Reference for ultralytics/data/annotator.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/annotator.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
function ultralytics.data.annotator.auto_annotate
def auto_annotate(
data: str | Path,
det_model: str = "yolo11x.pt",
sam_model: str = "sam_b.pt",
device: str = "",
conf: float = 0.25,
iou: float = 0.45,
imgsz: int = 640,
max_det: int = 300,
classes: list[int] | None = None,
output_dir: str | Path | None = None,
) -> None
Automatically annotate images using a YOLO object detection model and a SAM segmentation model.
This function processes images in a specified directory, detects objects using a YOLO model, and then generates segmentation masks using a SAM model. The resulting annotations are saved as text files in YOLO format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
data | str | Path | Path to a folder containing images to be annotated. | required |
det_model | str | Path or name of the pre-trained YOLO detection model. | "yolo11x.pt" |
sam_model | str | Path or name of the pre-trained SAM segmentation model. | "sam_b.pt" |
device | str | Device to run the models on (e.g., 'cpu', 'cuda', '0'). Empty string for auto-selection. | "" |
conf | float | Confidence threshold for detection model. | 0.25 |
iou | float | IoU threshold for filtering overlapping boxes in detection results. | 0.45 |
imgsz | int | Input image resize dimension. | 640 |
max_det | int | Maximum number of detections per image. | 300 |
classes | list[int], optional | Filter predictions to specified class IDs, returning only relevant detections. | None |
output_dir | str | Path, optional | Directory to save the annotated results. If None, creates a default directory based on the input data path. | None |
Examples
>>> from ultralytics.data.annotator import auto_annotate
>>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt")
Source code in ultralytics/data/annotator.py
View on GitHubdef auto_annotate(
data: str | Path,
det_model: str = "yolo11x.pt",
sam_model: str = "sam_b.pt",
device: str = "",
conf: float = 0.25,
iou: float = 0.45,
imgsz: int = 640,
max_det: int = 300,
classes: list[int] | None = None,
output_dir: str | Path | None = None,
) -> None:
"""Automatically annotate images using a YOLO object detection model and a SAM segmentation model.
This function processes images in a specified directory, detects objects using a YOLO model, and then generates
segmentation masks using a SAM model. The resulting annotations are saved as text files in YOLO format.
Args:
data (str | Path): Path to a folder containing images to be annotated.
det_model (str): Path or name of the pre-trained YOLO detection model.
sam_model (str): Path or name of the pre-trained SAM segmentation model.
device (str): Device to run the models on (e.g., 'cpu', 'cuda', '0'). Empty string for auto-selection.
conf (float): Confidence threshold for detection model.
iou (float): IoU threshold for filtering overlapping boxes in detection results.
imgsz (int): Input image resize dimension.
max_det (int): Maximum number of detections per image.
classes (list[int], optional): Filter predictions to specified class IDs, returning only relevant detections.
output_dir (str | Path, optional): Directory to save the annotated results. If None, creates a default directory
based on the input data path.
Examples:
>>> from ultralytics.data.annotator import auto_annotate
>>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt")
"""
det_model = YOLO(det_model)
sam_model = SAM(sam_model)
data = Path(data)
if not output_dir:
output_dir = data.parent / f"{data.stem}_auto_annotate_labels"
Path(output_dir).mkdir(exist_ok=True, parents=True)
det_results = det_model(
data, stream=True, device=device, conf=conf, iou=iou, imgsz=imgsz, max_det=max_det, classes=classes
)
for result in det_results:
if class_ids := result.boxes.cls.int().tolist(): # Extract class IDs from detection results
boxes = result.boxes.xyxy # Boxes object for bbox outputs
sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device)
segments = sam_results[0].masks.xyn
with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w", encoding="utf-8") as f:
for i, s in enumerate(segments):
if s.any():
segment = map(str, s.reshape(-1).tolist())
f.write(f"{class_ids[i]} " + " ".join(segment) + "\n")
📅 Created 2 years ago ✏️ Updated 2 days ago