Skip to content

Reference for ultralytics/cfg/__init__.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/__init__.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.cfg.cfg2dict

cfg2dict(cfg: Union[str, Path, Dict, SimpleNamespace]) -> Dict

Converts a configuration object to a dictionary.

Parameters:

Name Type Description Default
cfg str | Path | Dict | SimpleNamespace

Configuration object to be converted. Can be a file path, a string, a dictionary, or a SimpleNamespace object.

required

Returns:

Type Description
dict

Configuration object in dictionary format.

Examples:

Convert a YAML file path to a dictionary:

>>> config_dict = cfg2dict("config.yaml")

Convert a SimpleNamespace to a dictionary:

>>> from types import SimpleNamespace
>>> config_sn = SimpleNamespace(param1="value1", param2="value2")
>>> config_dict = cfg2dict(config_sn)

Pass through an already existing dictionary:

>>> config_dict = cfg2dict({"param1": "value1", "param2": "value2"})
Notes
  • If cfg is a path or string, it's loaded as YAML and converted to a dictionary.
  • If cfg is a SimpleNamespace object, it's converted to a dictionary using vars().
  • If cfg is already a dictionary, it's returned unchanged.
Source code in ultralytics/cfg/__init__.py
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
def cfg2dict(cfg: Union[str, Path, Dict, SimpleNamespace]) -> Dict:
    """
    Converts a configuration object to a dictionary.

    Args:
        cfg (str | Path | Dict | SimpleNamespace): Configuration object to be converted. Can be a file path,
            a string, a dictionary, or a SimpleNamespace object.

    Returns:
        (dict): Configuration object in dictionary format.

    Examples:
        Convert a YAML file path to a dictionary:
        >>> config_dict = cfg2dict("config.yaml")

        Convert a SimpleNamespace to a dictionary:
        >>> from types import SimpleNamespace
        >>> config_sn = SimpleNamespace(param1="value1", param2="value2")
        >>> config_dict = cfg2dict(config_sn)

        Pass through an already existing dictionary:
        >>> config_dict = cfg2dict({"param1": "value1", "param2": "value2"})

    Notes:
        - If cfg is a path or string, it's loaded as YAML and converted to a dictionary.
        - If cfg is a SimpleNamespace object, it's converted to a dictionary using vars().
        - If cfg is already a dictionary, it's returned unchanged.
    """
    if isinstance(cfg, (str, Path)):
        cfg = yaml_load(cfg)  # load dict
    elif isinstance(cfg, SimpleNamespace):
        cfg = vars(cfg)  # convert to dict
    return cfg





ultralytics.cfg.get_cfg

get_cfg(
    cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT,
    overrides: Dict = None,
) -> SimpleNamespace

Load and merge configuration data from a file or dictionary, with optional overrides.

Parameters:

Name Type Description Default
cfg str | Path | Dict | SimpleNamespace

Configuration data source. Can be a file path, dictionary, or SimpleNamespace object.

DEFAULT_CFG_DICT
overrides Dict | None

Dictionary containing key-value pairs to override the base configuration.

None

Returns:

Type Description
SimpleNamespace

Namespace containing the merged configuration arguments.

Examples:

>>> from ultralytics.cfg import get_cfg
>>> config = get_cfg()  # Load default configuration
>>> config_with_overrides = get_cfg("path/to/config.yaml", overrides={"epochs": 50, "batch_size": 16})
Notes
  • If both cfg and overrides are provided, the values in overrides will take precedence.
  • Special handling ensures alignment and correctness of the configuration, such as converting numeric project and name to strings and validating configuration keys and values.
  • The function performs type and value checks on the configuration data.
Source code in ultralytics/cfg/__init__.py
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, overrides: Dict = None) -> SimpleNamespace:
    """
    Load and merge configuration data from a file or dictionary, with optional overrides.

    Args:
        cfg (str | Path | Dict | SimpleNamespace): Configuration data source. Can be a file path, dictionary, or
            SimpleNamespace object.
        overrides (Dict | None): Dictionary containing key-value pairs to override the base configuration.

    Returns:
        (SimpleNamespace): Namespace containing the merged configuration arguments.

    Examples:
        >>> from ultralytics.cfg import get_cfg
        >>> config = get_cfg()  # Load default configuration
        >>> config_with_overrides = get_cfg("path/to/config.yaml", overrides={"epochs": 50, "batch_size": 16})

    Notes:
        - If both `cfg` and `overrides` are provided, the values in `overrides` will take precedence.
        - Special handling ensures alignment and correctness of the configuration, such as converting numeric
          `project` and `name` to strings and validating configuration keys and values.
        - The function performs type and value checks on the configuration data.
    """
    cfg = cfg2dict(cfg)

    # Merge overrides
    if overrides:
        overrides = cfg2dict(overrides)
        if "save_dir" not in cfg:
            overrides.pop("save_dir", None)  # special override keys to ignore
        check_dict_alignment(cfg, overrides)
        cfg = {**cfg, **overrides}  # merge cfg and overrides dicts (prefer overrides)

    # Special handling for numeric project/name
    for k in "project", "name":
        if k in cfg and isinstance(cfg[k], (int, float)):
            cfg[k] = str(cfg[k])
    if cfg.get("name") == "model":  # assign model to 'name' arg
        cfg["name"] = str(cfg.get("model", "")).split(".")[0]
        LOGGER.warning(f"'name=model' automatically updated to 'name={cfg['name']}'.")

    # Type and Value checks
    check_cfg(cfg)

    # Return instance
    return IterableSimpleNamespace(**cfg)





ultralytics.cfg.check_cfg

check_cfg(cfg: Dict, hard: bool = True) -> None

Checks configuration argument types and values for the Ultralytics library.

