Saltar para o conteúdo

Conjunto de dados de tumores cerebrais

Um conjunto de dados de deteção de tumores cerebrais consiste em imagens médicas de exames de ressonância magnética ou de tomografia computorizada, contendo informações sobre a presença, localização e caraterísticas do tumor cerebral. Este conjunto de dados é essencial para treinar algoritmos de visão computacional para automatizar a identificação de tumores cerebrais, ajudando no diagnóstico precoce e no planeamento do tratamento.



Ver: Deteção de tumores cerebrais utilizando Ultralytics HUB

Estrutura do conjunto de dados

O conjunto de dados de tumores cerebrais está dividido em dois subconjuntos:

  • Conjunto de treino: Consiste em 893 imagens, cada uma acompanhada de anotações correspondentes.
  • Conjunto de teste: Composto por 223 imagens, com anotações emparelhadas para cada uma delas.

Aplicações

A aplicação da deteção de tumores cerebrais utilizando a visão por computador permite o diagnóstico precoce, o planeamento do tratamento e a monitorização da progressão do tumor. Ao analisar dados de imagens médicas, como exames de ressonância magnética ou tomografia computadorizada, os sistemas de visão computacional ajudam a identificar com precisão os tumores cerebrais, auxiliando na intervenção médica oportuna e em estratégias de tratamento personalizadas.

Conjunto de dados YAML

Um ficheiro YAML (Yet Another Markup Language) é utilizado para definir a configuração do conjunto de dados. Ele contém informações sobre os caminhos, classes e outras informações relevantes do conjunto de dados. No caso do conjunto de dados de tumor cerebral, o ficheiro brain-tumor.yaml é mantido em https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/brain-tumor.yaml.

ultralytics/cfg/datasets/brain-tumor.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# Brain-tumor dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/
# Example usage: yolo train data=brain-tumor.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── brain-tumor  ← downloads here (4.05 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/brain-tumor # dataset root dir
train: train/images # train images (relative to 'path') 893 images
val: valid/images # val images (relative to 'path') 223 images
test: # test images (relative to 'path')

# Classes
names:
  0: negative
  1: positive

# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/brain-tumor.zip

Utilização

Para treinar um modelo YOLO11n no conjunto de dados de tumor cerebral para 100 épocas com um tamanho de imagem de 640, utilize os trechos de código fornecidos. Para obter uma lista detalhada dos argumentos disponíveis, consulte a página de treinamento do modelo.

Exemplo de comboio

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="brain-tumor.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=brain-tumor.yaml model=yolo11n.pt epochs=100 imgsz=640

Exemplo de inferência

from ultralytics import YOLO

# Load a model
model = YOLO("path/to/best.pt")  # load a brain-tumor fine-tuned model

# Inference using the model
results = model.predict("https://ultralytics.com/assets/brain-tumor-sample.jpg")
# Start prediction with a finetuned *.pt model
yolo detect predict model='path/to/best.pt' imgsz=640 source="https://ultralytics.com/assets/brain-tumor-sample.jpg"

Exemplos de imagens e anotações

O conjunto de dados de tumores cerebrais inclui uma vasta gama de imagens com diversas categorias de objectos e cenas complexas. Apresentam-se de seguida exemplos de imagens do conjunto de dados, acompanhadas das respectivas anotações

Imagem de amostra do conjunto de dados de tumores cerebrais

  • Imagem em mosaico: Aqui é apresentado um lote de formação que inclui imagens de conjuntos de dados em mosaico. O mosaico, uma técnica de formação, consolida várias imagens numa só, aumentando a diversidade do lote. Esta abordagem ajuda a melhorar a capacidade do modelo para generalizar através de vários tamanhos de objectos, proporções e contextos.

Este exemplo realça a diversidade e a complexidade das imagens no conjunto de dados de tumores cerebrais, sublinhando as vantagens de incorporar o mosaico durante a fase de formação.

Citações e agradecimentos

O conjunto de dados foi disponibilizado ao abrigo da licençaAGPL-3.0 .

FAQ

Qual é a estrutura do conjunto de dados de tumores cerebrais disponível na documentação Ultralytics ?

O conjunto de dados de tumores cerebrais está dividido em dois subconjuntos: o conjunto de treino é composto por 893 imagens com anotações correspondentes, enquanto o conjunto de teste é composto por 223 imagens com anotações emparelhadas. Esta divisão estruturada ajuda a desenvolver modelos de visão computacional robustos e precisos para a deteção de tumores cerebrais. Para mais informações sobre a estrutura do conjunto de dados, visite a secção Estrutura do conjunto de dados.

Como posso treinar um modelo YOLO11 no conjunto de dados de tumores cerebrais utilizando Ultralytics?

Pode treinar um modelo YOLO11 no conjunto de dados de tumores cerebrais para 100 épocas com um tamanho de imagem de 640 px utilizando os métodos Python e CLI . Abaixo estão os exemplos para ambos:

Exemplo de comboio

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="brain-tumor.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=brain-tumor.yaml model=yolo11n.pt epochs=100 imgsz=640

Para obter uma lista pormenorizada dos argumentos disponíveis, consulte a página Formação.

Quais são as vantagens de utilizar o conjunto de dados de tumores cerebrais para a IA nos cuidados de saúde?

A utilização do conjunto de dados de tumores cerebrais em projectos de IA permite o diagnóstico precoce e o planeamento do tratamento de tumores cerebrais. Ajuda a automatizar a identificação de tumores cerebrais através da visão por computador, facilitando intervenções médicas precisas e atempadas e apoiando estratégias de tratamento personalizadas. Esta aplicação tem um potencial significativo para melhorar os resultados dos doentes e a eficiência médica.

Como é que faço a inferência utilizando um modelo YOLO11 afinado no conjunto de dados de tumores cerebrais?

A inferência utilizando um modelo YOLO11 ajustado pode ser efectuada com as abordagens Python ou CLI . Eis os exemplos:

Exemplo de inferência

from ultralytics import YOLO

# Load a model
model = YOLO("path/to/best.pt")  # load a brain-tumor fine-tuned model

# Inference using the model
results = model.predict("https://ultralytics.com/assets/brain-tumor-sample.jpg")
# Start prediction with a finetuned *.pt model
yolo detect predict model='path/to/best.pt' imgsz=640 source="https://ultralytics.com/assets/brain-tumor-sample.jpg"

Onde posso encontrar a configuração YAML para o conjunto de dados de tumores cerebrais?

O ficheiro de configuração YAML para o conjunto de dados de tumor cerebral pode ser encontrado em brain-tumor.yaml. Este ficheiro inclui caminhos, classes e informações adicionais relevantes necessárias para treinar e avaliar modelos neste conjunto de dados.

📅C riado há 8 meses ✏️ Atualizado há 2 meses

Comentários