Skip to content

Reference for ultralytics/data/annotator.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/annotator.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


Summary

function ultralytics.data.annotator.auto_annotate

def auto_annotate(
    data: str | Path,
    det_model: str = "yolo11x.pt",
    sam_model: str = "sam_b.pt",
    device: str = "",
    conf: float = 0.25,
    iou: float = 0.45,
    imgsz: int = 640,
    max_det: int = 300,
    classes: list[int] | None = None,
    output_dir: str | Path | None = None,
) -> None

Automatically annotate images using a YOLO object detection model and a SAM segmentation model.

This function processes images in a specified directory, detects objects using a YOLO model, and then generates segmentation masks using a SAM model. The resulting annotations are saved as text files in YOLO format.

Args

NameTypeDescriptionDefault
datastr | PathPath to a folder containing images to be annotated.required
det_modelstrPath or name of the pre-trained YOLO detection model."yolo11x.pt"
sam_modelstrPath or name of the pre-trained SAM segmentation model."sam_b.pt"
devicestrDevice to run the models on (e.g., 'cpu', 'cuda', '0'). Empty string for auto-selection.""
conffloatConfidence threshold for detection model.0.25
ioufloatIoU threshold for filtering overlapping boxes in detection results.0.45
imgszintInput image resize dimension.640
max_detintMaximum number of detections per image.300
classeslist[int], optionalFilter predictions to specified class IDs, returning only relevant detections.None
output_dirstr | Path, optionalDirectory to save the annotated results. If None, creates a default directory based on the input data path.None

Examples

>>> from ultralytics.data.annotator import auto_annotate
>>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt")
Source code in ultralytics/data/annotator.pyView on GitHub
def auto_annotate(
    data: str | Path,
    det_model: str = "yolo11x.pt",
    sam_model: str = "sam_b.pt",
    device: str = "",
    conf: float = 0.25,
    iou: float = 0.45,
    imgsz: int = 640,
    max_det: int = 300,
    classes: list[int] | None = None,
    output_dir: str | Path | None = None,
) -> None:
    """Automatically annotate images using a YOLO object detection model and a SAM segmentation model.

    This function processes images in a specified directory, detects objects using a YOLO model, and then generates
    segmentation masks using a SAM model. The resulting annotations are saved as text files in YOLO format.

    Args:
        data (str | Path): Path to a folder containing images to be annotated.
        det_model (str): Path or name of the pre-trained YOLO detection model.
        sam_model (str): Path or name of the pre-trained SAM segmentation model.
        device (str): Device to run the models on (e.g., 'cpu', 'cuda', '0'). Empty string for auto-selection.
        conf (float): Confidence threshold for detection model.
        iou (float): IoU threshold for filtering overlapping boxes in detection results.
        imgsz (int): Input image resize dimension.
        max_det (int): Maximum number of detections per image.
        classes (list[int], optional): Filter predictions to specified class IDs, returning only relevant detections.
        output_dir (str | Path, optional): Directory to save the annotated results. If None, creates a default directory
            based on the input data path.

    Examples:
        >>> from ultralytics.data.annotator import auto_annotate
        >>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt")
    """
    det_model = YOLO(det_model)
    sam_model = SAM(sam_model)

    data = Path(data)
    if not output_dir:
        output_dir = data.parent / f"{data.stem}_auto_annotate_labels"
    Path(output_dir).mkdir(exist_ok=True, parents=True)

    det_results = det_model(
        data, stream=True, device=device, conf=conf, iou=iou, imgsz=imgsz, max_det=max_det, classes=classes
    )

    for result in det_results:
        if class_ids := result.boxes.cls.int().tolist():  # Extract class IDs from detection results
            boxes = result.boxes.xyxy  # Boxes object for bbox outputs
            sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device)
            segments = sam_results[0].masks.xyn

            with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w", encoding="utf-8") as f:
                for i, s in enumerate(segments):
                    if s.any():
                        segment = map(str, s.reshape(-1).tolist())
                        f.write(f"{class_ids[i]} " + " ".join(segment) + "\n")





📅 Created 2 years ago ✏️ Updated 2 days ago
glenn-jocherjk4eBurhan-Q