This function validates the types and values of configuration arguments, ensuring correctness and converting them if necessary. It checks for specific key types defined in global variables such as CFG_FLOAT_KEYS, CFG_FRACTION_KEYS, CFG_INT_KEYS, and CFG_BOOL_KEYS.

Parameters:

Name Type Description Default
cfg dict

Configuration dictionary to validate.

required
hard bool

If True, raises exceptions for invalid types and values; if False, attempts to convert them.

True

Examples:

>>> config = {
...     "epochs": 50,  # valid integer
...     "lr0": 0.01,  # valid float
...     "momentum": 1.2,  # invalid float (out of 0.0-1.0 range)
...     "save": "true",  # invalid bool
... }
>>> check_cfg(config, hard=False)
>>> print(config)
{'epochs': 50, 'lr0': 0.01, 'momentum': 1.2, 'save': False}  # corrected 'save' key
Notes
  • The function modifies the input dictionary in-place.
  • None values are ignored as they may be from optional arguments.
  • Fraction keys are checked to be within the range [0.0, 1.0].
Source code in ultralytics/cfg/__init__.py
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
def check_cfg(cfg: Dict, hard: bool = True) -> None:
    """
    Checks configuration argument types and values for the Ultralytics library.

    This function validates the types and values of configuration arguments, ensuring correctness and converting
    them if necessary. It checks for specific key types defined in global variables such as `CFG_FLOAT_KEYS`,
    `CFG_FRACTION_KEYS`, `CFG_INT_KEYS`, and `CFG_BOOL_KEYS`.

    Args:
        cfg (dict): Configuration dictionary to validate.
        hard (bool): If True, raises exceptions for invalid types and values; if False, attempts to convert them.

    Examples:
        >>> config = {
        ...     "epochs": 50,  # valid integer
        ...     "lr0": 0.01,  # valid float
        ...     "momentum": 1.2,  # invalid float (out of 0.0-1.0 range)
        ...     "save": "true",  # invalid bool
        ... }
        >>> check_cfg(config, hard=False)
        >>> print(config)
        {'epochs': 50, 'lr0': 0.01, 'momentum': 1.2, 'save': False}  # corrected 'save' key

    Notes:
        - The function modifies the input dictionary in-place.
        - None values are ignored as they may be from optional arguments.
        - Fraction keys are checked to be within the range [0.0, 1.0].
    """
    for k, v in cfg.items():
        if v is not None:  # None values may be from optional args
            if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)):
                if hard:
                    raise TypeError(
                        f"'{k}={v}' is of invalid type {type(v).__name__}. "
                        f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')"
                    )
                cfg[k] = float(v)
            elif k in CFG_FRACTION_KEYS:
                if not isinstance(v, (int, float)):
                    if hard:
                        raise TypeError(
                            f"'{k}={v}' is of invalid type {type(v).__name__}. "
                            f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')"
                        )
                    cfg[k] = v = float(v)
                if not (0.0 <= v <= 1.0):
                    raise ValueError(f"'{k}={v}' is an invalid value. Valid '{k}' values are between 0.0 and 1.0.")
            elif k in CFG_INT_KEYS and not isinstance(v, int):
                if hard:
                    raise TypeError(
                        f"'{k}={v}' is of invalid type {type(v).__name__}. '{k}' must be an int (i.e. '{k}=8')"
                    )
                cfg[k] = int(v)
            elif k in CFG_BOOL_KEYS and not isinstance(v, bool):
                if hard:
                    raise TypeError(
                        f"'{k}={v}' is of invalid type {type(v).__name__}. "
                        f"'{k}' must be a bool (i.e. '{k}=True' or '{k}=False')"
                    )
                cfg[k] = bool(v)





ultralytics.cfg.get_save_dir

get_save_dir(args: SimpleNamespace, name: str = None) -> Path

Returns the directory path for saving outputs, derived from arguments or default settings.

Parameters:

Name Type Description Default
args SimpleNamespace

Namespace object containing configurations such as 'project', 'name', 'task', 'mode', and 'save_dir'.

required
name str | None

Optional name for the output directory. If not provided, it defaults to 'args.name' or the 'args.mode'.

None

Returns:

Type Description
Path

Directory path where outputs should be saved.

Examples:

>>> from types import SimpleNamespace
>>> args = SimpleNamespace(project="my_project", task="detect", mode="train", exist_ok=True)
>>> save_dir = get_save_dir(args)
>>> print(save_dir)
my_project/detect/train
Source code in ultralytics/cfg/__init__.py
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
def get_save_dir(args: SimpleNamespace, name: str = None) -> Path:
    """
    Returns the directory path for saving outputs, derived from arguments or default settings.

    Args:
        args (SimpleNamespace): Namespace object containing configurations such as 'project', 'name', 'task',
            'mode', and 'save_dir'.
        name (str | None): Optional name for the output directory. If not provided, it defaults to 'args.name'
            or the 'args.mode'.

    Returns:
        (Path): Directory path where outputs should be saved.

    Examples:
        >>> from types import SimpleNamespace
        >>> args = SimpleNamespace(project="my_project", task="detect", mode="train", exist_ok=True)
        >>> save_dir = get_save_dir(args)
        >>> print(save_dir)
        my_project/detect/train
    """
    if getattr(args, "save_dir", None):
        save_dir = args.save_dir
    else:
        from ultralytics.utils.files import increment_path

        project = args.project or (ROOT.parent / "tests/tmp/runs" if TESTS_RUNNING else RUNS_DIR) / args.task
        name = name or args.name or f"{args.mode}"
        save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in {-1, 0} else True)

    return Path(save_dir)





ultralytics.cfg._handle_deprecation

_handle_deprecation(custom: Dict) -> Dict

Handles deprecated configuration keys by mapping them to current equivalents with deprecation warnings.

