects in an image or video frame and drawing bounding boxes around them. The detected objects are classified into different categories based on their features. YOLO11 can detect multiple objects in a single image or video frame with high accuracy and speed.

أمثلة الكشف

تجزئه

Segmentation is a task that involves segmenting an image into different regions based on the content of the image. Each region is assigned a label based on its content. This task is useful in applications such as image segmentation and medical imaging. YOLO11 uses a variant of the U-Net architecture to perform segmentation.

أمثلة التجزئة

تصنيف

Classification is a task that involves classifying an image into different categories. YOLO11 can be used to classify images based on their content. It uses a variant of the EfficientNet architecture to perform classification.

أمثلة التصنيف

تشكل

Pose/keypoint detection is a task that involves detecting specific points in an image or video frame. These points are referred to as keypoints and are used to track movement or pose estimation. YOLO11 can detect keypoints in an image or video frame with high accuracy and speed.

طرح أمثلة

أوب

Oriented object detection goes a step further than regular object detection with introducing an extra angle to locate objects more accurate in an image. YOLO11 can detect rotated objects in an image or video frame with high accuracy and speed.

الكشف الموجه

استنتاج

YOLO11 supports multiple tasks, including detection, segmentation, classification, oriented object detection and keypoints detection. Each of these tasks has different objectives and use cases. By understanding the differences between these tasks, you can choose the appropriate task for your computer vision application.

الأسئلة المتداولة

What tasks can Ultralytics YOLO11 perform?

Ultralytics YOLO11 is a versatile AI framework capable of performing various computer vision tasks with high accuracy and speed. These tasks include:

  • الكشف: تحديد وتوطين الأجسام في الصور أو إطارات الفيديو عن طريق رسم مربعات محددة حولها.
  • التقسيم: تجزئة الصور إلى مناطق مختلفة بناءً على محتواها، وهو مفيد لتطبيقات مثل التصوير الطبي.
  • التصنيف: تصنيف صور كاملة بناءً على محتواها، والاستفادة من المتغيرات في بنية EfficientNet.
  • تقدير الوضعية: اكتشاف نقاط رئيسية محددة في صورة أو إطار فيديو لتتبع الحركات أو الوضعيات.
  • الكشف عن الأجسام الموجهة (OBB): اكتشاف الأجسام المدوّرة بزاوية توجيه مضافة لتحسين الدقة.

How do I use Ultralytics YOLO11 for object detection?

To use Ultralytics YOLO11 for object detection, follow these steps:

  1. قم بإعداد مجموعة بياناتك بالصيغة المناسبة.
  2. Train the YOLO11 model using the detection task.
  3. استخدم النموذج لعمل تنبؤات من خلال إدخال صور أو إطارات فيديو جديدة.

مثل

from ultralytics import YOLO

# Load a pre-trained YOLO model (adjust model type as needed)
model = YOLO("yolo11n.pt")  # n, s, m, l, x versions available

# Perform object detection on an image
results = model.predict(source="image.jpg")  # Can also use video, directory, URL, etc.

# Display the results
results[0].show()  # Show the first image results
# Run YOLO detection from the command line
yolo detect model=yolo11n.pt source="image.jpg"  # Adjust model and source as needed

لمزيد من الإرشادات التفصيلية، راجع أمثلة الكشف لدينا.

What are the benefits of using YOLO11 for segmentation tasks?

Using YOLO11 for segmentation tasks provides several advantages:

  1. دقة عالية: تستفيد مهمة التجزئة من متغير من بنية U-Net لتحقيق تجزئة دقيقة.
  2. Speed: YOLO11 is optimized for real-time applications, offering quick processing even for high-resolution images.
  3. تطبيقات متعددة: إنه مثالي للتصوير الطبي والقيادة الذاتية والتطبيقات الأخرى التي تتطلب تجزئة مفصلة للصور.

Learn more about the benefits and use cases of YOLO11 for segmentation in the segmentation section.

Can Ultralytics YOLO11 handle pose estimation and keypoint detection?

Yes, Ultralytics YOLO11 can effectively perform pose estimation and keypoint detection with high accuracy and speed. This feature is particularly useful for tracking movements in sports analytics, healthcare, and human-computer interaction applications. YOLO11 detects keypoints in an image or video frame, allowing for precise pose estimation.

لمزيد من التفاصيل ونصائح التنفيذ، تفضل بزيارة أمثلة تقدير الوضعيات.

Why should I choose Ultralytics YOLO11 for oriented object detection (OBB)?

Oriented Object Detection (OBB) with YOLO11 provides enhanced precision by detecting objects with an additional angle parameter. This feature is beneficial for applications requiring accurate localization of rotated objects, such as aerial imagery analysis and warehouse automation.

  • زيادة الدقة: يقلل مكوّن الزاوية من النتائج الإيجابية الخاطئة للأجسام المدوّرة.
  • تطبيقات متعددة الاستخدامات: مفيدة للمهام في التحليل الجغرافي المكاني والروبوتات وغيرها.

راجع قسم اكتشاف الكائنات الموجهة لمزيد من التفاصيل والأمثلة.

📅 Created 1 year ago ✏️ Updated 1 month ago

التعليقات