Skip to content

Reference for ultralytics/data/augment.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/augment.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.data.augment.BaseTransform

BaseTransform()

Base class for image transformations in the Ultralytics library.

This class serves as a foundation for implementing various image processing operations, designed to be compatible with both classification and semantic segmentation tasks.

Methods:

Name Description
apply_image

Applies image transformations to labels.

apply_instances

Applies transformations to object instances in labels.

apply_semantic

Applies semantic segmentation to an image.

__call__

Applies all label transformations to an image, instances, and semantic masks.

Examples:

>>> transform = BaseTransform()
>>> labels = {"image": np.array(...), "instances": [...], "semantic": np.array(...)}
>>> transformed_labels = transform(labels)

This constructor sets up the base transformation object, which can be extended for specific image processing tasks. It is designed to be compatible with both classification and semantic segmentation.

Examples:

>>> transform = BaseTransform()
Source code in ultralytics/data/augment.py
45
46
47
48
49
50
51
52
53
54
55
def __init__(self) -> None:
    """
    Initializes the BaseTransform object.

    This constructor sets up the base transformation object, which can be extended for specific image
    processing tasks. It is designed to be compatible with both classification and semantic segmentation.

    Examples:
        >>> transform = BaseTransform()
    """
    pass

__call__

__call__(labels)

Applies all label transformations to an image, instances, and semantic masks.

This method orchestrates the application of various transformations defined in the BaseTransform class to the input labels. It sequentially calls the apply_image and apply_instances methods to process the image and object instances, respectively.

Parameters:

Name Type Description Default
labels dict

A dictionary containing image data and annotations. Expected keys include 'img' for the image data, and 'instances' for object instances.

required

Returns:

Type Description
dict

The input labels dictionary with transformed image and instances.

Examples:

>>> transform = BaseTransform()
>>> labels = {"img": np.random.rand(640, 640, 3), "instances": []}
>>> transformed_labels = transform(labels)
Source code in ultralytics/data/augment.py
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def __call__(self, labels):
    """
    Applies all label transformations to an image, instances, and semantic masks.

    This method orchestrates the application of various transformations defined in the BaseTransform class
    to the input labels. It sequentially calls the apply_image and apply_instances methods to process the
    image and object instances, respectively.

    Args:
        labels (dict): A dictionary containing image data and annotations. Expected keys include 'img' for
            the image data, and 'instances' for object instances.

    Returns:
        (dict): The input labels dictionary with transformed image and instances.

    Examples:
        >>> transform = BaseTransform()
        >>> labels = {"img": np.random.rand(640, 640, 3), "instances": []}
        >>> transformed_labels = transform(labels)
    """
    self.apply_image(labels)
    self.apply_instances(labels)
    self.apply_semantic(labels)

apply_image

apply_image(labels)

Applies image transformations to labels.

This method is intended to be overridden by subclasses to implement specific image transformation logic. In its base form, it returns the input labels unchanged.

Parameters:

Name Type Description Default
labels Any

The input labels to be transformed. The exact type and structure of labels may vary depending on the specific implementation.

required

Returns:

Type Description
Any

The transformed labels. In the base implementation, this is identical to the input.

Examples:

>>> transform = BaseTransform()
>>> original_labels = [1, 2, 3]
>>> transformed_labels = transform.apply_image(original_labels)
>>> print(transformed_labels)
[1, 2, 3]
Source code in ultralytics/data/augment.py
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def apply_image(self, labels):
    """
    Applies image transformations to labels.

    This method is intended to be overridden by subclasses to implement specific image transformation
    logic. In its base form, it returns the input labels unchanged.

    Args:
        labels (Any): The input labels to be transformed. The exact type and structure of labels may
            vary depending on the specific implementation.

    Returns:
        (Any): The transformed labels. In the base implementation, this is identical to the input.

    Examples:
        >>> transform = BaseTransform()
        >>> original_labels = [1, 2, 3]
        >>> transformed_labels = transform.apply_image(original_labels)
        >>> print(transformed_labels)
        [1, 2, 3]
    """
    pass

apply_instances

apply_instances(labels)

Applies transformations to object instances in labels.

This method is responsible for applying various transformations to object instances within the given labels. It is designed to be overridden by subclasses to implement specific instance transformation logic.

Parameters:

Name Type Description Default
labels dict

A dictionary containing label information, including object instances.

required

Returns:

Type Description
dict

The modified labels dictionary with transformed object instances.

Examples:

>>> transform = BaseTransform()
>>> labels = {"instances": Instances(xyxy=torch.rand(5, 4), cls=torch.randint(0, 80, (5,)))}
>>> transformed_labels = transform.apply_instances(labels)
Source code in ultralytics/data/augment.py
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
def apply_instances(self, labels):
    """
    Applies transformations to object instances in labels.

    This method is responsible for applying various transformations to object instances within the given
    labels. It is designed to be overridden by subclasses to implement specific instance transformation
    logic.

    Args:
        labels (dict): A dictionary containing label information, including object instances.

    Returns:
        (dict): The modified labels dictionary with transformed object instances.

    Examples:
        >>> transform = BaseTransform()
        >>> labels = {"instances": Instances(xyxy=torch.rand(5, 4), cls=torch.randint(0, 80, (5,)))}
        >>> transformed_labels = transform.apply_instances(labels)
    """
    pass

apply_semantic

apply_semantic(labels)

Applies semantic segmentation transformations to an image.

This method is intended to be overridden by subclasses to implement specific semantic segmentation transformations. In its base form, it does not perform any operations.

Parameters:

Name Type Description Default
labels Any

The input labels or semantic segmentation mask to be transformed.

required

Returns:

Type Description
Any

The transformed semantic segmentation mask or labels.

Examples:

>>> transform = BaseTransform()
>>> semantic_mask = np.zeros((100, 100), dtype=np.uint8)
>>> transformed_mask = transform.apply_semantic(semantic_mask)
Source code in ultralytics/data/augment.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
def apply_semantic(self, labels):
    """
    Applies semantic segmentation transformations to an image.

    This method is intended to be overridden by subclasses to implement specific semantic segmentation
    transformations. In its base form, it does not perform any operations.

    Args:
        labels (Any): The input labels or semantic segmentation mask to be transformed.

    Returns:
        (Any): The transformed semantic segmentation mask or labels.

    Examples:
        >>> transform = BaseTransform()
        >>> semantic_mask = np.zeros((100, 100), dtype=np.uint8)
        >>> transformed_mask = transform.apply_semantic(semantic_mask)
    """
    pass





ultralytics.data.augment.Compose

Compose(transforms)

A class for composing multiple image transformations.

Attributes:

Name Type Description
transforms List[Callable]

A list of transformation functions to be applied sequentially.

Methods:

Name Description
__call__

Applies a series of transformations to input data.

append

Appends a new transform to the existing list of transforms.

insert

Inserts a new transform at a specified index in the list of transforms.

__getitem__

Retrieves a specific transform or a set of transforms using indexing.

__setitem__

Sets a specific transform or a set of transforms using indexing.

tolist

Converts the list of transforms to a standard Python list.

Examples:

>>> transforms = [RandomFlip(), RandomPerspective(30)]
>>> compose = Compose(transforms)
>>> transformed_data = compose(data)
>>> compose.append(CenterCrop((224, 224)))
>>> compose.insert(0, RandomFlip())

Parameters:

Name Type Description Default
transforms List[Callable]

A list of callable transform objects to be applied sequentially.

required

Examples:

>>> from ultralytics.data.augment import Compose, RandomHSV, RandomFlip
>>> transforms = [RandomHSV(), RandomFlip()]
>>> compose = Compose(transforms)
Source code in ultralytics/data/augment.py
169
170
171
172
173
174
175
176
177
178
179
180
181
def __init__(self, transforms):
    """
    Initializes the Compose object with a list of transforms.

    Args:
        transforms (List[Callable]): A list of callable transform objects to be applied sequentially.

    Examples:
        >>> from ultralytics.data.augment import Compose, RandomHSV, RandomFlip
        >>> transforms = [RandomHSV(), RandomFlip()]
        >>> compose = Compose(transforms)
    """
    self.transforms = transforms if isinstance(transforms, list) else [transforms]

__call__

__call__(data)

Applies a series of transformations to input data. This method sequentially applies each transformation in the Compose object's list of transforms to the input data.

Parameters:

Name Type Description Default
data Any

The input data to be transformed. This can be of any type, depending on the transformations in the list.

required

Returns:

Type Description
Any

The transformed data after applying all transformations in sequence.

Examples:

>>> transforms = [Transform1(), Transform2(), Transform3()]
>>> compose = Compose(transforms)
>>> transformed_data = compose(input_data)
Source code in ultralytics/data/augment.py
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def __call__(self, data):
    """
    Applies a series of transformations to input data. This method sequentially applies each transformation in the
    Compose object's list of transforms to the input data.

    Args:
        data (Any): The input data to be transformed. This can be of any type, depending on the
            transformations in the list.

    Returns:
        (Any): The transformed data after applying all transformations in sequence.

    Examples:
        >>> transforms = [Transform1(), Transform2(), Transform3()]
        >>> compose = Compose(transforms)
        >>> transformed_data = compose(input_data)
    """
    for t in self.transforms:
        data = t(data)
    return data

__getitem__

__getitem__(index: Union[list, int]) -> Compose

Retrieves a specific transform or a set of transforms using indexing.

Parameters:

Name Type Description Default
index int | List[int]

Index or list of indices of the transforms to retrieve.

required

Returns:

Type Description
Compose

A new Compose object containing the selected transform(s).

Raises:

Type Description
AssertionError

If the index is not of type int or list.

Examples:

>>> transforms = [RandomFlip(), RandomPerspective(10), RandomHSV(0.5, 0.5, 0.5)]
>>> compose = Compose(transforms)
>>> single_transform = compose[1]  # Returns a Compose object with only RandomPerspective
>>> multiple_transforms = compose[0:2]  # Returns a Compose object with RandomFlip and RandomPerspective
Source code in ultralytics/data/augment.py
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
def __getitem__(self, index: Union[list, int]) -> "Compose":
    """
    Retrieves a specific transform or a set of transforms using indexing.

    Args:
        index (int | List[int]): Index or list of indices of the transforms to retrieve.

    Returns:
        (Compose): A new Compose object containing the selected transform(s).

    Raises:
        AssertionError: If the index is not of type int or list.

    Examples:
        >>> transforms = [RandomFlip(), RandomPerspective(10), RandomHSV(0.5, 0.5, 0.5)]
        >>> compose = Compose(transforms)
        >>> single_transform = compose[1]  # Returns a Compose object with only RandomPerspective
        >>> multiple_transforms = compose[0:2]  # Returns a Compose object with RandomFlip and RandomPerspective
    """
    assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}"
    index = [index] if isinstance(index, int) else index
    return Compose([self.transforms[i] for i in index])

__repr__

__repr__()

Returns a string representation of the Compose object.

Returns:

Type Description
str

A string representation of the Compose object, including the list of transforms.

Examples:

>>> transforms = [RandomFlip(), RandomPerspective(degrees=10, translate=0.1, scale=0.1)]
>>> compose = Compose(transforms)
>>> print(compose)
Compose([
    RandomFlip(),
    RandomPerspective(degrees=10, translate=0.1, scale=0.1)
])
Source code in ultralytics/data/augment.py
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
def __repr__(self):
    """
    Returns a string representation of the Compose object.

    Returns:
        (str): A string representation of the Compose object, including the list of transforms.

    Examples:
        >>> transforms = [RandomFlip(), RandomPerspective(degrees=10, translate=0.1, scale=0.1)]
        >>> compose = Compose(transforms)
        >>> print(compose)
        Compose([
            RandomFlip(),
            RandomPerspective(degrees=10, translate=0.1, scale=0.1)
        ])
    """
    return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})"

__setitem__

__setitem__(index: Union[list, int], value: Union[list, int]) -> None

Sets one or more transforms in the composition using indexing.

Parameters:

Name Type Description Default
index int | List[int]

Index or list of indices to set transforms at.

required
value Any | List[Any]

Transform or list of transforms to set at the specified index(es).

required

Raises:

Type Description
AssertionError

If index type is invalid, value type doesn't match index type, or index is out of range.