Parameters:

Name Type Description Default
custom dict

Configuration dictionary potentially containing deprecated keys.

required

Examples:

>>> custom_config = {"boxes": True, "hide_labels": "False", "line_thickness": 2}
>>> _handle_deprecation(custom_config)
>>> print(custom_config)
{'show_boxes': True, 'show_labels': True, 'line_width': 2}
Notes

This function modifies the input dictionary in-place, replacing deprecated keys with their current equivalents. It also handles value conversions where necessary, such as inverting boolean values for 'hide_labels' and 'hide_conf'.

Source code in ultralytics/cfg/__init__.py
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
def _handle_deprecation(custom: Dict) -> Dict:
    """
    Handles deprecated configuration keys by mapping them to current equivalents with deprecation warnings.

    Args:
        custom (dict): Configuration dictionary potentially containing deprecated keys.

    Examples:
        >>> custom_config = {"boxes": True, "hide_labels": "False", "line_thickness": 2}
        >>> _handle_deprecation(custom_config)
        >>> print(custom_config)
        {'show_boxes': True, 'show_labels': True, 'line_width': 2}

    Notes:
        This function modifies the input dictionary in-place, replacing deprecated keys with their current
        equivalents. It also handles value conversions where necessary, such as inverting boolean values for
        'hide_labels' and 'hide_conf'.
    """
    deprecated_mappings = {
        "boxes": ("show_boxes", lambda v: v),
        "hide_labels": ("show_labels", lambda v: not bool(v)),
        "hide_conf": ("show_conf", lambda v: not bool(v)),
        "line_thickness": ("line_width", lambda v: v),
    }
    removed_keys = {"label_smoothing", "save_hybrid", "crop_fraction"}

    for old_key, (new_key, transform) in deprecated_mappings.items():
        if old_key not in custom:
            continue
        deprecation_warn(old_key, new_key)
        custom[new_key] = transform(custom.pop(old_key))

    for key in removed_keys:
        if key not in custom:
            continue
        deprecation_warn(key)
        custom.pop(key)

    return custom





ultralytics.cfg.check_dict_alignment

check_dict_alignment(base: Dict, custom: Dict, e: Exception = None) -> None

Checks alignment between custom and base configuration dictionaries, handling deprecated keys and providing error messages for mismatched keys.

Parameters:

Name Type Description Default
base dict

The base configuration dictionary containing valid keys.

required
custom dict

The custom configuration dictionary to be checked for alignment.

required
e Exception | None

Optional error instance passed by the calling function.

None

Raises:

Type Description
SystemExit

If mismatched keys are found between the custom and base dictionaries.

Examples:

>>> base_cfg = {"epochs": 50, "lr0": 0.01, "batch_size": 16}
>>> custom_cfg = {"epoch": 100, "lr": 0.02, "batch_size": 32}
>>> try:
...     check_dict_alignment(base_cfg, custom_cfg)
... except SystemExit:
...     print("Mismatched keys found")
Notes
  • Suggests corrections for mismatched keys based on similarity to valid keys.
  • Automatically replaces deprecated keys in the custom configuration with updated equivalents.
  • Prints detailed error messages for each mismatched key to help users correct their configurations.
Source code in ultralytics/cfg/__init__.py
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
def check_dict_alignment(base: Dict, custom: Dict, e: Exception = None) -> None:
    """
    Checks alignment between custom and base configuration dictionaries, handling deprecated keys and providing error
    messages for mismatched keys.

    Args:
        base (dict): The base configuration dictionary containing valid keys.
        custom (dict): The custom configuration dictionary to be checked for alignment.
        e (Exception | None): Optional error instance passed by the calling function.

    Raises:
        SystemExit: If mismatched keys are found between the custom and base dictionaries.

    Examples:
        >>> base_cfg = {"epochs": 50, "lr0": 0.01, "batch_size": 16}
        >>> custom_cfg = {"epoch": 100, "lr": 0.02, "batch_size": 32}
        >>> try:
        ...     check_dict_alignment(base_cfg, custom_cfg)
        ... except SystemExit:
        ...     print("Mismatched keys found")

    Notes:
        - Suggests corrections for mismatched keys based on similarity to valid keys.
        - Automatically replaces deprecated keys in the custom configuration with updated equivalents.
        - Prints detailed error messages for each mismatched key to help users correct their configurations.
    """
    custom = _handle_deprecation(custom)
    base_keys, custom_keys = (frozenset(x.keys()) for x in (base, custom))
    if mismatched := [k for k in custom_keys if k not in base_keys]:
        from difflib import get_close_matches

        string = ""
        for x in mismatched:
            matches = get_close_matches(x, base_keys)  # key list
            matches = [f"{k}={base[k]}" if base.get(k) is not None else k for k in matches]
            match_str = f"Similar arguments are i.e. {matches}." if matches else ""
            string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n"
        raise SyntaxError(string + CLI_HELP_MSG) from e





ultralytics.cfg.merge_equals_args

merge_equals_args(args: List[str]) -> List[str]

Merges arguments around isolated '=' in a list of strings and joins fragments with brackets.

