Zum Inhalt springen

Referenz fĂŒr ultralytics/models/fastsam/predict.py

Hinweis

Diese Datei ist verfĂŒgbar unter https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/models/ fastsam/predict .py. Wenn du ein Problem entdeckst, hilf bitte mit, es zu beheben, indem du einen Pull Request đŸ› ïž einreichst. Vielen Dank 🙏!



ultralytics.models.fastsam.predict.FastSAMPredictor

Basen: DetectionPredictor

Der FastSAMPredictor ist spezialisiert auf schnelle SAM (Segment Anything Model) Segmentierungsvorhersagen im Ultralytics YOLO Framework.

Diese Klasse erweitert den DetectionPredictor und passt die Vorhersagepipeline speziell fĂŒr schnelle SAM an. Sie passt die Nachbearbeitungsschritte an, um die Maskenvorhersage und die Nicht-Max-UnterdrĂŒckung einzubeziehen und gleichzeitig die fĂŒr die Ein-Klassen-Segmentierung.

Attribute:

Name Typ Beschreibung
cfg dict

Konfigurationsparameter fĂŒr die Vorhersage.

overrides dict

Optionale ParameterĂŒberschreibungen fĂŒr benutzerdefiniertes Verhalten.

_callbacks dict

Optionale Liste der Callback-Funktionen, die wÀhrend der Vorhersage aufgerufen werden sollen.

Quellcode in ultralytics/models/fastsam/predict.py
class FastSAMPredictor(DetectionPredictor):
    """
    FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks in Ultralytics
    YOLO framework.

    This class extends the DetectionPredictor, customizing the prediction pipeline specifically for fast SAM.
    It adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing
    for single-class segmentation.

    Attributes:
        cfg (dict): Configuration parameters for prediction.
        overrides (dict, optional): Optional parameter overrides for custom behavior.
        _callbacks (dict, optional): Optional list of callback functions to be invoked during prediction.
    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """
        Initializes the FastSAMPredictor class, inheriting from DetectionPredictor and setting the task to 'segment'.

        Args:
            cfg (dict): Configuration parameters for prediction.
            overrides (dict, optional): Optional parameter overrides for custom behavior.
            _callbacks (dict, optional): Optional list of callback functions to be invoked during prediction.
        """
        super().__init__(cfg, overrides, _callbacks)
        self.args.task = "segment"

    def postprocess(self, preds, img, orig_imgs):
        """
        Perform post-processing steps on predictions, including non-max suppression and scaling boxes to original image
        size, and returns the final results.

        Args:
            preds (list): The raw output predictions from the model.
            img (torch.Tensor): The processed image tensor.
            orig_imgs (list | torch.Tensor): The original image or list of images.

        Returns:
            (list): A list of Results objects, each containing processed boxes, masks, and other metadata.
        """
        p = ops.non_max_suppression(
            preds[0],
            self.args.conf,
            self.args.iou,
            agnostic=self.args.agnostic_nms,
            max_det=self.args.max_det,
            nc=1,  # set to 1 class since SAM has no class predictions
            classes=self.args.classes,
        )
        full_box = torch.zeros(p[0].shape[1], device=p[0].device)
        full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0
        full_box = full_box.view(1, -1)
        critical_iou_index = bbox_iou(full_box[0][:4], p[0][:, :4], iou_thres=0.9, image_shape=img.shape[2:])
        if critical_iou_index.numel() != 0:
            full_box[0][4] = p[0][critical_iou_index][:, 4]
            full_box[0][6:] = p[0][critical_iou_index][:, 6:]
            p[0][critical_iou_index] = full_box

        if not isinstance(orig_imgs, list):  # input images are a torch.Tensor, not a list
            orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)

        results = []
        proto = preds[1][-1] if len(preds[1]) == 3 else preds[1]  # second output is len 3 if pt, but only 1 if exported
        for i, pred in enumerate(p):
            orig_img = orig_imgs[i]
            img_path = self.batch[0][i]
            if not len(pred):  # save empty boxes
                masks = None
            elif self.args.retina_masks:
                pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
                masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2])  # HWC
            else:
                masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True)  # HWC
                pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
            results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
        return results

__init__(cfg=DEFAULT_CFG, overrides=None, _callbacks=None)

Initialisiert die Klasse FastSAMPredictor, die von DetectionPredictor erbt und die Aufgabe auf "Segment" setzt.

