Salta para o conte√ļdo

Conjunto de dados CIFAR-100

O conjunto de dados CIFAR-100 (Canadian Institute For Advanced Research) é uma extensão significativa do conjunto de dados CIFAR-10, composto por 60.000 imagens a cores 32x32 em 100 classes diferentes. Foi desenvolvido por investigadores do instituto CIFAR, oferecendo um conjunto de dados mais exigente para tarefas mais complexas de aprendizagem automática e visão computacional.

Características principais

  • O conjunto de dados CIFAR-100 consiste em 60.000 imagens, divididas em 100 classes.
  • Cada classe cont√©m 600 imagens, divididas em 500 para treino e 100 para teste.
  • As imagens s√£o coloridas e t√™m um tamanho de 32x32 pix√©is.
  • As 100 classes diferentes s√£o agrupadas em 20 categorias grosseiras para uma classifica√ß√£o de n√≠vel superior.
  • O CIFAR-100 √© normalmente utilizado para forma√ß√£o e teste no dom√≠nio da aprendizagem autom√°tica e da vis√£o por computador.

Estrutura do conjunto de dados

O conjunto de dados CIFAR-100 est√° dividido em dois subconjuntos:

  1. Conjunto de treino: Este subconjunto contém 50.000 imagens utilizadas para treinar modelos de aprendizagem automática.
  2. Conjunto de teste: Este subconjunto consiste em 10.000 imagens utilizadas para testar e avaliar os modelos treinados.

Aplica√ß√Ķes

O conjunto de dados CIFAR-100 é amplamente utilizado para treinar e avaliar modelos de aprendizagem profunda em tarefas de classificação de imagens, como Redes Neurais Convolucionais (CNNs), Máquinas de Vetores de Suporte (SVMs) e vários outros algoritmos de aprendizagem automática. A diversidade do conjunto de dados em termos de classes e a presença de imagens a cores tornam-no um conjunto de dados mais desafiante e abrangente para investigação e desenvolvimento no domínio da aprendizagem automática e da visão computacional.

Utilização

Para treinar um modelo YOLO no conjunto de dados CIFAR-100 para 100 épocas com um tamanho de imagem de 32x32, podes utilizar os seguintes snippets de código. Para obter uma lista completa dos argumentos disponíveis, consulta a página de treino do modelo.

Exemplo de comboio

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-cls.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="cifar100", epochs=100, imgsz=32)
# Start training from a pretrained *.pt model
yolo detect train data=cifar100 model=yolov8n-cls.pt epochs=100 imgsz=32

Exemplos de imagens e anota√ß√Ķes

O conjunto de dados CIFAR-100 contém imagens a cores de vários objectos, proporcionando um conjunto de dados bem estruturado para tarefas de classificação de imagens. Aqui tens alguns exemplos de imagens do conjunto de dados:

Imagem de amostra do conjunto de dados

O exemplo mostra a variedade e complexidade dos objectos no conjunto de dados CIFAR-100, real√ßando a import√Ęncia de um conjunto de dados diversificado para treinar modelos robustos de classifica√ß√£o de imagens.

Cita√ß√Ķes e agradecimentos

Se utilizares o conjunto de dados CIFAR-100 no teu trabalho de investigação ou desenvolvimento, cita o seguinte documento:

@TECHREPORT{Krizhevsky09learningmultiple,
            author={Alex Krizhevsky},
            title={Learning multiple layers of features from tiny images},
            institution={},
            year={2009}
}

Gostar√≠amos de agradecer a Alex Krizhevsky por criar e manter o conjunto de dados CIFAR-100 como um recurso valioso para a comunidade de investiga√ß√£o em aprendizagem autom√°tica e vis√£o computacional. Para mais informa√ß√Ķes sobre o conjunto de dados CIFAR-100 e o seu criador, visita o s√≠tio Web do conjunto de dados CIFAR-100.



Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (5)

Coment√°rios