Examples:

>>> compose = Compose([Transform1(), Transform2(), Transform3()])
>>> compose[1] = NewTransform()  # Replace second transform
>>> compose[0:2] = [NewTransform1(), NewTransform2()]  # Replace first two transforms
Source code in ultralytics/data/augment.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
def __setitem__(self, index: Union[list, int], value: Union[list, int]) -> None:
    """
    Sets one or more transforms in the composition using indexing.

    Args:
        index (int | List[int]): Index or list of indices to set transforms at.
        value (Any | List[Any]): Transform or list of transforms to set at the specified index(es).

    Raises:
        AssertionError: If index type is invalid, value type doesn't match index type, or index is out of range.

    Examples:
        >>> compose = Compose([Transform1(), Transform2(), Transform3()])
        >>> compose[1] = NewTransform()  # Replace second transform
        >>> compose[0:2] = [NewTransform1(), NewTransform2()]  # Replace first two transforms
    """
    assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}"
    if isinstance(index, list):
        assert isinstance(value, list), (
            f"The indices should be the same type as values, but got {type(index)} and {type(value)}"
        )
    if isinstance(index, int):
        index, value = [index], [value]
    for i, v in zip(index, value):
        assert i < len(self.transforms), f"list index {i} out of range {len(self.transforms)}."
        self.transforms[i] = v

append

append(transform)

Appends a new transform to the existing list of transforms.

Parameters:

Name Type Description Default
transform BaseTransform

The transformation to be added to the composition.

required

Examples:

>>> compose = Compose([RandomFlip(), RandomPerspective()])
>>> compose.append(RandomHSV())
Source code in ultralytics/data/augment.py
204
205
206
207
208
209
210
211
212
213
214
215
def append(self, transform):
    """
    Appends a new transform to the existing list of transforms.

    Args:
        transform (BaseTransform): The transformation to be added to the composition.

    Examples:
        >>> compose = Compose([RandomFlip(), RandomPerspective()])
        >>> compose.append(RandomHSV())
    """
    self.transforms.append(transform)

insert

insert(index, transform)

Inserts a new transform at a specified index in the existing list of transforms.

Parameters:

Name Type Description Default
index int

The index at which to insert the new transform.

required
transform BaseTransform

The transform object to be inserted.

required

Examples:

>>> compose = Compose([Transform1(), Transform2()])
>>> compose.insert(1, Transform3())
>>> len(compose.transforms)
3
Source code in ultralytics/data/augment.py
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def insert(self, index, transform):
    """
    Inserts a new transform at a specified index in the existing list of transforms.

    Args:
        index (int): The index at which to insert the new transform.
        transform (BaseTransform): The transform object to be inserted.

    Examples:
        >>> compose = Compose([Transform1(), Transform2()])
        >>> compose.insert(1, Transform3())
        >>> len(compose.transforms)
        3
    """
    self.transforms.insert(index, transform)

tolist

tolist()

Converts the list of transforms to a standard Python list.

Returns:

Type Description
list

A list containing all the transform objects in the Compose instance.

Examples:

>>> transforms = [RandomFlip(), RandomPerspective(10), CenterCrop()]
>>> compose = Compose(transforms)
>>> transform_list = compose.tolist()
>>> print(len(transform_list))
3
Source code in ultralytics/data/augment.py
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
def tolist(self):
    """
    Converts the list of transforms to a standard Python list.

    Returns:
        (list): A list containing all the transform objects in the Compose instance.

    Examples:
        >>> transforms = [RandomFlip(), RandomPerspective(10), CenterCrop()]
        >>> compose = Compose(transforms)
        >>> transform_list = compose.tolist()
        >>> print(len(transform_list))
        3
    """
    return self.transforms





ultralytics.data.augment.BaseMixTransform

BaseMixTransform(dataset, pre_transform=None, p=0.0)

Base class for mix transformations like MixUp and Mosaic.

This class provides a foundation for implementing mix transformations on datasets. It handles the probability-based application of transforms and manages the mixing of multiple images and labels.

Attributes:

Name Type Description
dataset Any

The dataset object containing images and labels.

pre_transform Callable | None

Optional transform to apply before mixing.

p float

Probability of applying the mix transformation.

Methods:

Name Description
__call__

Applies the mix transformation to the input labels.

_mix_transform

Abstract method to be implemented by subclasses for specific mix operations.

get_indexes

Abstract method to get indexes of images to be mixed.

_update_label_text

Updates label text for mixed images.

Examples:

>>> class CustomMixTransform(BaseMixTransform):
...     def _mix_transform(self, labels):
...         # Implement custom mix logic here
...         return labels
...
...     def get_indexes(self):
...         return [random.randint(0, len(self.dataset) - 1) for _ in range(3)]
>>> dataset = YourDataset()
>>> transform = CustomMixTransform(dataset, p=0.5)
>>> mixed_labels = transform(original_labels)

This class serves as a base for implementing mix transformations in image processing pipelines.

Parameters:

Name Type Description Default
dataset Any

The dataset object containing images and labels for mixing.

required
pre_transform Callable | None

Optional transform to apply before mixing.

None
p float

Probability of applying the mix transformation. Should be in the range [0.0, 1.0].

0.0

Examples:

>>> dataset = YOLODataset("path/to/data")
>>> pre_transform = Compose([RandomFlip(), RandomPerspective()])
>>> mix_transform = BaseMixTransform(dataset, pre_transform, p=0.5)
Source code in ultralytics/data/augment.py
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
    """
    Initializes the BaseMixTransform object for mix transformations like MixUp and Mosaic.

    This class serves as a base for implementing mix transformations in image processing pipelines.

    Args:
        dataset (Any): The dataset object containing images and labels for mixing.
        pre_transform (Callable | None): Optional transform to apply before mixing.
        p (float): Probability of applying the mix transformation. Should be in the range [0.0, 1.0].

    Examples:
        >>> dataset = YOLODataset("path/to/data")
        >>> pre_transform = Compose([RandomFlip(), RandomPerspective()])
        >>> mix_transform = BaseMixTransform(dataset, pre_transform, p=0.5)
    """
    self.dataset = dataset
    self.pre_transform = pre_transform
    self.p = p

__call__

__call__(labels)

Applies pre-processing transforms and mixup/mosaic transforms to labels data.

This method determines whether to apply the mix transform based on a probability factor. If applied, it selects additional images, applies pre-transforms if specified, and then performs the mix transform.

Parameters:

Name Type Description Default
labels dict

A dictionary containing label data for an image.

required

Returns:

Type Description
dict

The transformed labels dictionary, which may include mixed data from other images.

Examples:

>>> transform = BaseMixTransform(dataset, pre_transform=None, p=0.5)
>>> result = transform({"image": img, "bboxes": boxes, "cls": classes})
Source code in ultralytics/data/augment.py
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
def __call__(self, labels):
    """
    Applies pre-processing transforms and mixup/mosaic transforms to labels data.

    This method determines whether to apply the mix transform based on a probability factor. If applied, it
    selects additional images, applies pre-transforms if specified, and then performs the mix transform.

    Args:
        labels (dict): A dictionary containing label data for an image.

    Returns:
        (dict): The transformed labels dictionary, which may include mixed data from other images.

    Examples:
        >>> transform = BaseMixTransform(dataset, pre_transform=None, p=0.5)
        >>> result = transform({"image": img, "bboxes": boxes, "cls": classes})
    """
    if random.uniform(0, 1) > self.p:
        return labels

    # Get index of one or three other images
    indexes = self.get_indexes()
    if isinstance(indexes, int):
        indexes = [indexes]

    # Get images information will be used for Mosaic or MixUp
    mix_labels = [self.dataset.get_image_and_label(i) for i in indexes]

    if self.pre_transform is not None:
        for i, data in enumerate(mix_labels):
            mix_labels[i] = self.pre_transform(data)
    labels["mix_labels"] = mix_labels

    # Update cls and texts
    labels = self._update_label_text(labels)
    # Mosaic or MixUp
    labels = self._mix_transform(labels)
    labels.pop("mix_labels", None)
    return labels

get_indexes

get_indexes()

Gets a list of shuffled indexes for mosaic augmentation.

Returns:

Type Description
List[int]

A list of shuffled indexes from the dataset.

Examples:

>>> transform = BaseMixTransform(dataset)
>>> indexes = transform.get_indexes()
>>> print(indexes)  # [3, 18, 7, 2]
Source code in ultralytics/data/augment.py
430
431
432
433
434
435
436
437
438
439
440
441
442
def get_indexes(self):
    """
    Gets a list of shuffled indexes for mosaic augmentation.

    Returns:
        (List[int]): A list of shuffled indexes from the dataset.

    Examples:
        >>> transform = BaseMixTransform(dataset)
        >>> indexes = transform.get_indexes()
        >>> print(indexes)  # [3, 18, 7, 2]
    """
    raise NotImplementedError





ultralytics.data.augment.Mosaic

Mosaic(dataset, imgsz=640, p=1.0, n=4)

Bases: BaseMixTransform

Mosaic augmentation for image datasets.

This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. The augmentation is applied to a dataset with a given probability.

Attributes:

Name Type Description
dataset

The dataset on which the mosaic augmentation is applied.

imgsz int

Image size (height and width) after mosaic pipeline of a single image.

p float

Probability of applying the mosaic augmentation. Must be in the range 0-1.

n int

The grid size, either 4 (for 2x2) or 9 (for 3x3).

border Tuple[int, int]

Border size for width and height.

Methods:

Name Description
get_indexes

Returns a list of random indexes from the dataset.

_mix_transform

Applies mixup transformation to the input image and labels.

_mosaic3

Creates a 1x3 image mosaic.

_mosaic4

Creates a 2x2 image mosaic.

_mosaic9

Creates a 3x3 image mosaic.

_update_labels

Updates labels with padding.

_cat_labels

Concatenates labels and clips mosaic border instances.

Examples:

>>> from ultralytics.data.augment import Mosaic
>>> dataset = YourDataset(...)  # Your image dataset
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
>>> augmented_labels = mosaic_aug(original_labels)

This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. The augmentation is applied to a dataset with a given probability.

Parameters:

Name Type Description Default
dataset Any

The dataset on which the mosaic augmentation is applied.

required
imgsz int

Image size (height and width) after mosaic pipeline of a single image.

640
p float

Probability of applying the mosaic augmentation. Must be in the range 0-1.

1.0
n int

The grid size, either 4 (for 2x2) or 9 (for 3x3).

4

Examples:

>>> from ultralytics.data.augment import Mosaic
>>> dataset = YourDataset(...)
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
Source code in ultralytics/data/augment.py
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
def __init__(self, dataset, imgsz=640, p=1.0, n=4):
    """
    Initializes the Mosaic augmentation object.

    This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image.
    The augmentation is applied to a dataset with a given probability.

    Args:
        dataset (Any): The dataset on which the mosaic augmentation is applied.
        imgsz (int): Image size (height and width) after mosaic pipeline of a single image.
        p (float): Probability of applying the mosaic augmentation. Must be in the range 0-1.
        n (int): The grid size, either 4 (for 2x2) or 9 (for 3x3).

    Examples:
        >>> from ultralytics.data.augment import Mosaic
        >>> dataset = YourDataset(...)
        >>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
    """
    assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."
    assert n in {4, 9}, "grid must be equal to 4 or 9."
    super().__init__(dataset=dataset, p=p)
    self.imgsz = imgsz
    self.border = (-imgsz // 2, -imgsz // 2)  # width, height
    self.n = n

get_indexes

get_indexes(buffer=True)

Returns a list of random indexes from the dataset for mosaic augmentation.

This method selects random image indexes either from a buffer or from the entire dataset, depending on the 'buffer' parameter. It is used to choose images for creating mosaic augmentations.

Parameters:

Name Type Description Default
buffer bool

If True, selects images from the dataset buffer. If False, selects from the entire dataset.

True

Returns:

Type Description
List[int]

A list of random image indexes. The length of the list is n-1, where n is the number of images used in the mosaic (either 3 or 8, depending on whether n is 4 or 9).

Examples:

>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
>>> indexes = mosaic.get_indexes()
>>> print(len(indexes))  # Output: 3
Source code in ultralytics/data/augment.py
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
def get_indexes(self, buffer=True):
    """
    Returns a list of random indexes from the dataset for mosaic augmentation.