This function handles the following cases
  1. ['arg', '=', 'val'] becomes ['arg=val']
  2. ['arg=', 'val'] becomes ['arg=val']
  3. ['arg', '=val'] becomes ['arg=val']
  4. Joins fragments with brackets, e.g., ['imgsz=[3,', '640,', '640]'] becomes ['imgsz=[3,640,640]']

Parameters:

Name Type Description Default
args List[str]

A list of strings where each element represents an argument or fragment.

required

Returns:

Type Description
List[str]

A list of strings where the arguments around isolated '=' are merged and fragments with brackets are joined.

Examples:

>>> args = ["arg1", "=", "value", "arg2=", "value2", "arg3", "=value3", "imgsz=[3,", "640,", "640]"]
>>> merge_equals_args(args)
['arg1=value', 'arg2=value2', 'arg3=value3', 'imgsz=[3,640,640]']
Source code in ultralytics/cfg/__init__.py
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
def merge_equals_args(args: List[str]) -> List[str]:
    """
    Merges arguments around isolated '=' in a list of strings and joins fragments with brackets.

    This function handles the following cases:
        1. ['arg', '=', 'val'] becomes ['arg=val']
        2. ['arg=', 'val'] becomes ['arg=val']
        3. ['arg', '=val'] becomes ['arg=val']
        4. Joins fragments with brackets, e.g., ['imgsz=[3,', '640,', '640]'] becomes ['imgsz=[3,640,640]']

    Args:
        args (List[str]): A list of strings where each element represents an argument or fragment.

    Returns:
        (List[str]): A list of strings where the arguments around isolated '=' are merged and fragments with brackets are joined.

    Examples:
        >>> args = ["arg1", "=", "value", "arg2=", "value2", "arg3", "=value3", "imgsz=[3,", "640,", "640]"]
        >>> merge_equals_args(args)
        ['arg1=value', 'arg2=value2', 'arg3=value3', 'imgsz=[3,640,640]']
    """
    new_args = []
    current = ""
    depth = 0

    i = 0
    while i < len(args):
        arg = args[i]

        # Handle equals sign merging
        if arg == "=" and 0 < i < len(args) - 1:  # merge ['arg', '=', 'val']
            new_args[-1] += f"={args[i + 1]}"
            i += 2
            continue
        elif arg.endswith("=") and i < len(args) - 1 and "=" not in args[i + 1]:  # merge ['arg=', 'val']
            new_args.append(f"{arg}{args[i + 1]}")
            i += 2
            continue
        elif arg.startswith("=") and i > 0:  # merge ['arg', '=val']
            new_args[-1] += arg
            i += 1
            continue

        # Handle bracket joining
        depth += arg.count("[") - arg.count("]")
        current += arg
        if depth == 0:
            new_args.append(current)
            current = ""

        i += 1

    # Append any remaining current string
    if current:
        new_args.append(current)

    return new_args





ultralytics.cfg.handle_yolo_hub

handle_yolo_hub(args: List[str]) -> None

Handles Ultralytics HUB command-line interface (CLI) commands for authentication.

This function processes Ultralytics HUB CLI commands such as login and logout. It should be called when executing a script with arguments related to HUB authentication.

Parameters:

Name Type Description Default
args List[str]

A list of command line arguments. The first argument should be either 'login' or 'logout'. For 'login', an optional second argument can be the API key.

required

Examples:

$ yolo login YOUR_API_KEY

Notes
  • The function imports the 'hub' module from ultralytics to perform login and logout operations.
  • For the 'login' command, if no API key is provided, an empty string is passed to the login function.
  • The 'logout' command does not require any additional arguments.
Source code in ultralytics/cfg/__init__.py
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
def handle_yolo_hub(args: List[str]) -> None:
    """
    Handles Ultralytics HUB command-line interface (CLI) commands for authentication.

    This function processes Ultralytics HUB CLI commands such as login and logout. It should be called when executing a
    script with arguments related to HUB authentication.

    Args:
        args (List[str]): A list of command line arguments. The first argument should be either 'login'
            or 'logout'. For 'login', an optional second argument can be the API key.

    Examples:
        $ yolo login YOUR_API_KEY

    Notes:
        - The function imports the 'hub' module from ultralytics to perform login and logout operations.
        - For the 'login' command, if no API key is provided, an empty string is passed to the login function.
        - The 'logout' command does not require any additional arguments.
    """
    from ultralytics import hub

    if args[0] == "login":
        key = args[1] if len(args) > 1 else ""
        # Log in to Ultralytics HUB using the provided API key
        hub.login(key)
    elif args[0] == "logout":
        # Log out from Ultralytics HUB
        hub.logout()





ultralytics.cfg.handle_yolo_settings

handle_yolo_settings(args: List[str]) -> None

Handles YOLO settings command-line interface (CLI) commands.

This function processes YOLO settings CLI commands such as reset and updating individual settings. It should be called when executing a script with arguments related to YOLO settings management.

Parameters:

Name Type Description Default
args List[str]

A list of command line arguments for YOLO settings management.

required

Examples:

>>> handle_yolo_settings(["reset"])  # Reset YOLO settings
>>> handle_yolo_settings(["default_cfg_path=yolo11n.yaml"])  # Update a specific setting
Notes
  • If no arguments are provided, the function will display the current settings.
  • The 'reset' command will delete the existing settings file and create new default settings.
  • Other arguments are treated as key-value pairs to update specific settings.
  • The function will check for alignment between the provided settings and the existing ones.
  • After processing, the updated settings will be displayed.
  • For more information on handling YOLO settings, visit: https://docs.ultralytics.com/quickstart/#ultralytics-settings
Source code in ultralytics/cfg/__init__.py
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
def handle_yolo_settings(args: List[str]) -> None:
    """
    Handles YOLO settings command-line interface (CLI) commands.

