Salta para o conte√ļdo

Conjunto de dados Fashion-MNIST

O conjunto de dados Fashion-MNIST é uma base de dados de imagens de artigos da Zalando - constituída por um conjunto de treino de 60 000 exemplos e um conjunto de teste de 10 000 exemplos. Cada exemplo é uma imagem em escala de cinzentos de 28x28, associada a uma etiqueta de 10 classes. O Fashion-MNIST destina-se a servir de substituto direto do conjunto de dados MNIST original para a avaliação comparativa de algoritmos de aprendizagem automática.

Características principais

  • O Fashion-MNIST cont√©m 60.000 imagens de treino e 10.000 imagens de teste de imagens de artigos da Zalando.
  • O conjunto de dados inclui imagens em escala de cinzentos de tamanho 28x28 pix√©is.
  • Cada pixel tem um √ļnico valor de pixel associado, que indica a claridade ou escurid√£o desse pixel, sendo que os n√ļmeros mais altos significam mais escuro. Este valor de pixel √© um n√ļmero inteiro entre 0 e 255.
  • O Fashion-MNIST √© amplamente utilizado para treino e teste no dom√≠nio da aprendizagem autom√°tica, especialmente para tarefas de classifica√ß√£o de imagens.

Estrutura do conjunto de dados

O conjunto de dados Fashion-MNIST est√° dividido em dois subconjuntos:

  1. Conjunto de treino: Este subconjunto contém 60.000 imagens utilizadas para treinar modelos de aprendizagem automática.
  2. Conjunto de teste: Este subconjunto consiste em 10.000 imagens utilizadas para testar e avaliar os modelos treinados.

Etiquetas

Cada exemplo de treino e teste é atribuído a uma das seguintes etiquetas:

  1. T-shirt/top
  2. Calças
  3. Pul√īver
  4. Vestido
  5. Casaco
  6. Sand√°lia
  7. Camisa
  8. Ténis
  9. Saco
  10. Bota de tornozelo

Aplica√ß√Ķes

O conjunto de dados Fashion-MNIST é amplamente utilizado para treinar e avaliar modelos de aprendizagem profunda em tarefas de classificação de imagens, como Redes Neurais Convolucionais (CNNs), Máquinas de Vectores de Suporte (SVMs) e vários outros algoritmos de aprendizagem automática. O formato simples e bem estruturado do conjunto de dados torna-o um recurso essencial para investigadores e profissionais no domínio da aprendizagem automática e da visão computacional.

Utilização

Para treinar um modelo CNN no conjunto de dados Fashion-MNIST para 100 épocas com um tamanho de imagem de 28x28, podes utilizar os seguintes snippets de código. Para obter uma lista abrangente dos argumentos disponíveis, consulta a página Treino do modelo.

Exemplo de comboio

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-cls.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="fashion-mnist", epochs=100, imgsz=28)
# Start training from a pretrained *.pt model
yolo detect train data=fashion-mnist model=yolov8n-cls.pt epochs=100 imgsz=28

Exemplos de imagens e anota√ß√Ķes

O conjunto de dados Fashion-MNIST contém imagens em escala de cinzentos de imagens de artigos da Zalando, fornecendo um conjunto de dados bem estruturado para tarefas de classificação de imagens. Aqui tens alguns exemplos de imagens do conjunto de dados:

Imagem de amostra do conjunto de dados

O exemplo mostra a variedade e complexidade das imagens no conjunto de dados Fashion-MNIST, real√ßando a import√Ęncia de um conjunto de dados diversificado para treinar modelos de classifica√ß√£o de imagens robustos.

Agradecimentos

Se utilizares o conjunto de dados Fashion-MNIST no teu trabalho de investigação ou desenvolvimento, agradecemos que reconheças o conjunto de dados através de uma ligação ao repositório GitHub. Este conjunto de dados foi disponibilizado pela Zalando Research.



Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (4)

Coment√°rios