    This method selects random image indexes either from a buffer or from the entire dataset, depending on
    the 'buffer' parameter. It is used to choose images for creating mosaic augmentations.

    Args:
        buffer (bool): If True, selects images from the dataset buffer. If False, selects from the entire
            dataset.

    Returns:
        (List[int]): A list of random image indexes. The length of the list is n-1, where n is the number
            of images used in the mosaic (either 3 or 8, depending on whether n is 4 or 9).

    Examples:
        >>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
        >>> indexes = mosaic.get_indexes()
        >>> print(len(indexes))  # Output: 3
    """
    if buffer:  # select images from buffer
        return random.choices(list(self.dataset.buffer), k=self.n - 1)
    else:  # select any images
        return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)]





ultralytics.data.augment.MixUp

MixUp(dataset, pre_transform=None, p=0.0)

Bases: BaseMixTransform

Applies MixUp augmentation to image datasets.

This class implements the MixUp augmentation technique as described in the paper mixup: Beyond Empirical Risk Minimization. MixUp combines two images and their labels using a random weight.

Attributes:

Name Type Description
dataset Any

The dataset to which MixUp augmentation will be applied.

pre_transform Callable | None

Optional transform to apply before MixUp.

p float

Probability of applying MixUp augmentation.

Methods:

Name Description
get_indexes

Returns a random index from the dataset.

_mix_transform

Applies MixUp augmentation to the input labels.

Examples:

>>> from ultralytics.data.augment import MixUp
>>> dataset = YourDataset(...)  # Your image dataset
>>> mixup = MixUp(dataset, p=0.5)
>>> augmented_labels = mixup(original_labels)

MixUp is an image augmentation technique that combines two images by taking a weighted sum of their pixel values and labels. This implementation is designed for use with the Ultralytics YOLO framework.

Parameters:

Name Type Description Default
dataset Any

The dataset to which MixUp augmentation will be applied.

required
pre_transform Callable | None

Optional transform to apply to images before MixUp.

None
p float

Probability of applying MixUp augmentation to an image. Must be in the range [0, 1].

0.0

Examples:

>>> from ultralytics.data.dataset import YOLODataset
>>> dataset = YOLODataset("path/to/data.yaml")
>>> mixup = MixUp(dataset, pre_transform=None, p=0.5)
Source code in ultralytics/data/augment.py
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
    """
    Initializes the MixUp augmentation object.

    MixUp is an image augmentation technique that combines two images by taking a weighted sum of their pixel
    values and labels. This implementation is designed for use with the Ultralytics YOLO framework.

    Args:
        dataset (Any): The dataset to which MixUp augmentation will be applied.
        pre_transform (Callable | None): Optional transform to apply to images before MixUp.
        p (float): Probability of applying MixUp augmentation to an image. Must be in the range [0, 1].

    Examples:
        >>> from ultralytics.data.dataset import YOLODataset
        >>> dataset = YOLODataset("path/to/data.yaml")
        >>> mixup = MixUp(dataset, pre_transform=None, p=0.5)
    """
    super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)

get_indexes

get_indexes()

Get a random index from the dataset.

This method returns a single random index from the dataset, which is used to select an image for MixUp augmentation.

Returns:

Type Description
int

A random integer index within the range of the dataset length.

Examples:

>>> mixup = MixUp(dataset)
>>> index = mixup.get_indexes()
>>> print(index)
42
Source code in ultralytics/data/augment.py
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
def get_indexes(self):
    """
    Get a random index from the dataset.

    This method returns a single random index from the dataset, which is used to select an image for MixUp
    augmentation.

    Returns:
        (int): A random integer index within the range of the dataset length.

    Examples:
        >>> mixup = MixUp(dataset)
        >>> index = mixup.get_indexes()
        >>> print(index)
        42
    """
    return random.randint(0, len(self.dataset) - 1)





ultralytics.data.augment.RandomPerspective

RandomPerspective(
    degrees=0.0,
    translate=0.1,
    scale=0.5,
    shear=0.0,
    perspective=0.0,
    border=(0, 0),
    pre_transform=None,
)

Implements random perspective and affine transformations on images and corresponding annotations.

This class applies random rotations, translations, scaling, shearing, and perspective transformations to images and their associated bounding boxes, segments, and keypoints. It can be used as part of an augmentation pipeline for object detection and instance segmentation tasks.

Attributes:

Name Type Description
degrees float

Maximum absolute degree range for random rotations.

translate float

Maximum translation as a fraction of the image size.

scale float

Scaling factor range, e.g., scale=0.1 means 0.9-1.1.

shear float

Maximum shear angle in degrees.

perspective float

Perspective distortion factor.

border Tuple[int, int]

Mosaic border size as (x, y).

pre_transform Callable | None

Optional transform to apply before the random perspective.

Methods:

Name Description
affine_transform

Applies affine transformations to the input image.

apply_bboxes

Transforms bounding boxes using the affine matrix.

apply_segments

Transforms segments and generates new bounding boxes.

apply_keypoints

Transforms keypoints using the affine matrix.

__call__

Applies the random perspective transformation to images and annotations.

box_candidates

Filters transformed bounding boxes based on size and aspect ratio.

Examples:

>>> transform = RandomPerspective(degrees=10, translate=0.1, scale=0.1, shear=10)
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> labels = {"img": image, "cls": np.array([0, 1]), "instances": Instances(...)}
>>> result = transform(labels)
>>> transformed_image = result["img"]
>>> transformed_instances = result["instances"]

This class implements random perspective and affine transformations on images and corresponding bounding boxes, segments, and keypoints. Transformations include rotation, translation, scaling, and shearing.

Parameters:

Name Type Description Default
degrees float

Degree range for random rotations.

0.0
translate float

Fraction of total width and height for random translation.

0.1
scale float

Scaling factor interval, e.g., a scale factor of 0.5 allows a resize between 50%-150%.

0.5
shear float

Shear intensity (angle in degrees).

0.0
perspective float

Perspective distortion factor.

0.0
border Tuple[int, int]

Tuple specifying mosaic border (top/bottom, left/right).

(0, 0)
pre_transform Callable | None

Function/transform to apply to the image before starting the random transformation.

None

Examples:

>>> transform = RandomPerspective(degrees=10.0, translate=0.1, scale=0.5, shear=5.0)
>>> result = transform(labels)  # Apply random perspective to labels
Source code in ultralytics/data/augment.py
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
def __init__(
    self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0), pre_transform=None
):
    """
    Initializes RandomPerspective object with transformation parameters.

    This class implements random perspective and affine transformations on images and corresponding bounding boxes,
    segments, and keypoints. Transformations include rotation, translation, scaling, and shearing.

    Args:
        degrees (float): Degree range for random rotations.
        translate (float): Fraction of total width and height for random translation.
        scale (float): Scaling factor interval, e.g., a scale factor of 0.5 allows a resize between 50%-150%.
        shear (float): Shear intensity (angle in degrees).
        perspective (float): Perspective distortion factor.
        border (Tuple[int, int]): Tuple specifying mosaic border (top/bottom, left/right).
        pre_transform (Callable | None): Function/transform to apply to the image before starting the random
            transformation.

    Examples:
        >>> transform = RandomPerspective(degrees=10.0, translate=0.1, scale=0.5, shear=5.0)
        >>> result = transform(labels)  # Apply random perspective to labels
    """
    self.degrees = degrees
    self.translate = translate
    self.scale = scale
    self.shear = shear
    self.perspective = perspective
    self.border = border  # mosaic border
    self.pre_transform = pre_transform

__call__

__call__(labels)

Applies random perspective and affine transformations to an image and its associated labels.

This method performs a series of transformations including rotation, translation, scaling, shearing, and perspective distortion on the input image and adjusts the corresponding bounding boxes, segments, and keypoints accordingly.

Parameters:

Name Type Description Default
labels dict

A dictionary containing image data and annotations. Must include: 'img' (np.ndarray): The input image. 'cls' (np.ndarray): Class labels. 'instances' (Instances): Object instances with bounding boxes, segments, and keypoints. May include: 'mosaic_border' (Tuple[int, int]): Border size for mosaic augmentation.

required

Returns:

Type Description
dict

Transformed labels dictionary containing: - 'img' (np.ndarray): The transformed image. - 'cls' (np.ndarray): Updated class labels. - 'instances' (Instances): Updated object instances. - 'resized_shape' (Tuple[int, int]): New image shape after transformation.

Examples:

>>> transform = RandomPerspective()
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> labels = {
...     "img": image,
...     "cls": np.array([0, 1, 2]),
...     "instances": Instances(bboxes=np.array([[10, 10, 50, 50], [100, 100, 150, 150]])),
... }
>>> result = transform(labels)
>>> assert result["img"].shape[:2] == result["resized_shape"]
Source code in ultralytics/data/augment.py
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
def __call__(self, labels):
    """
    Applies random perspective and affine transformations to an image and its associated labels.

    This method performs a series of transformations including rotation, translation, scaling, shearing,
    and perspective distortion on the input image and adjusts the corresponding bounding boxes, segments,
    and keypoints accordingly.

    Args:
        labels (dict): A dictionary containing image data and annotations.
            Must include:
                'img' (np.ndarray): The input image.
                'cls' (np.ndarray): Class labels.
                'instances' (Instances): Object instances with bounding boxes, segments, and keypoints.
            May include:
                'mosaic_border' (Tuple[int, int]): Border size for mosaic augmentation.

    Returns:
        (dict): Transformed labels dictionary containing:
            - 'img' (np.ndarray): The transformed image.
            - 'cls' (np.ndarray): Updated class labels.
            - 'instances' (Instances): Updated object instances.
            - 'resized_shape' (Tuple[int, int]): New image shape after transformation.

    Examples:
        >>> transform = RandomPerspective()
        >>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
        >>> labels = {
        ...     "img": image,
        ...     "cls": np.array([0, 1, 2]),
        ...     "instances": Instances(bboxes=np.array([[10, 10, 50, 50], [100, 100, 150, 150]])),
        ... }
        >>> result = transform(labels)
        >>> assert result["img"].shape[:2] == result["resized_shape"]
    """
    if self.pre_transform and "mosaic_border" not in labels:
        labels = self.pre_transform(labels)
    labels.pop("ratio_pad", None)  # do not need ratio pad

    img = labels["img"]
    cls = labels["cls"]
    instances = labels.pop("instances")
    # Make sure the coord formats are right
    instances.convert_bbox(format="xyxy")
    instances.denormalize(*img.shape[:2][::-1])

    border = labels.pop("mosaic_border", self.border)
    self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2  # w, h
    # M is affine matrix
    # Scale for func:`box_candidates`
    img, M, scale = self.affine_transform(img, border)

    bboxes = self.apply_bboxes(instances.bboxes, M)

    segments = instances.segments
    keypoints = instances.keypoints
    # Update bboxes if there are segments.
    if len(segments):
        bboxes, segments = self.apply_segments(segments, M)

    if keypoints is not None:
        keypoints = self.apply_keypoints(keypoints, M)
    new_instances = Instances(bboxes, segments, keypoints, bbox_format="xyxy", normalized=False)
    # Clip
    new_instances.clip(*self.size)

    # Filter instances
    instances.scale(scale_w=scale, scale_h=scale, bbox_only=True)
    # Make the bboxes have the same scale with new_bboxes
    i = self.box_candidates(
        box1=instances.bboxes.T, box2=new_instances.bboxes.T, area_thr=0.01 if len(segments) else 0.10
    )
    labels["instances"] = new_instances[i]
    labels["cls"] = cls[i]
    labels["img"] = img
    labels["resized_shape"] = img.shape[:2]
    return labels

affine_transform

affine_transform(img, border)

Applies a sequence of affine transformations centered around the image center.

This function performs a series of geometric transformations on the input image, including translation, perspective change, rotation, scaling, and shearing. The transformations are applied in a specific order to maintain consistency.

Parameters:

Name Type Description Default
img ndarray

Input image to be transformed.

required
border Tuple[int, int]

Border dimensions for the transformed image.

required

Returns:

Type Description
Tuple[ndarray, ndarray, float]

A tuple containing: - np.ndarray: Transformed image. - np.ndarray: 3x3 transformation matrix. - float: Scale factor applied during the transformation.