    This function processes YOLO settings CLI commands such as reset and updating individual settings. It should be
    called when executing a script with arguments related to YOLO settings management.

    Args:
        args (List[str]): A list of command line arguments for YOLO settings management.

    Examples:
        >>> handle_yolo_settings(["reset"])  # Reset YOLO settings
        >>> handle_yolo_settings(["default_cfg_path=yolo11n.yaml"])  # Update a specific setting

    Notes:
        - If no arguments are provided, the function will display the current settings.
        - The 'reset' command will delete the existing settings file and create new default settings.
        - Other arguments are treated as key-value pairs to update specific settings.
        - The function will check for alignment between the provided settings and the existing ones.
        - After processing, the updated settings will be displayed.
        - For more information on handling YOLO settings, visit:
          https://docs.ultralytics.com/quickstart/#ultralytics-settings
    """
    url = "https://docs.ultralytics.com/quickstart/#ultralytics-settings"  # help URL
    try:
        if any(args):
            if args[0] == "reset":
                SETTINGS_FILE.unlink()  # delete the settings file
                SETTINGS.reset()  # create new settings
                LOGGER.info("Settings reset successfully")  # inform the user that settings have been reset
            else:  # save a new setting
                new = dict(parse_key_value_pair(a) for a in args)
                check_dict_alignment(SETTINGS, new)
                SETTINGS.update(new)

        LOGGER.info(SETTINGS)  # print the current settings
        LOGGER.info(f"💡 Learn more about Ultralytics Settings at {url}")
    except Exception as e:
        LOGGER.warning(f"settings error: '{e}'. Please see {url} for help.")





ultralytics.cfg.handle_yolo_solutions

handle_yolo_solutions(args: List[str]) -> None

Processes YOLO solutions arguments and runs the specified computer vision solutions pipeline.

Parameters:

Name Type Description Default
args List[str]

Command-line arguments for configuring and running the Ultralytics YOLO solutions: https://docs.ultralytics.com/solutions/, It can include solution name, source, and other configuration parameters.

required

Examples:

Run people counting solution with default settings:

>>> handle_yolo_solutions(["count"])

Run analytics with custom configuration:

>>> handle_yolo_solutions(["analytics", "conf=0.25", "source=path/to/video.mp4"])

Run inference with custom configuration, requires Streamlit version 1.29.0 or higher.

>>> handle_yolo_solutions(["inference", "model=yolo11n.pt"])
Notes
  • Default configurations are merged from DEFAULT_SOL_DICT and DEFAULT_CFG_DICT
  • Arguments can be provided in the format 'key=value' or as boolean flags
  • Available solutions are defined in SOLUTION_MAP with their respective classes and methods
  • If an invalid solution is provided, defaults to 'count' solution
  • Output videos are saved in 'runs/solution/{solution_name}' directory
  • For 'analytics' solution, frame numbers are tracked for generating analytical graphs
  • Video processing can be interrupted by pressing 'q'
  • Processes video frames sequentially and saves output in .avi format
  • If no source is specified, downloads and uses a default sample video
  • The inference solution will be launched using the 'streamlit run' command.
  • The Streamlit app file is located in the Ultralytics package directory.
Source code in ultralytics/cfg/__init__.py
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
def handle_yolo_solutions(args: List[str]) -> None:
    """
    Processes YOLO solutions arguments and runs the specified computer vision solutions pipeline.

    Args:
        args (List[str]): Command-line arguments for configuring and running the Ultralytics YOLO
            solutions: https://docs.ultralytics.com/solutions/, It can include solution name, source,
            and other configuration parameters.

    Examples:
        Run people counting solution with default settings:
        >>> handle_yolo_solutions(["count"])

        Run analytics with custom configuration:
        >>> handle_yolo_solutions(["analytics", "conf=0.25", "source=path/to/video.mp4"])

        Run inference with custom configuration, requires Streamlit version 1.29.0 or higher.
        >>> handle_yolo_solutions(["inference", "model=yolo11n.pt"])

    Notes:
        - Default configurations are merged from DEFAULT_SOL_DICT and DEFAULT_CFG_DICT
        - Arguments can be provided in the format 'key=value' or as boolean flags
        - Available solutions are defined in SOLUTION_MAP with their respective classes and methods
        - If an invalid solution is provided, defaults to 'count' solution
        - Output videos are saved in 'runs/solution/{solution_name}' directory
        - For 'analytics' solution, frame numbers are tracked for generating analytical graphs
        - Video processing can be interrupted by pressing 'q'
        - Processes video frames sequentially and saves output in .avi format
        - If no source is specified, downloads and uses a default sample video
        - The inference solution will be launched using the 'streamlit run' command.
        - The Streamlit app file is located in the Ultralytics package directory.
    """
    full_args_dict = {
        **DEFAULT_SOL_DICT,
        **DEFAULT_CFG_DICT,
        "blur_ratio": 0.5,
        "vision_point": (20, 20),
        "crop_dir": "cropped-detections",
    }  # arguments dictionary
    overrides = {}

    # check dictionary alignment
    for arg in merge_equals_args(args):
        arg = arg.lstrip("-").rstrip(",")
        if "=" in arg:
            try:
                k, v = parse_key_value_pair(arg)
                overrides[k] = v
            except (NameError, SyntaxError, ValueError, AssertionError) as e:
                check_dict_alignment(full_args_dict, {arg: ""}, e)
        elif arg in full_args_dict and isinstance(full_args_dict.get(arg), bool):
            overrides[arg] = True
    check_dict_alignment(full_args_dict, overrides)  # dict alignment

