Saltar al contenido

Instance Segmentation and Tracking using Ultralytics YOLO11 馃殌

What is Instance Segmentation?

Ultralytics YOLO11 instance segmentation involves identifying and outlining individual objects in an image, providing a detailed understanding of spatial distribution. Unlike semantic segmentation, it uniquely labels and precisely delineates each object, crucial for tasks like object detection and medical imaging.

Hay dos tipos de seguimiento de segmentaci贸n de instancias disponibles en el paquete Ultralytics :

  • Segmentaci贸n de instancias con objetos de clase: A cada objeto de clase se le asigna un color 煤nico para una separaci贸n visual clara.

  • Segmentaci贸n de instancias con rastros de objetos: Cada pista est谩 representada por un color distinto, lo que facilita su identificaci贸n y seguimiento.



Observa: Instance Segmentation with Object Tracking using Ultralytics YOLO11

Muestras

Segmentaci贸n de instancias Segmentaci贸n de instancias + Seguimiento de objetos
Ultralytics Segmentaci贸n de instancias Ultralytics Segmentaci贸n de instancias con seguimiento de objetos
Ultralytics Segmentaci贸n de instancias 馃槏 Ultralytics Segmentaci贸n de instancias con seguimiento de objetos 馃敟

Segmentaci贸n y seguimiento de instancias

import cv2

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors

model = YOLO("yolo11n-seg.pt")  # segmentation model
names = model.model.names
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter("instance-segmentation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))

while True:
    ret, im0 = cap.read()
    if not ret:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    results = model.predict(im0)
    annotator = Annotator(im0, line_width=2)

    if results[0].masks is not None:
        clss = results[0].boxes.cls.cpu().tolist()
        masks = results[0].masks.xy
        for mask, cls in zip(masks, clss):
            color = colors(int(cls), True)
            txt_color = annotator.get_txt_color(color)
            annotator.seg_bbox(mask=mask, mask_color=color, label=names[int(cls)], txt_color=txt_color)

    out.write(im0)
    cv2.imshow("instance-segmentation", im0)

    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

out.release()
cap.release()
cv2.destroyAllWindows()
from collections import defaultdict

import cv2

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors

track_history = defaultdict(lambda: [])

model = YOLO("yolo11n-seg.pt")  # segmentation model
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter("instance-segmentation-object-tracking.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))

while True:
    ret, im0 = cap.read()
    if not ret:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    annotator = Annotator(im0, line_width=2)

    results = model.track(im0, persist=True)

    if results[0].boxes.id is not None and results[0].masks is not None:
        masks = results[0].masks.xy
        track_ids = results[0].boxes.id.int().cpu().tolist()

        for mask, track_id in zip(masks, track_ids):
            color = colors(int(track_id), True)
            txt_color = annotator.get_txt_color(color)
            annotator.seg_bbox(mask=mask, mask_color=color, label=str(track_id), txt_color=txt_color)

    out.write(im0)
    cv2.imshow("instance-segmentation-object-tracking", im0)

    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

out.release()
cap.release()
cv2.destroyAllWindows()

seg_bbox Argumentos

Nombre Tipo Por defecto Descripci贸n
mask array None Coordenadas de la m谩scara de segmentaci贸n
mask_color RGB (255, 0, 255) Color de m谩scara para cada casilla segmentada
label str None Etiqueta del objeto segmentado
txt_color RGB None Color de la etiqueta para el objeto segmentado y rastreado

Nota

Para cualquier consulta, no dudes en publicar tus preguntas en la Secci贸n de Cuestiones deUltralytics o en la secci贸n de debate mencionada m谩s abajo.

PREGUNTAS FRECUENTES

How do I perform instance segmentation using Ultralytics YOLO11?

To perform instance segmentation using Ultralytics YOLO11, initialize the YOLO model with a segmentation version of YOLO11 and process video frames through it. Here's a simplified code example:

Ejemplo

import cv2

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors

model = YOLO("yolo11n-seg.pt")  # segmentation model
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter("instance-segmentation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))

while True:
    ret, im0 = cap.read()
    if not ret:
        break

    results = model.predict(im0)
    annotator = Annotator(im0, line_width=2)

    if results[0].masks is not None:
        clss = results[0].boxes.cls.cpu().tolist()
        masks = results[0].masks.xy
        for mask, cls in zip(masks, clss):
            annotator.seg_bbox(mask=mask, mask_color=colors(int(cls), True), det_label=model.model.names[int(cls)])

    out.write(im0)
    cv2.imshow("instance-segmentation", im0)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

out.release()
cap.release()
cv2.destroyAllWindows()

Learn more about instance segmentation in the Ultralytics YOLO11 guide.

What is the difference between instance segmentation and object tracking in Ultralytics YOLO11?

Instance segmentation identifies and outlines individual objects within an image, giving each object a unique label and mask. Object tracking extends this by assigning consistent labels to objects across video frames, facilitating continuous tracking of the same objects over time. Learn more about the distinctions in the Ultralytics YOLO11 documentation.

Why should I use Ultralytics YOLO11 for instance segmentation and tracking over other models like Mask R-CNN or Faster R-CNN?

Ultralytics YOLO11 offers real-time performance, superior accuracy, and ease of use compared to other models like Mask R-CNN or Faster R-CNN. YOLO11 provides a seamless integration with Ultralytics HUB, allowing users to manage models, datasets, and training pipelines efficiently. Discover more about the benefits of YOLO11 in the Ultralytics blog.

How can I implement object tracking using Ultralytics YOLO11?

Para aplicar el seguimiento de objetos, utiliza la funci贸n model.track y aseg煤rate de que el ID de cada objeto se asigna de forma coherente en todos los fotogramas. A continuaci贸n se muestra un ejemplo sencillo:

Ejemplo

from collections import defaultdict

import cv2

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors

track_history = defaultdict(lambda: [])

model = YOLO("yolo11n-seg.pt")  # segmentation model
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter("instance-segmentation-object-tracking.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))

while True:
    ret, im0 = cap.read()
    if not ret:
        break

    annotator = Annotator(im0, line_width=2)
    results = model.track(im0, persist=True)

    if results[0].boxes.id is not None and results[0].masks is not None:
        masks = results[0].masks.xy
        track_ids = results[0].boxes.id.int().cpu().tolist()

        for mask, track_id in zip(masks, track_ids):
            annotator.seg_bbox(mask=mask, mask_color=colors(track_id, True), track_label=str(track_id))

    out.write(im0)
    cv2.imshow("instance-segmentation-object-tracking", im0)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

out.release()
cap.release()
cv2.destroyAllWindows()

M谩s informaci贸n en la secci贸n Segmentaci贸n y seguimiento de instancias.

Are there any datasets provided by Ultralytics suitable for training YOLO11 models for instance segmentation and tracking?

Yes, Ultralytics offers several datasets suitable for training YOLO11 models, including segmentation and tracking datasets. Dataset examples, structures, and instructions for use can be found in the Ultralytics Datasets documentation.


馃搮C reado hace 9 meses 鉁忥笍 Actualizado hace 12 d铆as

Comentarios