Examples:

>>> import numpy as np
>>> img = np.random.rand(100, 100, 3)
>>> border = (10, 10)
>>> transformed_img, matrix, scale = affine_transform(img, border)
Source code in ultralytics/data/augment.py
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
def affine_transform(self, img, border):
    """
    Applies a sequence of affine transformations centered around the image center.

    This function performs a series of geometric transformations on the input image, including
    translation, perspective change, rotation, scaling, and shearing. The transformations are
    applied in a specific order to maintain consistency.

    Args:
        img (np.ndarray): Input image to be transformed.
        border (Tuple[int, int]): Border dimensions for the transformed image.

    Returns:
        (Tuple[np.ndarray, np.ndarray, float]): A tuple containing:
            - np.ndarray: Transformed image.
            - np.ndarray: 3x3 transformation matrix.
            - float: Scale factor applied during the transformation.

    Examples:
        >>> import numpy as np
        >>> img = np.random.rand(100, 100, 3)
        >>> border = (10, 10)
        >>> transformed_img, matrix, scale = affine_transform(img, border)
    """
    # Center
    C = np.eye(3, dtype=np.float32)

    C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
    C[1, 2] = -img.shape[0] / 2  # y translation (pixels)

    # Perspective
    P = np.eye(3, dtype=np.float32)
    P[2, 0] = random.uniform(-self.perspective, self.perspective)  # x perspective (about y)
    P[2, 1] = random.uniform(-self.perspective, self.perspective)  # y perspective (about x)

    # Rotation and Scale
    R = np.eye(3, dtype=np.float32)
    a = random.uniform(-self.degrees, self.degrees)
    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
    s = random.uniform(1 - self.scale, 1 + self.scale)
    # s = 2 ** random.uniform(-scale, scale)
    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

    # Shear
    S = np.eye(3, dtype=np.float32)
    S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180)  # x shear (deg)
    S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180)  # y shear (deg)

    # Translation
    T = np.eye(3, dtype=np.float32)
    T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0]  # x translation (pixels)
    T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1]  # y translation (pixels)

    # Combined rotation matrix
    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
    # Affine image
    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
        if self.perspective:
            img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114))
        else:  # affine
            img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114))
    return img, M, s

apply_bboxes

apply_bboxes(bboxes, M)

Apply affine transformation to bounding boxes.

This function applies an affine transformation to a set of bounding boxes using the provided transformation matrix.

Parameters:

Name Type Description Default
bboxes Tensor

Bounding boxes in xyxy format with shape (N, 4), where N is the number of bounding boxes.

required
M Tensor

Affine transformation matrix with shape (3, 3).

required

Returns:

Type Description
Tensor

Transformed bounding boxes in xyxy format with shape (N, 4).

Examples:

>>> bboxes = torch.tensor([[10, 10, 20, 20], [30, 30, 40, 40]])
>>> M = torch.eye(3)
>>> transformed_bboxes = apply_bboxes(bboxes, M)
Source code in ultralytics/data/augment.py
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
def apply_bboxes(self, bboxes, M):
    """
    Apply affine transformation to bounding boxes.

    This function applies an affine transformation to a set of bounding boxes using the provided
    transformation matrix.

    Args:
        bboxes (torch.Tensor): Bounding boxes in xyxy format with shape (N, 4), where N is the number
            of bounding boxes.
        M (torch.Tensor): Affine transformation matrix with shape (3, 3).

    Returns:
        (torch.Tensor): Transformed bounding boxes in xyxy format with shape (N, 4).

    Examples:
        >>> bboxes = torch.tensor([[10, 10, 20, 20], [30, 30, 40, 40]])
        >>> M = torch.eye(3)
        >>> transformed_bboxes = apply_bboxes(bboxes, M)
    """
    n = len(bboxes)
    if n == 0:
        return bboxes

    xy = np.ones((n * 4, 3), dtype=bboxes.dtype)
    xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
    xy = xy @ M.T  # transform
    xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine

    # Create new boxes
    x = xy[:, [0, 2, 4, 6]]
    y = xy[:, [1, 3, 5, 7]]
    return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T

apply_keypoints

apply_keypoints(keypoints, M)

Applies affine transformation to keypoints.

This method transforms the input keypoints using the provided affine transformation matrix. It handles perspective rescaling if necessary and updates the visibility of keypoints that fall outside the image boundaries after transformation.

Parameters:

Name Type Description Default
keypoints ndarray

Array of keypoints with shape (N, 17, 3), where N is the number of instances, 17 is the number of keypoints per instance, and 3 represents (x, y, visibility).

required
M ndarray

3x3 affine transformation matrix.

required

Returns:

Type Description
ndarray

Transformed keypoints array with the same shape as input (N, 17, 3).

Examples:

>>> random_perspective = RandomPerspective()
>>> keypoints = np.random.rand(5, 17, 3)  # 5 instances, 17 keypoints each
>>> M = np.eye(3)  # Identity transformation
>>> transformed_keypoints = random_perspective.apply_keypoints(keypoints, M)
Source code in ultralytics/data/augment.py
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
def apply_keypoints(self, keypoints, M):
    """
    Applies affine transformation to keypoints.

    This method transforms the input keypoints using the provided affine transformation matrix. It handles
    perspective rescaling if necessary and updates the visibility of keypoints that fall outside the image
    boundaries after transformation.

    Args:
        keypoints (np.ndarray): Array of keypoints with shape (N, 17, 3), where N is the number of instances,
            17 is the number of keypoints per instance, and 3 represents (x, y, visibility).
        M (np.ndarray): 3x3 affine transformation matrix.

    Returns:
        (np.ndarray): Transformed keypoints array with the same shape as input (N, 17, 3).

    Examples:
        >>> random_perspective = RandomPerspective()
        >>> keypoints = np.random.rand(5, 17, 3)  # 5 instances, 17 keypoints each
        >>> M = np.eye(3)  # Identity transformation
        >>> transformed_keypoints = random_perspective.apply_keypoints(keypoints, M)
    """
    n, nkpt = keypoints.shape[:2]
    if n == 0:
        return keypoints
    xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype)
    visible = keypoints[..., 2].reshape(n * nkpt, 1)
    xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2)
    xy = xy @ M.T  # transform
    xy = xy[:, :2] / xy[:, 2:3]  # perspective rescale or affine
    out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1])
    visible[out_mask] = 0
    return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3)

apply_segments

apply_segments(segments, M)

Apply affine transformations to segments and generate new bounding boxes.

This function applies affine transformations to input segments and generates new bounding boxes based on the transformed segments. It clips the transformed segments to fit within the new bounding boxes.

Parameters:

Name Type Description Default
segments ndarray

Input segments with shape (N, M, 2), where N is the number of segments and M is the number of points in each segment.

required
M ndarray

Affine transformation matrix with shape (3, 3).

required

Returns:

Type Description
Tuple[ndarray, ndarray]

A tuple containing: - New bounding boxes with shape (N, 4) in xyxy format. - Transformed and clipped segments with shape (N, M, 2).

Examples:

>>> segments = np.random.rand(10, 500, 2)  # 10 segments with 500 points each
>>> M = np.eye(3)  # Identity transformation matrix
>>> new_bboxes, new_segments = apply_segments(segments, M)
Source code in ultralytics/data/augment.py
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
def apply_segments(self, segments, M):
    """
    Apply affine transformations to segments and generate new bounding boxes.

    This function applies affine transformations to input segments and generates new bounding boxes based on
    the transformed segments. It clips the transformed segments to fit within the new bounding boxes.

    Args:
        segments (np.ndarray): Input segments with shape (N, M, 2), where N is the number of segments and M is the
            number of points in each segment.
        M (np.ndarray): Affine transformation matrix with shape (3, 3).

    Returns:
        (Tuple[np.ndarray, np.ndarray]): A tuple containing:
            - New bounding boxes with shape (N, 4) in xyxy format.
            - Transformed and clipped segments with shape (N, M, 2).

    Examples:
        >>> segments = np.random.rand(10, 500, 2)  # 10 segments with 500 points each
        >>> M = np.eye(3)  # Identity transformation matrix
        >>> new_bboxes, new_segments = apply_segments(segments, M)
    """
    n, num = segments.shape[:2]
    if n == 0:
        return [], segments

    xy = np.ones((n * num, 3), dtype=segments.dtype)
    segments = segments.reshape(-1, 2)
    xy[:, :2] = segments
    xy = xy @ M.T  # transform
    xy = xy[:, :2] / xy[:, 2:3]
    segments = xy.reshape(n, -1, 2)
    bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0)
    segments[..., 0] = segments[..., 0].clip(bboxes[:, 0:1], bboxes[:, 2:3])
    segments[..., 1] = segments[..., 1].clip(bboxes[:, 1:2], bboxes[:, 3:4])
    return bboxes, segments

box_candidates staticmethod

box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16)

Compute candidate boxes for further processing based on size and aspect ratio criteria.

This method compares boxes before and after augmentation to determine if they meet specified thresholds for width, height, aspect ratio, and area. It's used to filter out boxes that have been overly distorted or reduced by the augmentation process.

Parameters:

Name Type Description Default
box1 ndarray

Original boxes before augmentation, shape (4, N) where n is the number of boxes. Format is [x1, y1, x2, y2] in absolute coordinates.

required
box2 ndarray

Augmented boxes after transformation, shape (4, N). Format is [x1, y1, x2, y2] in absolute coordinates.

required
wh_thr float

Width and height threshold in pixels. Boxes smaller than this in either dimension are rejected.

2
ar_thr float

Aspect ratio threshold. Boxes with an aspect ratio greater than this value are rejected.

100
area_thr float

Area ratio threshold. Boxes with an area ratio (new/old) less than this value are rejected.

0.1
eps float

Small epsilon value to prevent division by zero.

1e-16

Returns:

Type Description
ndarray

Boolean array of shape (n) indicating which boxes are candidates. True values correspond to boxes that meet all criteria.

Examples:

>>> random_perspective = RandomPerspective()
>>> box1 = np.array([[0, 0, 100, 100], [0, 0, 50, 50]]).T
>>> box2 = np.array([[10, 10, 90, 90], [5, 5, 45, 45]]).T
>>> candidates = random_perspective.box_candidates(box1, box2)
>>> print(candidates)
[True True]
Source code in ultralytics/data/augment.py
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
@staticmethod
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):
    """
    Compute candidate boxes for further processing based on size and aspect ratio criteria.

    This method compares boxes before and after augmentation to determine if they meet specified
    thresholds for width, height, aspect ratio, and area. It's used to filter out boxes that have
    been overly distorted or reduced by the augmentation process.

    Args:
        box1 (numpy.ndarray): Original boxes before augmentation, shape (4, N) where n is the
            number of boxes. Format is [x1, y1, x2, y2] in absolute coordinates.
        box2 (numpy.ndarray): Augmented boxes after transformation, shape (4, N). Format is
            [x1, y1, x2, y2] in absolute coordinates.
        wh_thr (float): Width and height threshold in pixels. Boxes smaller than this in either
            dimension are rejected.
        ar_thr (float): Aspect ratio threshold. Boxes with an aspect ratio greater than this
            value are rejected.
        area_thr (float): Area ratio threshold. Boxes with an area ratio (new/old) less than
            this value are rejected.
        eps (float): Small epsilon value to prevent division by zero.

    Returns:
        (numpy.ndarray): Boolean array of shape (n) indicating which boxes are candidates.
            True values correspond to boxes that meet all criteria.

    Examples:
        >>> random_perspective = RandomPerspective()
        >>> box1 = np.array([[0, 0, 100, 100], [0, 0, 50, 50]]).T
        >>> box2 = np.array([[10, 10, 90, 90], [5, 5, 45, 45]]).T
        >>> candidates = random_perspective.box_candidates(box1, box2)
        >>> print(candidates)
        [True True]
    """
    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
    ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates





ultralytics.data.augment.RandomHSV

RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)

Randomly adjusts the Hue, Saturation, and Value (HSV) channels of an image.

This class applies random HSV augmentation to images within predefined limits set by hgain, sgain, and vgain.

Attributes:

Name Type Description
hgain float

Maximum variation for hue. Range is typically [0, 1].

sgain float

Maximum variation for saturation. Range is typically [0, 1].

vgain float

Maximum variation for value. Range is typically [0, 1].

Methods:

Name Description
__call__

Applies random HSV augmentation to an image.