    # Get solution name
    if not args:
        LOGGER.warning("No solution name provided. i.e `yolo solutions count`. Defaulting to 'count'.")
        args = ["count"]
    if args[0] == "help":
        LOGGER.info(SOLUTIONS_HELP_MSG)
        return  # Early return for 'help' case
    elif args[0] in SOLUTION_MAP:
        solution_name = args.pop(0)  # Extract the solution name directly
    else:
        LOGGER.warning(
            f"❌ '{args[0]}' is not a valid solution. 💡 Defaulting to 'count'.\n"
            f"🚀 Available solutions: {', '.join(list(SOLUTION_MAP.keys())[:-1])}\n"
        )
        solution_name = "count"  # Default for invalid solution

    if solution_name == "inference":
        checks.check_requirements("streamlit>=1.29.0,<1.44.0")
        LOGGER.info("💡 Loading Ultralytics live inference app...")
        subprocess.run(
            [  # Run subprocess with Streamlit custom argument
                "streamlit",
                "run",
                str(ROOT / "solutions/streamlit_inference.py"),
                "--server.headless",
                "true",
                overrides.pop("model", "yolo11n.pt"),
            ]
        )
    else:
        from ultralytics import solutions

        solution = getattr(solutions, SOLUTION_MAP[solution_name])(is_cli=True, **overrides)  # class i.e ObjectCounter

        cap = cv2.VideoCapture(solution.CFG["source"])  # read the video file
        if solution_name != "crop":
            # extract width, height and fps of the video file, create save directory and initialize video writer
            w, h, fps = (
                int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)
            )
            if solution_name == "analytics":  # analytical graphs follow fixed shape for output i.e w=1920, h=1080
                w, h = 1280, 720
            save_dir = get_save_dir(SimpleNamespace(project="runs/solutions", name="exp", exist_ok=False))
            save_dir.mkdir(parents=True)  # create the output directory i.e. runs/solutions/exp
            vw = cv2.VideoWriter(str(save_dir / f"{solution_name}.avi"), cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

        try:  # Process video frames
            f_n = 0  # frame number, required for analytical graphs
            while cap.isOpened():
                success, frame = cap.read()
                if not success:
                    break
                results = solution(frame, f_n := f_n + 1) if solution_name == "analytics" else solution(frame)
                if solution_name != "crop":
                    vw.write(results.plot_im)
                if cv2.waitKey(1) & 0xFF == ord("q"):
                    break
        finally:
            cap.release()





ultralytics.cfg.parse_key_value_pair

parse_key_value_pair(pair: str = 'key=value') -> tuple

Parses a key-value pair string into separate key and value components.

Parameters:

Name Type Description Default
pair str

A string containing a key-value pair in the format "key=value".

'key=value'

Returns:

Name Type Description
key str

The parsed key.

value str

The parsed value.

Raises:

Type Description
AssertionError

If the value is missing or empty.

Examples:

>>> key, value = parse_key_value_pair("model=yolo11n.pt")
>>> print(f"Key: {key}, Value: {value}")
Key: model, Value: yolo11n.pt
>>> key, value = parse_key_value_pair("epochs=100")
>>> print(f"Key: {key}, Value: {value}")
Key: epochs, Value: 100
Notes
  • The function splits the input string on the first '=' character.
  • Leading and trailing whitespace is removed from both key and value.
  • An assertion error is raised if the value is empty after stripping.
Source code in ultralytics/cfg/__init__.py
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
def parse_key_value_pair(pair: str = "key=value") -> tuple:
    """
    Parses a key-value pair string into separate key and value components.

    Args:
        pair (str): A string containing a key-value pair in the format "key=value".

    Returns:
        key (str): The parsed key.
        value (str): The parsed value.

    Raises:
        AssertionError: If the value is missing or empty.

    Examples:
        >>> key, value = parse_key_value_pair("model=yolo11n.pt")
        >>> print(f"Key: {key}, Value: {value}")
        Key: model, Value: yolo11n.pt

        >>> key, value = parse_key_value_pair("epochs=100")
        >>> print(f"Key: {key}, Value: {value}")
        Key: epochs, Value: 100

    Notes:
        - The function splits the input string on the first '=' character.
        - Leading and trailing whitespace is removed from both key and value.
        - An assertion error is raised if the value is empty after stripping.
    """
    k, v = pair.split("=", 1)  # split on first '=' sign
    k, v = k.strip(), v.strip()  # remove spaces
    assert v, f"missing '{k}' value"
    return k, smart_value(v)





ultralytics.cfg.smart_value

smart_value(v: str) -> Any

Converts a string representation of a value to its appropriate Python type.

This function attempts to convert a given string into a Python object of the most appropriate type. It handles conversions to None, bool, int, float, and other types that can be evaluated safely.

Parameters:

Name Type Description Default
v str

The string representation of the value to be converted.

required

Returns:

Type Description
Any

The converted value. The type can be None, bool, int, float, or the original string if no conversion is applicable.

Examples:

>>> smart_value("42")
42
>>> smart_value("3.14")
3.14
>>> smart_value("True")
True
>>> smart_value("None")
None
>>> smart_value("some_string")
'some_string'
Notes
  • The function uses a case-insensitive comparison for boolean and None values.
  • For other types, it attempts to use Python's eval() function, which can be unsafe if used on untrusted input.
  • If no conversion is possible, the original string is returned.
Source code in ultralytics/cfg/__init__.py
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
def smart_value(v: str) -> Any:
    """
    Converts a string representation of a value to its appropriate Python type.

    This function attempts to convert a given string into a Python object of the most appropriate type. It handles
    conversions to None, bool, int, float, and other types that can be evaluated safely.

