TFLite, ONNX, CoreML, TensorRT Exportación
📚 Esta guía explica cómo exportar un modelo YOLOv5 🚀 entrenado de PyTorch a los formatos ONNX y TorchScript .
Antes de empezar
Clonar repo e instalar requirements.txt en un Python>=3.8.0 incluyendo PyTorch>=1.8. Los modelos y conjuntos de datos se descargan automáticamente de la últimaversión de YOLOv5 .
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
Para TensorRT ejemplo de exportación (requiere GPU) consulta nuestro Colab cuaderno sección apéndice.
Formatos
YOLOv5 la inferencia se admite oficialmente en 11 formatos:
💡 Consejo profesional: Exporta a ONNX o OpenVINO para aumentar hasta 3 veces la velocidad de CPU . Consulta las pruebas deCPU . 💡 Consejo de experto: Exporta a TensorRT para aumentar hasta 5 veces la velocidad de GPU . Consulta las pruebas de GPU .
Formato | export.py --include | Modelo |
---|---|---|
PyTorch | - | yolov5s.pt |
TorchScript | torchscript | yolov5s.torchscript |
ONNX | onnx | yolov5s.onnx |
OpenVINO | openvino | yolov5s_openvino_model/ |
TensorRT | engine | yolov5s.engine |
CoreML | coreml | yolov5s.mlmodel |
TensorFlow SavedModel | saved_model | yolov5s_saved_model/ |
TensorFlow GraphDef | pb | yolov5s.pb |
TensorFlow Lite | tflite | yolov5s.tflite |
TensorFlow Arista TPU | edgetpu | yolov5s_edgetpu.tflite |
TensorFlow.js | tfjs | yolov5s_web_model/ |
PaddlePaddle | paddle | yolov5s_paddle_model/ |
Puntos de referencia
Las pruebas de rendimiento que se indican a continuación se ejecutan en un Colab Pro con el portátil tutorial YOLOv5 . Para reproducir:
Colab Pro V100 GPU
benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=0, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 46.7/166.8 GB disk)
Benchmarks complete (458.07s)
Format mAP@0.5:0.95 Inference time (ms)
0 PyTorch 0.4623 10.19
1 TorchScript 0.4623 6.85
2 ONNX 0.4623 14.63
3 OpenVINO NaN NaN
4 TensorRT 0.4617 1.89
5 CoreML NaN NaN
6 TensorFlow SavedModel 0.4623 21.28
7 TensorFlow GraphDef 0.4623 21.22
8 TensorFlow Lite NaN NaN
9 TensorFlow Edge TPU NaN NaN
10 TensorFlow.js NaN NaN
Colab Pro CPU
benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=cpu, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CPU
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 41.5/166.8 GB disk)
Benchmarks complete (241.20s)
Format mAP@0.5:0.95 Inference time (ms)
0 PyTorch 0.4623 127.61
1 TorchScript 0.4623 131.23
2 ONNX 0.4623 69.34
3 OpenVINO 0.4623 66.52
4 TensorRT NaN NaN
5 CoreML NaN NaN
6 TensorFlow SavedModel 0.4623 123.79
7 TensorFlow GraphDef 0.4623 121.57
8 TensorFlow Lite 0.4623 316.61
9 TensorFlow Edge TPU NaN NaN
10 TensorFlow.js NaN NaN
Exportar un modelo entrenado YOLOv5
Este comando exporta un modelo YOLOv5s preentrenado a los formatos TorchScript y ONNX . yolov5s.pt
es el modelo "pequeño", el segundo modelo más pequeño disponible. Otras opciones son yolov5n.pt
, yolov5m.pt
, yolov5l.pt
y yolov5x.pt
junto con sus homólogos P6, es decir yolov5s6.pt
o tu propio punto de control de entrenamiento personalizado, es decir runs/exp/weights/best.pt
. Para más detalles sobre todos los modelos disponibles, consulta nuestro LÉEME tabla.
💡 ProTip: Añadir --half
para exportar modelos a FP16 medio precisión para archivos de menor tamaño
Salida:
export: data=data/coco128.yaml, weights=['yolov5s.pt'], imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, train=False, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx']
YOLOv5 🚀 v6.2-104-ge3e5122 Python-3.8.0 torch-1.12.1+cu113 CPU
Downloading https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 274MB/s]
Fusing layers...
YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients
PyTorch: starting from yolov5s.pt with output shape (1, 25200, 85) (14.1 MB)
TorchScript: starting export with torch 1.12.1+cu113...
TorchScript: export success ✅ 1.7s, saved as yolov5s.torchscript (28.1 MB)
ONNX: starting export with onnx 1.12.0...
ONNX: export success ✅ 2.3s, saved as yolov5s.onnx (28.0 MB)
Export complete (5.5s)
Results saved to /content/yolov5
Detect: python detect.py --weights yolov5s.onnx
Validate: python val.py --weights yolov5s.onnx
PyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.onnx')
Visualize: https://netron.app/
Los 3 modelos exportados se guardarán junto al modelo original de PyTorch :
Se recomienda el Visor de Netron para visualizar los modelos exportados:
Ejemplos de uso del modelo exportado
detect.py
ejecuta la inferencia sobre los modelos exportados:
python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
val.py
ejecuta la validación de los modelos exportados:
python val.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS Only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
Utiliza PyTorch Hub con los modelos exportados de YOLOv5 :
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pt")
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.torchscript ") # TorchScript
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.onnx") # ONNX Runtime
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_openvino_model") # OpenVINO
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.engine") # TensorRT
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.mlmodel") # CoreML (macOS Only)
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_saved_model") # TensorFlow SavedModel
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.pb") # TensorFlow GraphDef
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s.tflite") # TensorFlow Lite
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_edgetpu.tflite") # TensorFlow Edge TPU
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s_paddle_model") # PaddlePaddle
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
Inferencia DNN OpenCV
Inferencia OpenCV con modelos ONNX :
python export.py --weights yolov5s.pt --include onnx
python detect.py --weights yolov5s.onnx --dnn # detect
python val.py --weights yolov5s.onnx --dnn # validate
Inferencia C
YOLOv5 Inferencia de DNN C++ de OpenCV en ejemplos de modelos exportados de ONNX :
- https://github.com/Hexmagic/ONNX-yolov5/blob/master/src/test.cpp
- https://github.com/doleron/yolov5-opencv-cpp-python
YOLOv5 OpenVINO Ejemplos de inferencia en C++:
- https://github.com/dacquaviva/yolov5-openvino-cpp-python
- https://github.com/UNeedCryDear/yolov5-seg-opencv-dnn-cpp
TensorFlowInferencia del navegador web .js
Entornos compatibles
Ultralytics proporciona una serie de entornos listos para usar, cada uno de ellos preinstalado con dependencias esenciales como CUDA, CUDNNPythony PyTorchpara poner en marcha tus proyectos.
- Cuadernos gratuitos GPU:
- Google La Nube: Guía de inicio rápido de GCP
- Amazon: Guía de inicio rápido de AWS
- Azure: Guía de inicio rápido de AzureML
- Docker: Guía de inicio rápido de Docker
Estado del proyecto
Este distintivo indica que todas las pruebas de Integración Continua (IC) de las Acciones de GitHub deYOLOv5 se han superado con éxito. Estas pruebas de IC comprueban rigurosamente la funcionalidad y el rendimiento de YOLOv5 en varios aspectos clave: formación, validación, inferencia, exportación y puntos de referencia. Garantizan un funcionamiento coherente y fiable en macOS, Windows y Ubuntu, con pruebas realizadas cada 24 horas y con cada nueva confirmación.