Examples:

>>> import numpy as np
>>> from ultralytics.data.augment import RandomHSV
>>> augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
>>> image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
>>> labels = {"img": image}
>>> augmenter(labels)
>>> augmented_image = augmented_labels["img"]

This class applies random adjustments to the HSV channels of an image within specified limits.

Parameters:

Name Type Description Default
hgain float

Maximum variation for hue. Should be in the range [0, 1].

0.5
sgain float

Maximum variation for saturation. Should be in the range [0, 1].

0.5
vgain float

Maximum variation for value. Should be in the range [0, 1].

0.5

Examples:

>>> hsv_aug = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
>>> hsv_aug(image)
Source code in ultralytics/data/augment.py
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None:
    """
    Initializes the RandomHSV object for random HSV (Hue, Saturation, Value) augmentation.

    This class applies random adjustments to the HSV channels of an image within specified limits.

    Args:
        hgain (float): Maximum variation for hue. Should be in the range [0, 1].
        sgain (float): Maximum variation for saturation. Should be in the range [0, 1].
        vgain (float): Maximum variation for value. Should be in the range [0, 1].

    Examples:
        >>> hsv_aug = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
        >>> hsv_aug(image)
    """
    self.hgain = hgain
    self.sgain = sgain
    self.vgain = vgain

__call__

__call__(labels)

Applies random HSV augmentation to an image within predefined limits.

This method modifies the input image by randomly adjusting its Hue, Saturation, and Value (HSV) channels. The adjustments are made within the limits set by hgain, sgain, and vgain during initialization.

Parameters:

Name Type Description Default
labels dict

A dictionary containing image data and metadata. Must include an 'img' key with the image as a numpy array.

required

Returns:

Type Description
None

The function modifies the input 'labels' dictionary in-place, updating the 'img' key with the HSV-augmented image.

Examples:

>>> hsv_augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
>>> labels = {"img": np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)}
>>> hsv_augmenter(labels)
>>> augmented_img = labels["img"]
Source code in ultralytics/data/augment.py
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
def __call__(self, labels):
    """
    Applies random HSV augmentation to an image within predefined limits.

    This method modifies the input image by randomly adjusting its Hue, Saturation, and Value (HSV) channels.
    The adjustments are made within the limits set by hgain, sgain, and vgain during initialization.

    Args:
        labels (dict): A dictionary containing image data and metadata. Must include an 'img' key with
            the image as a numpy array.

    Returns:
        (None): The function modifies the input 'labels' dictionary in-place, updating the 'img' key
            with the HSV-augmented image.

    Examples:
        >>> hsv_augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
        >>> labels = {"img": np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)}
        >>> hsv_augmenter(labels)
        >>> augmented_img = labels["img"]
    """
    img = labels["img"]
    if img.shape[-1] != 3:  # only apply to RGB images
        return labels
    if self.hgain or self.sgain or self.vgain:
        dtype = img.dtype  # uint8

        r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain]  # random gains
        x = np.arange(0, 256, dtype=r.dtype)
        # lut_hue = ((x * (r[0] + 1)) % 180).astype(dtype)   # original hue implementation from ultralytics<=8.3.78
        lut_hue = ((x + r[0] * 180) % 180).astype(dtype)
        lut_sat = np.clip(x * (r[1] + 1), 0, 255).astype(dtype)
        lut_val = np.clip(x * (r[2] + 1), 0, 255).astype(dtype)
        lut_sat[0] = 0  # prevent pure white changing color, introduced in 8.3.79

        hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
        im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
        cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed
    return labels





ultralytics.data.augment.RandomFlip

RandomFlip(p=0.5, direction='horizontal', flip_idx=None)

Applies a random horizontal or vertical flip to an image with a given probability.

This class performs random image flipping and updates corresponding instance annotations such as bounding boxes and keypoints.

Attributes:

Name Type Description
p float

Probability of applying the flip. Must be between 0 and 1.

direction str

Direction of flip, either 'horizontal' or 'vertical'.

flip_idx array - like

Index mapping for flipping keypoints, if applicable.

Methods:

Name Description
__call__

Applies the random flip transformation to an image and its annotations.

Examples:

>>> transform = RandomFlip(p=0.5, direction="horizontal")
>>> result = transform({"img": image, "instances": instances})
>>> flipped_image = result["img"]
>>> flipped_instances = result["instances"]

This class applies a random horizontal or vertical flip to an image with a given probability. It also updates any instances (bounding boxes, keypoints, etc.) accordingly.

Parameters:

Name Type Description Default
p float

The probability of applying the flip. Must be between 0 and 1.

0.5
direction str

The direction to apply the flip. Must be 'horizontal' or 'vertical'.

'horizontal'
flip_idx List[int] | None

Index mapping for flipping keypoints, if any.

None

Raises:

Type Description
AssertionError

If direction is not 'horizontal' or 'vertical', or if p is not between 0 and 1.

Examples:

>>> flip = RandomFlip(p=0.5, direction="horizontal")
>>> flip_with_idx = RandomFlip(p=0.7, direction="vertical", flip_idx=[1, 0, 3, 2, 5, 4])
Source code in ultralytics/data/augment.py
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
def __init__(self, p=0.5, direction="horizontal", flip_idx=None) -> None:
    """
    Initializes the RandomFlip class with probability and direction.

    This class applies a random horizontal or vertical flip to an image with a given probability.
    It also updates any instances (bounding boxes, keypoints, etc.) accordingly.

    Args:
        p (float): The probability of applying the flip. Must be between 0 and 1.
        direction (str): The direction to apply the flip. Must be 'horizontal' or 'vertical'.
        flip_idx (List[int] | None): Index mapping for flipping keypoints, if any.

    Raises:
        AssertionError: If direction is not 'horizontal' or 'vertical', or if p is not between 0 and 1.

    Examples:
        >>> flip = RandomFlip(p=0.5, direction="horizontal")
        >>> flip_with_idx = RandomFlip(p=0.7, direction="vertical", flip_idx=[1, 0, 3, 2, 5, 4])
    """
    assert direction in {"horizontal", "vertical"}, f"Support direction `horizontal` or `vertical`, got {direction}"
    assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."

    self.p = p
    self.direction = direction
    self.flip_idx = flip_idx

__call__

__call__(labels)

Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly.

This method randomly flips the input image either horizontally or vertically based on the initialized probability and direction. It also updates the corresponding instances (bounding boxes, keypoints) to match the flipped image.

Parameters:

Name Type Description Default
labels dict

A dictionary containing the following keys: 'img' (numpy.ndarray): The image to be flipped. 'instances' (ultralytics.utils.instance.Instances): An object containing bounding boxes and optionally keypoints.

required

Returns:

Type Description
dict

The same dictionary with the flipped image and updated instances: 'img' (numpy.ndarray): The flipped image. 'instances' (ultralytics.utils.instance.Instances): Updated instances matching the flipped image.

Examples:

>>> labels = {"img": np.random.rand(640, 640, 3), "instances": Instances(...)}
>>> random_flip = RandomFlip(p=0.5, direction="horizontal")
>>> flipped_labels = random_flip(labels)
Source code in ultralytics/data/augment.py
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
def __call__(self, labels):
    """
    Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly.

    This method randomly flips the input image either horizontally or vertically based on the initialized
    probability and direction. It also updates the corresponding instances (bounding boxes, keypoints) to
    match the flipped image.

    Args:
        labels (dict): A dictionary containing the following keys:
            'img' (numpy.ndarray): The image to be flipped.
            'instances' (ultralytics.utils.instance.Instances): An object containing bounding boxes and
                optionally keypoints.

    Returns:
        (dict): The same dictionary with the flipped image and updated instances:
            'img' (numpy.ndarray): The flipped image.
            'instances' (ultralytics.utils.instance.Instances): Updated instances matching the flipped image.

    Examples:
        >>> labels = {"img": np.random.rand(640, 640, 3), "instances": Instances(...)}
        >>> random_flip = RandomFlip(p=0.5, direction="horizontal")
        >>> flipped_labels = random_flip(labels)
    """
    img = labels["img"]
    instances = labels.pop("instances")
    instances.convert_bbox(format="xywh")
    h, w = img.shape[:2]
    h = 1 if instances.normalized else h
    w = 1 if instances.normalized else w

    # Flip up-down
    if self.direction == "vertical" and random.random() < self.p:
        img = np.flipud(img)
        instances.flipud(h)
    if self.direction == "horizontal" and random.random() < self.p:
        img = np.fliplr(img)
        instances.fliplr(w)
        # For keypoints
        if self.flip_idx is not None and instances.keypoints is not None:
            instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :])
    labels["img"] = np.ascontiguousarray(img)
    labels["instances"] = instances
    return labels





ultralytics.data.augment.LetterBox

LetterBox(
    new_shape=(640, 640),
    auto=False,
    scale_fill=False,
    scaleup=True,
    center=True,
    stride=32,
)

Resize image and padding for detection, instance segmentation, pose.

This class resizes and pads images to a specified shape while preserving aspect ratio. It also updates corresponding labels and bounding boxes.

Attributes:

Name Type Description
new_shape tuple

Target shape (height, width) for resizing.

auto bool

Whether to use minimum rectangle.

scale_fill bool

Whether to stretch the image to new_shape.

scaleup bool

Whether to allow scaling up. If False, only scale down.

stride int

Stride for rounding padding.

center bool

Whether to center the image or align to top-left.

Methods:

Name Description
__call__

Resize and pad image, update labels and bounding boxes.

Examples:

>>> transform = LetterBox(new_shape=(640, 640))
>>> result = transform(labels)
>>> resized_img = result["img"]
>>> updated_instances = result["instances"]

This class is designed to resize and pad images for object detection, instance segmentation, and pose estimation tasks. It supports various resizing modes including auto-sizing, scale-fill, and letterboxing.

Parameters:

Name Type Description Default
new_shape Tuple[int, int]

Target size (height, width) for the resized image.

(640, 640)
auto bool

If True, use minimum rectangle to resize. If False, use new_shape directly.

False
scale_fill bool

If True, stretch the image to new_shape without padding.

False
scaleup bool

If True, allow scaling up. If False, only scale down.

True
center bool

If True, center the placed image. If False, place image in top-left corner.

True
stride int

Stride of the model (e.g., 32 for YOLOv5).

32

Attributes:

Name Type Description
new_shape Tuple[int, int]

Target size for the resized image.

auto bool

Flag for using minimum rectangle resizing.

scale_fill bool

Flag for stretching image without padding.

scaleup bool

Flag for allowing upscaling.

stride int

Stride value for ensuring image size is divisible by stride.

Examples:

>>> letterbox = LetterBox(new_shape=(640, 640), auto=False, scale_fill=False, scaleup=True, stride=32)
>>> resized_img = letterbox(original_img)
Source code in ultralytics/data/augment.py
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
def __init__(self, new_shape=(640, 640), auto=False, scale_fill=False, scaleup=True, center=True, stride=32):
    """
    Initialize LetterBox object for resizing and padding images.

    This class is designed to resize and pad images for object detection, instance segmentation, and pose estimation
    tasks. It supports various resizing modes including auto-sizing, scale-fill, and letterboxing.

    Args:
        new_shape (Tuple[int, int]): Target size (height, width) for the resized image.
        auto (bool): If True, use minimum rectangle to resize. If False, use new_shape directly.
        scale_fill (bool): If True, stretch the image to new_shape without padding.
        scaleup (bool): If True, allow scaling up. If False, only scale down.
        center (bool): If True, center the placed image. If False, place image in top-left corner.
        stride (int): Stride of the model (e.g., 32 for YOLOv5).

    Attributes:
        new_shape (Tuple[int, int]): Target size for the resized image.
        auto (bool): Flag for using minimum rectangle resizing.
        scale_fill (bool): Flag for stretching image without padding.
        scaleup (bool): Flag for allowing upscaling.
        stride (int): Stride value for ensuring image size is divisible by stride.

    Examples:
        >>> letterbox = LetterBox(new_shape=(640, 640), auto=False, scale_fill=False, scaleup=True, stride=32)
        >>> resized_img = letterbox(original_img)
    """
    self.new_shape = new_shape
    self.auto = auto
    self.scale_fill = scale_fill
    self.scaleup = scaleup
    self.stride = stride
    self.center = center  # Put the image in the middle or top-left

__call__

__call__(labels=None, image=None)

Resizes and pads an image for object detection, instance segmentation, or pose estimation tasks.