    Args:
        v (str): The string representation of the value to be converted.

    Returns:
        (Any): The converted value. The type can be None, bool, int, float, or the original string if no conversion
            is applicable.

    Examples:
        >>> smart_value("42")
        42
        >>> smart_value("3.14")
        3.14
        >>> smart_value("True")
        True
        >>> smart_value("None")
        None
        >>> smart_value("some_string")
        'some_string'

    Notes:
        - The function uses a case-insensitive comparison for boolean and None values.
        - For other types, it attempts to use Python's eval() function, which can be unsafe if used on untrusted input.
        - If no conversion is possible, the original string is returned.
    """
    v_lower = v.lower()
    if v_lower == "none":
        return None
    elif v_lower == "true":
        return True
    elif v_lower == "false":
        return False
    else:
        try:
            return eval(v)
        except Exception:
            return v





ultralytics.cfg.entrypoint

entrypoint(debug: str = '') -> None

Ultralytics entrypoint function for parsing and executing command-line arguments.

This function serves as the main entry point for the Ultralytics CLI, parsing command-line arguments and executing the corresponding tasks such as training, validation, prediction, exporting models, and more.

Parameters:

Name Type Description Default
debug str

Space-separated string of command-line arguments for debugging purposes.

''

Examples:

Train a detection model for 10 epochs with an initial learning_rate of 0.01:

>>> entrypoint("train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01")

Predict a YouTube video using a pretrained segmentation model at image size 320:

>>> entrypoint("predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")

Validate a pretrained detection model at batch-size 1 and image size 640:

>>> entrypoint("val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640")
Notes
  • If no arguments are passed, the function will display the usage help message.
  • For a list of all available commands and their arguments, see the provided help messages and the Ultralytics documentation at https://docs.ultralytics.com.
Source code in ultralytics/cfg/__init__.py
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
def entrypoint(debug: str = "") -> None:
    """
    Ultralytics entrypoint function for parsing and executing command-line arguments.

    This function serves as the main entry point for the Ultralytics CLI, parsing command-line arguments and
    executing the corresponding tasks such as training, validation, prediction, exporting models, and more.

    Args:
        debug (str): Space-separated string of command-line arguments for debugging purposes.

    Examples:
        Train a detection model for 10 epochs with an initial learning_rate of 0.01:
        >>> entrypoint("train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01")

        Predict a YouTube video using a pretrained segmentation model at image size 320:
        >>> entrypoint("predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")

        Validate a pretrained detection model at batch-size 1 and image size 640:
        >>> entrypoint("val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640")

    Notes:
        - If no arguments are passed, the function will display the usage help message.
        - For a list of all available commands and their arguments, see the provided help messages and the
          Ultralytics documentation at https://docs.ultralytics.com.
    """
    args = (debug.split(" ") if debug else ARGV)[1:]
    if not args:  # no arguments passed
        LOGGER.info(CLI_HELP_MSG)
        return

    special = {
        "help": lambda: LOGGER.info(CLI_HELP_MSG),
        "checks": checks.collect_system_info,
        "version": lambda: LOGGER.info(__version__),
        "settings": lambda: handle_yolo_settings(args[1:]),
        "cfg": lambda: yaml_print(DEFAULT_CFG_PATH),
        "hub": lambda: handle_yolo_hub(args[1:]),
        "login": lambda: handle_yolo_hub(args),
        "logout": lambda: handle_yolo_hub(args),
        "copy-cfg": copy_default_cfg,
        "solutions": lambda: handle_yolo_solutions(args[1:]),
    }
    full_args_dict = {**DEFAULT_CFG_DICT, **{k: None for k in TASKS}, **{k: None for k in MODES}, **special}

    # Define common misuses of special commands, i.e. -h, -help, --help
    special.update({k[0]: v for k, v in special.items()})  # singular
    special.update({k[:-1]: v for k, v in special.items() if len(k) > 1 and k.endswith("s")})  # singular
    special = {**special, **{f"-{k}": v for k, v in special.items()}, **{f"--{k}": v for k, v in special.items()}}

    overrides = {}  # basic overrides, i.e. imgsz=320
    for a in merge_equals_args(args):  # merge spaces around '=' sign
        if a.startswith("--"):
            LOGGER.warning(f"argument '{a}' does not require leading dashes '--', updating to '{a[2:]}'.")
            a = a[2:]
        if a.endswith(","):
            LOGGER.warning(f"argument '{a}' does not require trailing comma ',', updating to '{a[:-1]}'.")
            a = a[:-1]
        if "=" in a:
            try:
                k, v = parse_key_value_pair(a)
                if k == "cfg" and v is not None:  # custom.yaml passed
                    LOGGER.info(f"Overriding {DEFAULT_CFG_PATH} with {v}")
                    overrides = {k: val for k, val in yaml_load(checks.check_yaml(v)).items() if k != "cfg"}
                else:
                    overrides[k] = v
            except (NameError, SyntaxError, ValueError, AssertionError) as e:
                check_dict_alignment(full_args_dict, {a: ""}, e)

        elif a in TASKS:
            overrides["task"] = a
        elif a in MODES:
            overrides["mode"] = a
        elif a.lower() in special:
            special[a.lower()]()
            return
        elif a in DEFAULT_CFG_DICT and isinstance(DEFAULT_CFG_DICT[a], bool):
            overrides[a] = True  # auto-True for default bool args, i.e. 'yolo show' sets show=True
        elif a in DEFAULT_CFG_DICT:
            raise SyntaxError(
                f"'{colorstr('red', 'bold', a)}' is a valid YOLO argument but is missing an '=' sign "
                f"to set its value, i.e. try '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}"
            )
        else:
            check_dict_alignment(full_args_dict, {a: ""})

