Tutorial de poda/esparsidade
Este guia explica como aplicar a poda aos modelos YOLOv5 🚀.
Antes de começar
Clonar repo e instalar requirements.txt em um Python>=3.8.0 incluindo PyTorch>=1.8. Os modelos e conjuntos de dados são descarregados automaticamente a partir daversão mais recentede YOLOv5 .
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
Testar normalmente
Antes de efetuar a poda, queremos estabelecer um desempenho de base para comparação. Este comando testa o YOLOv5x no COCO val2017 com um tamanho de imagem de 640 pixéis. yolov5x.pt
é o maior e mais exato modelo disponível. Outras opções são yolov5s.pt
, yolov5m.pt
e yolov5l.pt
ou o seu próprio ponto de controlo a partir do treino de um conjunto de dados personalizado ./weights/best.pt
. Para mais informações sobre todos os modelos disponíveis, consulte o nosso LEIA-ME tabela.
Saída:
val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:12<00:00, 2.16it/s]
all 5000 36335 0.732 0.628 0.683 0.496
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640) # <--- base speed
Evaluating pycocotools mAP... saving runs/val/exp2/yolov5x_predictions.json...
...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.507 # <--- base mAP
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.689
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.552
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.381
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.630
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.682
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.731
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829
Results saved to runs/val/exp
Testar YOLOv5x em COCO (0,30 esparsidade)
Repetimos o teste acima com um modelo podado, utilizando o torch_utils.prune()
comando. Actualizamos val.py
para reduzir a esparsidade do YOLOv5x para 0,3:
30% de produção podada:
val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
Pruning model... 0.3 global sparsity
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:11<00:00, 2.19it/s]
all 5000 36335 0.724 0.614 0.671 0.478
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640) # <--- prune mAP
Evaluating pycocotools mAP... saving runs/val/exp3/yolov5x_predictions.json...
...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.489 # <--- prune mAP
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.677
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.537
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.334
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.542
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.635
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.370
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.612
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.664
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.496
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.722
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.803
Results saved to runs/val/exp3
Nos resultados, podemos observar que alcançámos um esparsidade de 30% no nosso modelo após a poda, o que significa que 30% dos parâmetros de peso do modelo em nn.Conv2d
são iguais a 0. O tempo de inferência mantém-se essencialmente inalteradoenquanto o modelo As notas de AP e AR são ligeiramente reduzidas.
Ambientes suportados
Ultralytics fornece uma gama de ambientes prontos a utilizar, cada um pré-instalado com dependências essenciais, tais como CUDA, CUDNN, Python, e PyTorchpara dar início aos seus projectos.
- Grátis GPU Notebooks:
- Google Nuvem: Guia de início rápido do GCP
- Amazon: Guia de início rápido do AWS
- Azure: Guia de início rápido do AzureML
- Docker: Guia de início rápido do Docker
Estado do projeto
Este emblema indica que todos os testes de Integração Contínua (CI) do YOLOv5 GitHub Actions foram aprovados com êxito. Esses testes de CI verificam rigorosamente a funcionalidade e o desempenho do YOLOv5 em vários aspectos principais: treinamento, validação, inferência, exportação e benchmarks. Eles garantem uma operação consistente e confiável no macOS, Windows e Ubuntu, com testes realizados a cada 24 horas e a cada novo commit.