This method applies letterboxing to the input image, which involves resizing the image while maintaining its aspect ratio and adding padding to fit the new shape. It also updates any associated labels accordingly.

Parameters:

Name Type Description Default
labels Dict | None

A dictionary containing image data and associated labels, or empty dict if None.

None
image ndarray | None

The input image as a numpy array. If None, the image is taken from 'labels'.

None

Returns:

Type Description
Dict | Tuple

If 'labels' is provided, returns an updated dictionary with the resized and padded image, updated labels, and additional metadata. If 'labels' is empty, returns a tuple containing the resized and padded image, and a tuple of (ratio, (left_pad, top_pad)).

Examples:

>>> letterbox = LetterBox(new_shape=(640, 640))
>>> result = letterbox(labels={"img": np.zeros((480, 640, 3)), "instances": Instances(...)})
>>> resized_img = result["img"]
>>> updated_instances = result["instances"]
Source code in ultralytics/data/augment.py
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
def __call__(self, labels=None, image=None):
    """
    Resizes and pads an image for object detection, instance segmentation, or pose estimation tasks.

    This method applies letterboxing to the input image, which involves resizing the image while maintaining its
    aspect ratio and adding padding to fit the new shape. It also updates any associated labels accordingly.

    Args:
        labels (Dict | None): A dictionary containing image data and associated labels, or empty dict if None.
        image (np.ndarray | None): The input image as a numpy array. If None, the image is taken from 'labels'.

    Returns:
        (Dict | Tuple): If 'labels' is provided, returns an updated dictionary with the resized and padded image,
            updated labels, and additional metadata. If 'labels' is empty, returns a tuple containing the resized
            and padded image, and a tuple of (ratio, (left_pad, top_pad)).

    Examples:
        >>> letterbox = LetterBox(new_shape=(640, 640))
        >>> result = letterbox(labels={"img": np.zeros((480, 640, 3)), "instances": Instances(...)})
        >>> resized_img = result["img"]
        >>> updated_instances = result["instances"]
    """
    if labels is None:
        labels = {}
    img = labels.get("img") if image is None else image
    shape = img.shape[:2]  # current shape [height, width]
    new_shape = labels.pop("rect_shape", self.new_shape)
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not self.scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if self.auto:  # minimum rectangle
        dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride)  # wh padding
    elif self.scale_fill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    if self.center:
        dw /= 2  # divide padding into 2 sides
        dh /= 2

    if shape[::-1] != new_unpad:  # resize
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
    h, w, c = img.shape
    if c == 3:
        img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
    else:  # multispectral
        pad_img = np.full((h + top + bottom, w + left + right, c), fill_value=114, dtype=img.dtype)
        pad_img[top : top + h, left : left + w] = img
        img = pad_img

    if labels.get("ratio_pad"):
        labels["ratio_pad"] = (labels["ratio_pad"], (left, top))  # for evaluation

    if len(labels):
        labels = self._update_labels(labels, ratio, left, top)
        labels["img"] = img
        labels["resized_shape"] = new_shape
        return labels
    else:
        return img





ultralytics.data.augment.CopyPaste

CopyPaste(dataset=None, pre_transform=None, p=0.5, mode='flip')

Bases: BaseMixTransform

CopyPaste class for applying Copy-Paste augmentation to image datasets.

This class implements the Copy-Paste augmentation technique as described in the paper "Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation" (https://arxiv.org/abs/2012.07177). It combines objects from different images to create new training samples.

Attributes:

Name Type Description
dataset Any

The dataset to which Copy-Paste augmentation will be applied.

pre_transform Callable | None

Optional transform to apply before Copy-Paste.

p float

Probability of applying Copy-Paste augmentation.

Methods:

Name Description
get_indexes

Returns a random index from the dataset.

_mix_transform

Applies Copy-Paste augmentation to the input labels.

__call__

Applies the Copy-Paste transformation to images and annotations.

Examples:

>>> from ultralytics.data.augment import CopyPaste
>>> dataset = YourDataset(...)  # Your image dataset
>>> copypaste = CopyPaste(dataset, p=0.5)
>>> augmented_labels = copypaste(original_labels)
Source code in ultralytics/data/augment.py
1668
1669
1670
1671
1672
def __init__(self, dataset=None, pre_transform=None, p=0.5, mode="flip") -> None:
    """Initializes CopyPaste object with dataset, pre_transform, and probability of applying MixUp."""
    super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)
    assert mode in {"flip", "mixup"}, f"Expected `mode` to be `flip` or `mixup`, but got {mode}."
    self.mode = mode

__call__

__call__(labels)

Applies Copy-Paste augmentation to an image and its labels.

Source code in ultralytics/data/augment.py
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
def __call__(self, labels):
    """Applies Copy-Paste augmentation to an image and its labels."""
    if len(labels["instances"].segments) == 0 or self.p == 0:
        return labels
    if self.mode == "flip":
        return self._transform(labels)

    # Get index of one or three other images
    indexes = self.get_indexes()
    if isinstance(indexes, int):
        indexes = [indexes]

    # Get images information will be used for Mosaic or MixUp
    mix_labels = [self.dataset.get_image_and_label(i) for i in indexes]

    if self.pre_transform is not None:
        for i, data in enumerate(mix_labels):
            mix_labels[i] = self.pre_transform(data)
    labels["mix_labels"] = mix_labels

    # Update cls and texts
    labels = self._update_label_text(labels)
    # Mosaic or MixUp
    labels = self._mix_transform(labels)
    labels.pop("mix_labels", None)
    return labels

get_indexes

get_indexes()

Returns a list of random indexes from the dataset for CopyPaste augmentation.

Source code in ultralytics/data/augment.py
1674
1675
1676
def get_indexes(self):
    """Returns a list of random indexes from the dataset for CopyPaste augmentation."""
    return random.randint(0, len(self.dataset) - 1)





ultralytics.data.augment.Albumentations

Albumentations(p=1.0)

Albumentations transformations for image augmentation.

This class applies various image transformations using the Albumentations library. It includes operations such as Blur, Median Blur, conversion to grayscale, Contrast Limited Adaptive Histogram Equalization (CLAHE), random changes in brightness and contrast, RandomGamma, and image quality reduction through compression.

Attributes:

Name Type Description
p float

Probability of applying the transformations.

transform Compose

Composed Albumentations transforms.

contains_spatial bool

Indicates if the transforms include spatial operations.

Methods:

Name Description
__call__

Applies the Albumentations transformations to the input labels.

Examples:

>>> transform = Albumentations(p=0.5)
>>> augmented_labels = transform(labels)
Notes
  • The Albumentations package must be installed to use this class.
  • If the package is not installed or an error occurs during initialization, the transform will be set to None.
  • Spatial transforms are handled differently and require special processing for bounding boxes.

This class applies various image augmentations using the Albumentations library, including Blur, Median Blur, conversion to grayscale, Contrast Limited Adaptive Histogram Equalization, random changes of brightness and contrast, RandomGamma, and image quality reduction through compression.

Parameters:

Name Type Description Default
p float

Probability of applying the augmentations. Must be between 0 and 1.

1.0

Attributes:

Name Type Description
p float

Probability of applying the augmentations.

transform Compose

Composed Albumentations transforms.

contains_spatial bool

Indicates if the transforms include spatial transformations.

Raises:

Type Description
ImportError

If the Albumentations package is not installed.

Exception

For any other errors during initialization.

Examples:

>>> transform = Albumentations(p=0.5)
>>> augmented = transform(image=image, bboxes=bboxes, class_labels=classes)
>>> augmented_image = augmented["image"]
>>> augmented_bboxes = augmented["bboxes"]
Notes
  • Requires Albumentations version 1.0.3 or higher.
  • Spatial transforms are handled differently to ensure bbox compatibility.
  • Some transforms are applied with very low probability (0.01) by default.
Source code in ultralytics/data/augment.py
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
def __init__(self, p=1.0):
    """
    Initialize the Albumentations transform object for YOLO bbox formatted parameters.

    This class applies various image augmentations using the Albumentations library, including Blur, Median Blur,
    conversion to grayscale, Contrast Limited Adaptive Histogram Equalization, random changes of brightness and
    contrast, RandomGamma, and image quality reduction through compression.

    Args:
        p (float): Probability of applying the augmentations. Must be between 0 and 1.

    Attributes:
        p (float): Probability of applying the augmentations.
        transform (albumentations.Compose): Composed Albumentations transforms.
        contains_spatial (bool): Indicates if the transforms include spatial transformations.

    Raises:
        ImportError: If the Albumentations package is not installed.
        Exception: For any other errors during initialization.

    Examples:
        >>> transform = Albumentations(p=0.5)
        >>> augmented = transform(image=image, bboxes=bboxes, class_labels=classes)
        >>> augmented_image = augmented["image"]
        >>> augmented_bboxes = augmented["bboxes"]

    Notes:
        - Requires Albumentations version 1.0.3 or higher.
        - Spatial transforms are handled differently to ensure bbox compatibility.
        - Some transforms are applied with very low probability (0.01) by default.
    """
    self.p = p
    self.transform = None
    prefix = colorstr("albumentations: ")

    try:
        import os

        os.environ["NO_ALBUMENTATIONS_UPDATE"] = "1"  # suppress Albumentations upgrade message
        import albumentations as A

        check_version(A.__version__, "1.0.3", hard=True)  # version requirement

        # List of possible spatial transforms
        spatial_transforms = {
            "Affine",
            "BBoxSafeRandomCrop",
            "CenterCrop",
            "CoarseDropout",
            "Crop",
            "CropAndPad",
            "CropNonEmptyMaskIfExists",
            "D4",
            "ElasticTransform",
            "Flip",
            "GridDistortion",
            "GridDropout",
            "HorizontalFlip",
            "Lambda",
            "LongestMaxSize",
            "MaskDropout",
            "MixUp",
            "Morphological",
            "NoOp",
            "OpticalDistortion",
            "PadIfNeeded",
            "Perspective",
            "PiecewiseAffine",
            "PixelDropout",
            "RandomCrop",
            "RandomCropFromBorders",
            "RandomGridShuffle",
            "RandomResizedCrop",
            "RandomRotate90",
            "RandomScale",
            "RandomSizedBBoxSafeCrop",
            "RandomSizedCrop",
            "Resize",
            "Rotate",
            "SafeRotate",
            "ShiftScaleRotate",
            "SmallestMaxSize",
            "Transpose",
            "VerticalFlip",
            "XYMasking",
        }  # from https://albumentations.ai/docs/getting_started/transforms_and_targets/#spatial-level-transforms

        # Transforms
        T = [
            A.Blur(p=0.01),
            A.MedianBlur(p=0.01),
            A.ToGray(p=0.01),
            A.CLAHE(p=0.01),
            A.RandomBrightnessContrast(p=0.0),
            A.RandomGamma(p=0.0),
            A.ImageCompression(quality_range=(75, 100), p=0.0),
        ]

        # Compose transforms
        self.contains_spatial = any(transform.__class__.__name__ in spatial_transforms for transform in T)
        self.transform = (
            A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"]))
            if self.contains_spatial
            else A.Compose(T)
        )
        if hasattr(self.transform, "set_random_seed"):
            # Required for deterministic transforms in albumentations>=1.4.21
            self.transform.set_random_seed(torch.initial_seed())
        LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
    except ImportError:  # package not installed, skip
        pass
    except Exception as e:
        LOGGER.info(f"{prefix}{e}")

__call__

__call__(labels)

Applies Albumentations transformations to input labels.

This method applies a series of image augmentations using the Albumentations library. It can perform both spatial and non-spatial transformations on the input image and its corresponding labels.

Parameters:

Name Type Description Default
labels dict

A dictionary containing image data and annotations. Expected keys are: - 'img': numpy.ndarray representing the image - 'cls': numpy.ndarray of class labels - 'instances': object containing bounding boxes and other instance information

required

Returns:

Type Description
dict

The input dictionary with augmented image and updated annotations.