    # Check keys
    check_dict_alignment(full_args_dict, overrides)

    # Mode
    mode = overrides.get("mode")
    if mode is None:
        mode = DEFAULT_CFG.mode or "predict"
        LOGGER.warning(f"'mode' argument is missing. Valid modes are {MODES}. Using default 'mode={mode}'.")
    elif mode not in MODES:
        raise ValueError(f"Invalid 'mode={mode}'. Valid modes are {MODES}.\n{CLI_HELP_MSG}")

    # Task
    task = overrides.pop("task", None)
    if task:
        if task not in TASKS:
            if task == "track":
                LOGGER.warning(
                    "invalid 'task=track', setting 'task=detect' and 'mode=track'. Valid tasks are {TASKS}.\n{CLI_HELP_MSG}."
                )
                task, mode = "detect", "track"
            else:
                raise ValueError(f"Invalid 'task={task}'. Valid tasks are {TASKS}.\n{CLI_HELP_MSG}")
        if "model" not in overrides:
            overrides["model"] = TASK2MODEL[task]

    # Model
    model = overrides.pop("model", DEFAULT_CFG.model)
    if model is None:
        model = "yolo11n.pt"
        LOGGER.warning(f"'model' argument is missing. Using default 'model={model}'.")
    overrides["model"] = model
    stem = Path(model).stem.lower()
    if "rtdetr" in stem:  # guess architecture
        from ultralytics import RTDETR

        model = RTDETR(model)  # no task argument
    elif "fastsam" in stem:
        from ultralytics import FastSAM

        model = FastSAM(model)
    elif "sam_" in stem or "sam2_" in stem or "sam2.1_" in stem:
        from ultralytics import SAM

        model = SAM(model)
    else:
        from ultralytics import YOLO

        model = YOLO(model, task=task)
    if isinstance(overrides.get("pretrained"), str):
        model.load(overrides["pretrained"])

    # Task Update
    if task != model.task:
        if task:
            LOGGER.warning(
                f"conflicting 'task={task}' passed with 'task={model.task}' model. "
                f"Ignoring 'task={task}' and updating to 'task={model.task}' to match model."
            )
        task = model.task

    # Mode
    if mode in {"predict", "track"} and "source" not in overrides:
        overrides["source"] = (
            "https://ultralytics.com/images/boats.jpg" if task == "obb" else DEFAULT_CFG.source or ASSETS
        )
        LOGGER.warning(f"'source' argument is missing. Using default 'source={overrides['source']}'.")
    elif mode in {"train", "val"}:
        if "data" not in overrides and "resume" not in overrides:
            overrides["data"] = DEFAULT_CFG.data or TASK2DATA.get(task or DEFAULT_CFG.task, DEFAULT_CFG.data)
            LOGGER.warning(f"'data' argument is missing. Using default 'data={overrides['data']}'.")
    elif mode == "export":
        if "format" not in overrides:
            overrides["format"] = DEFAULT_CFG.format or "torchscript"
            LOGGER.warning(f"'format' argument is missing. Using default 'format={overrides['format']}'.")

    # Run command in python
    getattr(model, mode)(**overrides)  # default args from model

    # Show help
    LOGGER.info(f"💡 Learn more at https://docs.ultralytics.com/modes/{mode}")

    # Recommend VS Code extension
    if IS_VSCODE and SETTINGS.get("vscode_msg", True):
        LOGGER.info(vscode_msg())





ultralytics.cfg.copy_default_cfg

copy_default_cfg() -> None

Copies the default configuration file and creates a new one with '_copy' appended to its name.

This function duplicates the existing default configuration file (DEFAULT_CFG_PATH) and saves it with '_copy' appended to its name in the current working directory. It provides a convenient way to create a custom configuration file based on the default settings.

Examples:

>>> copy_default_cfg()
# Output: default.yaml copied to /path/to/current/directory/default_copy.yaml
# Example YOLO command with this new custom cfg:
#   yolo cfg='/path/to/current/directory/default_copy.yaml' imgsz=320 batch=8
Notes
  • The new configuration file is created in the current working directory.
  • After copying, the function prints a message with the new file's location and an example YOLO command demonstrating how to use the new configuration file.
  • This function is useful for users who want to modify the default configuration without altering the original file.
Source code in ultralytics/cfg/__init__.py
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
def copy_default_cfg() -> None:
    """
    Copies the default configuration file and creates a new one with '_copy' appended to its name.

    This function duplicates the existing default configuration file (DEFAULT_CFG_PATH) and saves it
    with '_copy' appended to its name in the current working directory. It provides a convenient way
    to create a custom configuration file based on the default settings.

    Examples:
        >>> copy_default_cfg()
        # Output: default.yaml copied to /path/to/current/directory/default_copy.yaml
        # Example YOLO command with this new custom cfg:
        #   yolo cfg='/path/to/current/directory/default_copy.yaml' imgsz=320 batch=8

    Notes:
        - The new configuration file is created in the current working directory.
        - After copying, the function prints a message with the new file's location and an example
          YOLO command demonstrating how to use the new configuration file.
        - This function is useful for users who want to modify the default configuration without
          altering the original file.
    """
    new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")
    shutil.copy2(DEFAULT_CFG_PATH, new_file)
    LOGGER.info(
        f"{DEFAULT_CFG_PATH} copied to {new_file}\n"
        f"Example YOLO command with this new custom cfg:\n    yolo cfg='{new_file}' imgsz=320 batch=8"
    )





📅 Created 1 year ago ✏️ Updated 4 months ago