Parameter:

Name Typ Beschreibung Standard
cfg dict

Konfigurationsparameter fĂŒr die Vorhersage.

DEFAULT_CFG
overrides dict

Optionale ParameterĂŒberschreibungen fĂŒr benutzerdefiniertes Verhalten.

None
_callbacks dict

Optionale Liste der Callback-Funktionen, die wÀhrend der Vorhersage aufgerufen werden sollen.

None
Quellcode in ultralytics/models/fastsam/predict.py
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
    """
    Initializes the FastSAMPredictor class, inheriting from DetectionPredictor and setting the task to 'segment'.

    Args:
        cfg (dict): Configuration parameters for prediction.
        overrides (dict, optional): Optional parameter overrides for custom behavior.
        _callbacks (dict, optional): Optional list of callback functions to be invoked during prediction.
    """
    super().__init__(cfg, overrides, _callbacks)
    self.args.task = "segment"

postprocess(preds, img, orig_imgs)

FĂŒhrt Nachbearbeitungsschritte fĂŒr die Vorhersagen durch, einschließlich der UnterdrĂŒckung von Nicht-Max-Werten und der Skalierung der Boxen auf die ursprĂŒngliche BildgrĂ¶ĂŸe. GrĂ¶ĂŸe und gibt die endgĂŒltigen Ergebnisse zurĂŒck.

Parameter:

Name Typ Beschreibung Standard
preds list

Die unbearbeiteten Vorhersagen des Modells.

erforderlich
img Tensor

Das bearbeitete Bild tensor.

erforderlich
orig_imgs list | Tensor

Das Originalbild oder die Liste der Bilder.

erforderlich

Retouren:

Typ Beschreibung
list

Eine Liste von Ergebnisobjekten, die jeweils verarbeitete Boxen, Masken und andere Metadaten enthalten.

Quellcode in ultralytics/models/fastsam/predict.py
def postprocess(self, preds, img, orig_imgs):
    """
    Perform post-processing steps on predictions, including non-max suppression and scaling boxes to original image
    size, and returns the final results.

    Args:
        preds (list): The raw output predictions from the model.
        img (torch.Tensor): The processed image tensor.
        orig_imgs (list | torch.Tensor): The original image or list of images.

    Returns:
        (list): A list of Results objects, each containing processed boxes, masks, and other metadata.
    """
    p = ops.non_max_suppression(
        preds[0],
        self.args.conf,
        self.args.iou,
        agnostic=self.args.agnostic_nms,
        max_det=self.args.max_det,
        nc=1,  # set to 1 class since SAM has no class predictions
        classes=self.args.classes,
    )
    full_box = torch.zeros(p[0].shape[1], device=p[0].device)
    full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0
    full_box = full_box.view(1, -1)
    critical_iou_index = bbox_iou(full_box[0][:4], p[0][:, :4], iou_thres=0.9, image_shape=img.shape[2:])
    if critical_iou_index.numel() != 0:
        full_box[0][4] = p[0][critical_iou_index][:, 4]
        full_box[0][6:] = p[0][critical_iou_index][:, 6:]
        p[0][critical_iou_index] = full_box

    if not isinstance(orig_imgs, list):  # input images are a torch.Tensor, not a list
        orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)

    results = []
    proto = preds[1][-1] if len(preds[1]) == 3 else preds[1]  # second output is len 3 if pt, but only 1 if exported
    for i, pred in enumerate(p):
        orig_img = orig_imgs[i]
        img_path = self.batch[0][i]
        if not len(pred):  # save empty boxes
            masks = None
        elif self.args.retina_masks:
            pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
            masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2])  # HWC
        else:
            masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True)  # HWC
            pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
        results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
    return results





Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (5), Burhan-Q (1)