Examples:

>>> transform = Albumentations(p=0.5)
>>> labels = {
...     "img": np.random.rand(640, 640, 3),
...     "cls": np.array([0, 1]),
...     "instances": Instances(bboxes=np.array([[0, 0, 1, 1], [0.5, 0.5, 0.8, 0.8]])),
... }
>>> augmented = transform(labels)
>>> assert augmented["img"].shape == (640, 640, 3)
Notes
  • The method applies transformations with probability self.p.
  • Spatial transforms update bounding boxes, while non-spatial transforms only modify the image.
  • Requires the Albumentations library to be installed.
Source code in ultralytics/data/augment.py
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
def __call__(self, labels):
    """
    Applies Albumentations transformations to input labels.

    This method applies a series of image augmentations using the Albumentations library. It can perform both
    spatial and non-spatial transformations on the input image and its corresponding labels.

    Args:
        labels (dict): A dictionary containing image data and annotations. Expected keys are:
            - 'img': numpy.ndarray representing the image
            - 'cls': numpy.ndarray of class labels
            - 'instances': object containing bounding boxes and other instance information

    Returns:
        (dict): The input dictionary with augmented image and updated annotations.

    Examples:
        >>> transform = Albumentations(p=0.5)
        >>> labels = {
        ...     "img": np.random.rand(640, 640, 3),
        ...     "cls": np.array([0, 1]),
        ...     "instances": Instances(bboxes=np.array([[0, 0, 1, 1], [0.5, 0.5, 0.8, 0.8]])),
        ... }
        >>> augmented = transform(labels)
        >>> assert augmented["img"].shape == (640, 640, 3)

    Notes:
        - The method applies transformations with probability self.p.
        - Spatial transforms update bounding boxes, while non-spatial transforms only modify the image.
        - Requires the Albumentations library to be installed.
    """
    if self.transform is None or random.random() > self.p:
        return labels

    im = labels["img"]
    if im.shape[2] != 3:  # Only apply Albumentation on 3-channel images
        return labels

    if self.contains_spatial:
        cls = labels["cls"]
        if len(cls):
            labels["instances"].convert_bbox("xywh")
            labels["instances"].normalize(*im.shape[:2][::-1])
            bboxes = labels["instances"].bboxes
            # TODO: add supports of segments and keypoints
            new = self.transform(image=im, bboxes=bboxes, class_labels=cls)  # transformed
            if len(new["class_labels"]) > 0:  # skip update if no bbox in new im
                labels["img"] = new["image"]
                labels["cls"] = np.array(new["class_labels"])
                bboxes = np.array(new["bboxes"], dtype=np.float32)
            labels["instances"].update(bboxes=bboxes)
    else:
        labels["img"] = self.transform(image=labels["img"])["image"]  # transformed

    return labels





ultralytics.data.augment.Format

Format(
    bbox_format="xywh",
    normalize=True,
    return_mask=False,
    return_keypoint=False,
    return_obb=False,
    mask_ratio=4,
    mask_overlap=True,
    batch_idx=True,
    bgr=0.0,
)

A class for formatting image annotations for object detection, instance segmentation, and pose estimation tasks.

This class standardizes image and instance annotations to be used by the collate_fn in PyTorch DataLoader.

Attributes:

Name Type Description
bbox_format str

Format for bounding boxes. Options are 'xywh' or 'xyxy'.

normalize bool

Whether to normalize bounding boxes.

return_mask bool

Whether to return instance masks for segmentation.

return_keypoint bool

Whether to return keypoints for pose estimation.

return_obb bool

Whether to return oriented bounding boxes.

mask_ratio int

Downsample ratio for masks.

mask_overlap bool

Whether to overlap masks.

batch_idx bool

Whether to keep batch indexes.

bgr float

The probability to return BGR images.

Methods:

Name Description
__call__

Formats labels dictionary with image, classes, bounding boxes, and optionally masks and keypoints.

_format_img

Converts image from Numpy array to PyTorch tensor.

_format_segments

Converts polygon points to bitmap masks.

Examples:

>>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)
>>> formatted_labels = formatter(labels)
>>> img = formatted_labels["img"]
>>> bboxes = formatted_labels["bboxes"]
>>> masks = formatted_labels["masks"]

This class standardizes image and instance annotations for object detection, instance segmentation, and pose estimation tasks, preparing them for use in PyTorch DataLoader's collate_fn.

Parameters:

Name Type Description Default
bbox_format str

Format for bounding boxes. Options are 'xywh', 'xyxy', etc.

'xywh'
normalize bool

Whether to normalize bounding boxes to [0,1].

True
return_mask bool

If True, returns instance masks for segmentation tasks.

False
return_keypoint bool

If True, returns keypoints for pose estimation tasks.

False
return_obb bool

If True, returns oriented bounding boxes.

False
mask_ratio int

Downsample ratio for masks.

4
mask_overlap bool

If True, allows mask overlap.

True
batch_idx bool

If True, keeps batch indexes.

True
bgr float

Probability of returning BGR images instead of RGB.

0.0

Attributes:

Name Type Description
bbox_format str

Format for bounding boxes.

normalize bool

Whether bounding boxes are normalized.

return_mask bool

Whether to return instance masks.

return_keypoint bool

Whether to return keypoints.

return_obb bool

Whether to return oriented bounding boxes.

mask_ratio int

Downsample ratio for masks.

mask_overlap bool

Whether masks can overlap.

batch_idx bool

Whether to keep batch indexes.

bgr float

The probability to return BGR images.

Examples:

>>> format = Format(bbox_format="xyxy", return_mask=True, return_keypoint=False)
>>> print(format.bbox_format)
xyxy
Source code in ultralytics/data/augment.py
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
def __init__(
    self,
    bbox_format="xywh",
    normalize=True,
    return_mask=False,
    return_keypoint=False,
    return_obb=False,
    mask_ratio=4,
    mask_overlap=True,
    batch_idx=True,
    bgr=0.0,
):
    """
    Initializes the Format class with given parameters for image and instance annotation formatting.

    This class standardizes image and instance annotations for object detection, instance segmentation, and pose
    estimation tasks, preparing them for use in PyTorch DataLoader's `collate_fn`.

    Args:
        bbox_format (str): Format for bounding boxes. Options are 'xywh', 'xyxy', etc.
        normalize (bool): Whether to normalize bounding boxes to [0,1].
        return_mask (bool): If True, returns instance masks for segmentation tasks.
        return_keypoint (bool): If True, returns keypoints for pose estimation tasks.
        return_obb (bool): If True, returns oriented bounding boxes.
        mask_ratio (int): Downsample ratio for masks.
        mask_overlap (bool): If True, allows mask overlap.
        batch_idx (bool): If True, keeps batch indexes.
        bgr (float): Probability of returning BGR images instead of RGB.

    Attributes:
        bbox_format (str): Format for bounding boxes.
        normalize (bool): Whether bounding boxes are normalized.
        return_mask (bool): Whether to return instance masks.
        return_keypoint (bool): Whether to return keypoints.
        return_obb (bool): Whether to return oriented bounding boxes.
        mask_ratio (int): Downsample ratio for masks.
        mask_overlap (bool): Whether masks can overlap.
        batch_idx (bool): Whether to keep batch indexes.
        bgr (float): The probability to return BGR images.

    Examples:
        >>> format = Format(bbox_format="xyxy", return_mask=True, return_keypoint=False)
        >>> print(format.bbox_format)
        xyxy
    """
    self.bbox_format = bbox_format
    self.normalize = normalize
    self.return_mask = return_mask  # set False when training detection only
    self.return_keypoint = return_keypoint
    self.return_obb = return_obb
    self.mask_ratio = mask_ratio
    self.mask_overlap = mask_overlap
    self.batch_idx = batch_idx  # keep the batch indexes
    self.bgr = bgr

__call__

__call__(labels)

Formats image annotations for object detection, instance segmentation, and pose estimation tasks.

This method standardizes the image and instance annotations to be used by the collate_fn in PyTorch DataLoader. It processes the input labels dictionary, converting annotations to the specified format and applying normalization if required.

Parameters:

Name Type Description Default
labels dict

A dictionary containing image and annotation data with the following keys: - 'img': The input image as a numpy array. - 'cls': Class labels for instances. - 'instances': An Instances object containing bounding boxes, segments, and keypoints.

required

Returns:

Type Description
dict

A dictionary with formatted data, including: - 'img': Formatted image tensor. - 'cls': Class label's tensor. - 'bboxes': Bounding boxes tensor in the specified format. - 'masks': Instance masks tensor (if return_mask is True). - 'keypoints': Keypoints tensor (if return_keypoint is True). - 'batch_idx': Batch index tensor (if batch_idx is True).

Examples:

>>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)
>>> labels = {"img": np.random.rand(640, 640, 3), "cls": np.array([0, 1]), "instances": Instances(...)}
>>> formatted_labels = formatter(labels)
>>> print(formatted_labels.keys())
Source code in ultralytics/data/augment.py
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
def __call__(self, labels):
    """
    Formats image annotations for object detection, instance segmentation, and pose estimation tasks.

    This method standardizes the image and instance annotations to be used by the `collate_fn` in PyTorch
    DataLoader. It processes the input labels dictionary, converting annotations to the specified format and
    applying normalization if required.

    Args:
        labels (dict): A dictionary containing image and annotation data with the following keys:
            - 'img': The input image as a numpy array.
            - 'cls': Class labels for instances.
            - 'instances': An Instances object containing bounding boxes, segments, and keypoints.

    Returns:
        (dict): A dictionary with formatted data, including:
            - 'img': Formatted image tensor.
            - 'cls': Class label's tensor.
            - 'bboxes': Bounding boxes tensor in the specified format.
            - 'masks': Instance masks tensor (if return_mask is True).
            - 'keypoints': Keypoints tensor (if return_keypoint is True).
            - 'batch_idx': Batch index tensor (if batch_idx is True).

    Examples:
        >>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)
        >>> labels = {"img": np.random.rand(640, 640, 3), "cls": np.array([0, 1]), "instances": Instances(...)}
        >>> formatted_labels = formatter(labels)
        >>> print(formatted_labels.keys())
    """
    img = labels.pop("img")
    h, w = img.shape[:2]
    cls = labels.pop("cls")
    instances = labels.pop("instances")
    instances.convert_bbox(format=self.bbox_format)
    instances.denormalize(w, h)
    nl = len(instances)

    if self.return_mask:
        if nl:
            masks, instances, cls = self._format_segments(instances, cls, w, h)
            masks = torch.from_numpy(masks)
        else:
            masks = torch.zeros(
                1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, img.shape[1] // self.mask_ratio
            )
        labels["masks"] = masks
    labels["img"] = self._format_img(img)
    labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl)
    labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4))
    if self.return_keypoint:
        labels["keypoints"] = torch.from_numpy(instances.keypoints)
        if self.normalize:
            labels["keypoints"][..., 0] /= w
            labels["keypoints"][..., 1] /= h
    if self.return_obb:
        labels["bboxes"] = (
            xyxyxyxy2xywhr(torch.from_numpy(instances.segments)) if len(instances.segments) else torch.zeros((0, 5))
        )
    # NOTE: need to normalize obb in xywhr format for width-height consistency
    if self.normalize:
        labels["bboxes"][:, [0, 2]] /= w
        labels["bboxes"][:, [1, 3]] /= h
    # Then we can use collate_fn
    if self.batch_idx:
        labels["batch_idx"] = torch.zeros(nl)
    return labels





ultralytics.data.augment.LoadVisualPrompt

LoadVisualPrompt(scale_factor=1 / 8)

Creates visual prompts from bounding boxes or masks for model input.

Parameters:

Name Type Description Default
scale_factor float

Factor to scale the input image dimensions.

1 / 8
Source code in ultralytics/data/augment.py
2159
2160
2161
2162
2163
2164
2165
2166
def __init__(self, scale_factor=1 / 8):
    """
    Initialize the LoadVisualPrompt with a scale factor.

    Args:
        scale_factor (float): Factor to scale the input image dimensions.
    """
    self.scale_factor = scale_factor

__call__

__call__(labels)

Process labels to create visual prompts.

Parameters:

Name Type Description Default
labels dict

Dictionary containing image data and annotations.

required

Returns:

Type Description
dict

Updated labels with visual prompts added.

Source code in ultralytics/data/augment.py
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
def __call__(self, labels):
    """
    Process labels to create visual prompts.

    Args:
        labels (dict): Dictionary containing image data and annotations.

    Returns:
        (dict): Updated labels with visual prompts added.
    """
    imgsz = labels["img"].shape[1:]
    bboxes, masks = None, None
    if "bboxes" in labels:
        bboxes = labels["bboxes"]
        bboxes = xywh2xyxy(bboxes) * torch.tensor(imgsz)[[1, 0, 1, 0]]  # denormalize boxes

    cls = labels["cls"].squeeze(-1).to(torch.int)
    visuals = self.get_visuals(cls, imgsz, bboxes=bboxes, masks=masks)
    labels["visuals"] = visuals
    return labels

get_visuals

get_visuals(category, shape, bboxes=None, masks=None)

Generate visual masks based on bounding boxes or masks.

Parameters:

Name Type Description Default
category int | ndarray | Tensor

The category labels for the objects.

required
shape tuple

The shape of the image (height, width).

required
bboxes ndarray | Tensor

Bounding boxes for the objects, xyxy format. Defaults to None.

None
masks ndarray | Tensor

Masks for the objects. Defaults to None.

None

Returns:

Type Description
Tensor

A tensor containing the visual masks for each category.

Raises:

Type Description
ValueError

If neither bboxes nor masks are provided.

Source code in ultralytics/data/augment.py
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
def get_visuals(self, category, shape, bboxes=None, masks=None):
    """
    Generate visual masks based on bounding boxes or masks.

    Args:
        category (int | np.ndarray | torch.Tensor): The category labels for the objects.
        shape (tuple): The shape of the image (height, width).
        bboxes (np.ndarray | torch.Tensor, optional): Bounding boxes for the objects, xyxy format. Defaults to None.
        masks (np.ndarray | torch.Tensor, optional): Masks for the objects. Defaults to None.

    Returns:
        (torch.Tensor): A tensor containing the visual masks for each category.

    Raises:
        ValueError: If neither bboxes nor masks are provided.
    """
    masksz = (int(shape[0] * self.scale_factor), int(shape[1] * self.scale_factor))
    if bboxes is not None:
        if isinstance(bboxes, np.ndarray):
            bboxes = torch.from_numpy(bboxes)
        bboxes *= self.scale_factor
        masks = self.make_mask(bboxes, *masksz).float()
    elif masks is not None:
        if isinstance(masks, np.ndarray):
            masks = torch.from_numpy(masks)  # (N, H, W)
        masks = F.interpolate(masks.unsqueeze(1), masksz, mode="nearest").squeeze(1).float()
    else:
        raise ValueError("LoadVisualPrompt must have bboxes or masks in the label")
    if not isinstance(category, torch.Tensor):
        category = torch.tensor(category, dtype=torch.int)
    cls_unique, inverse_indices = torch.unique(category, sorted=True, return_inverse=True)
    # NOTE: `cls` indices from RandomLoadText should be continuous.
    # if len(cls_unique):
    #     assert len(cls_unique) == cls_unique[-1] + 1, (
    #         f"Expected a continuous range of class indices, but got {cls_unique}"
    #     )
    visuals = torch.zeros(len(cls_unique), *masksz)
    for idx, mask in zip(inverse_indices, masks):
        visuals[idx] = torch.logical_or(visuals[idx], mask)
    return visuals

make_mask

make_mask(boxes, h, w)

Create binary masks from bounding boxes.

Parameters:

Name Type Description Default
boxes Tensor

Bounding boxes in xyxy format, shape: (N, 4).

required
h int

Height of the mask.

required
w int

Width of the mask.

required

Returns:

Type Description
Tensor

Binary masks with shape (N, h, w).

Source code in ultralytics/data/augment.py
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
def make_mask(self, boxes, h, w):
    """
    Create binary masks from bounding boxes.

    Args:
        boxes (torch.Tensor): Bounding boxes in xyxy format, shape: (N, 4).
        h (int): Height of the mask.
        w (int): Width of the mask.

    Returns:
        (torch.Tensor): Binary masks with shape (N, h, w).
    """
    x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1)  # x1 shape(n,1,1)
    r = torch.arange(w)[None, None, :]  # rows shape(1,1,w)
    c = torch.arange(h)[None, :, None]  # cols shape(1,h,1)

    return (r >= x1) * (r < x2) * (c >= y1) * (c < y2)





ultralytics.data.augment.RandomLoadText

RandomLoadText(
    prompt_format: str = "{}",
    neg_samples: Tuple[int, int] = (80, 80),
    max_samples: int = 80,
    padding: bool = False,
    padding_value: List[str] = [""],
)

Randomly samples positive and negative texts and updates class indices accordingly.

This class is responsible for sampling texts from a given set of class texts, including both positive (present in the image) and negative (not present in the image) samples. It updates the class indices to reflect the sampled texts and can optionally pad the text list to a fixed length.

Attributes:

Name Type Description
prompt_format str

Format string for text prompts.

neg_samples Tuple[int, int]

Range for randomly sampling negative texts.

max_samples int

Maximum number of different text samples in one image.

padding bool

Whether to pad texts to max_samples.

padding_value str

The text used for padding when padding is True.

Methods:

Name Description
__call__

Processes the input labels and returns updated classes and texts.

Examples:

>>> loader = RandomLoadText(prompt_format="Object: {}", neg_samples=(5, 10), max_samples=20)
>>> labels = {"cls": [0, 1, 2], "texts": [["cat"], ["dog"], ["bird"]], "instances": [...]}
>>> updated_labels = loader(labels)
>>> print(updated_labels["texts"])
['Object: cat', 'Object: dog', 'Object: bird', 'Object: elephant', 'Object: car']

This class is designed to randomly sample positive texts and negative texts, and update the class indices accordingly to the number of samples. It can be used for text-based object detection tasks.

Parameters:

Name Type Description Default
prompt_format str

Format string for the prompt. Default is '{}'. The format string should contain a single pair of curly braces {} where the text will be inserted.

'{}'
neg_samples Tuple[int, int]

A range to randomly sample negative texts. The first integer specifies the minimum number of negative samples, and the second integer specifies the maximum. Default is (80, 80).

(80, 80)
max_samples int

The maximum number of different text samples in one image. Default is 80.

80
padding bool

Whether to pad texts to max_samples. If True, the number of texts will always be equal to max_samples. Default is False.

False
padding_value str

The padding text to use when padding is True. Default is an empty string.

['']

Attributes:

Name Type Description
prompt_format str

The format string for the prompt.

neg_samples Tuple[int, int]

The range for sampling negative texts.

max_samples int

The maximum number of text samples.

padding bool

Whether padding is enabled.

padding_value str

The value used for padding.

Examples:

>>> random_load_text = RandomLoadText(prompt_format="Object: {}", neg_samples=(50, 100), max_samples=120)
>>> random_load_text.prompt_format
'Object: {}'
>>> random_load_text.neg_samples
(50, 100)
>>> random_load_text.max_samples
120
Source code in ultralytics/data/augment.py
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
def __init__(
    self,
    prompt_format: str = "{}",
    neg_samples: Tuple[int, int] = (80, 80),
    max_samples: int = 80,
    padding: bool = False,
    padding_value: List[str] = [""],
) -> None:
    """
    Initializes the RandomLoadText class for randomly sampling positive and negative texts.

    This class is designed to randomly sample positive texts and negative texts, and update the class
    indices accordingly to the number of samples. It can be used for text-based object detection tasks.

    Args:
        prompt_format (str): Format string for the prompt. Default is '{}'. The format string should
            contain a single pair of curly braces {} where the text will be inserted.
        neg_samples (Tuple[int, int]): A range to randomly sample negative texts. The first integer
            specifies the minimum number of negative samples, and the second integer specifies the
            maximum. Default is (80, 80).
        max_samples (int): The maximum number of different text samples in one image. Default is 80.
        padding (bool): Whether to pad texts to max_samples. If True, the number of texts will always
            be equal to max_samples. Default is False.
        padding_value (str): The padding text to use when padding is True. Default is an empty string.

    Attributes:
        prompt_format (str): The format string for the prompt.
        neg_samples (Tuple[int, int]): The range for sampling negative texts.
        max_samples (int): The maximum number of text samples.
        padding (bool): Whether padding is enabled.
        padding_value (str): The value used for padding.

    Examples:
        >>> random_load_text = RandomLoadText(prompt_format="Object: {}", neg_samples=(50, 100), max_samples=120)
        >>> random_load_text.prompt_format
        'Object: {}'
        >>> random_load_text.neg_samples
        (50, 100)
        >>> random_load_text.max_samples
        120
    """
    self.prompt_format = prompt_format
    self.neg_samples = neg_samples
    self.max_samples = max_samples
    self.padding = padding
    self.padding_value = padding_value

__call__

__call__(labels: dict) -> dict

Randomly samples positive and negative texts and updates class indices accordingly.

This method samples positive texts based on the existing class labels in the image, and randomly selects negative texts from the remaining classes. It then updates the class indices to match the new sampled text order.

Parameters:

Name Type Description Default
labels dict

A dictionary containing image labels and metadata. Must include 'texts' and 'cls' keys.

required

Returns:

Type Description
dict

Updated labels dictionary with new 'cls' and 'texts' entries.

Examples:

>>> loader = RandomLoadText(prompt_format="A photo of {}", neg_samples=(5, 10), max_samples=20)
>>> labels = {"cls": np.array([[0], [1], [2]]), "texts": [["dog"], ["cat"], ["bird"]]}
>>> updated_labels = loader(labels)
Source code in ultralytics/data/augment.py
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
def __call__(self, labels: dict) -> dict:
    """
    Randomly samples positive and negative texts and updates class indices accordingly.

    This method samples positive texts based on the existing class labels in the image, and randomly
    selects negative texts from the remaining classes. It then updates the class indices to match the
    new sampled text order.

    Args:
        labels (dict): A dictionary containing image labels and metadata. Must include 'texts' and 'cls' keys.

    Returns:
        (dict): Updated labels dictionary with new 'cls' and 'texts' entries.

    Examples:
        >>> loader = RandomLoadText(prompt_format="A photo of {}", neg_samples=(5, 10), max_samples=20)
        >>> labels = {"cls": np.array([[0], [1], [2]]), "texts": [["dog"], ["cat"], ["bird"]]}
        >>> updated_labels = loader(labels)
    """
    assert "texts" in labels, "No texts found in labels."
    class_texts = labels["texts"]
    num_classes = len(class_texts)
    cls = np.asarray(labels.pop("cls"), dtype=int)
    pos_labels = np.unique(cls).tolist()

    if len(pos_labels) > self.max_samples:
        pos_labels = random.sample(pos_labels, k=self.max_samples)

    neg_samples = min(min(num_classes, self.max_samples) - len(pos_labels), random.randint(*self.neg_samples))
    neg_labels = [i for i in range(num_classes) if i not in pos_labels]
    neg_labels = random.sample(neg_labels, k=neg_samples)

    sampled_labels = pos_labels + neg_labels
    # Randomness
    # random.shuffle(sampled_labels)

    label2ids = {label: i for i, label in enumerate(sampled_labels)}
    valid_idx = np.zeros(len(labels["instances"]), dtype=bool)
    new_cls = []
    for i, label in enumerate(cls.squeeze(-1).tolist()):
        if label not in label2ids:
            continue
        valid_idx[i] = True
        new_cls.append([label2ids[label]])
    labels["instances"] = labels["instances"][valid_idx]
    labels["cls"] = np.array(new_cls)

    # Randomly select one prompt when there's more than one prompts
    texts = []
    for label in sampled_labels:
        prompts = class_texts[label]
        assert len(prompts) > 0
        prompt = self.prompt_format.format(prompts[random.randrange(len(prompts))])
        texts.append(prompt)

    if self.padding:
        valid_labels = len(pos_labels) + len(neg_labels)
        num_padding = self.max_samples - valid_labels
        if num_padding > 0:
            texts += random.choices(self.padding_value, k=num_padding)

    assert len(texts) == self.max_samples
    labels["texts"] = texts
    return labels





ultralytics.data.augment.ClassifyLetterBox

ClassifyLetterBox(size=(640, 640), auto=False, stride=32)

A class for resizing and padding images for classification tasks.

This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]). It resizes and pads images to a specified size while maintaining the original aspect ratio.

Attributes:

Name Type Description
h int

Target height of the image.

w int

Target width of the image.

auto bool

If True, automatically calculates the short side using stride.

stride int

The stride value, used when 'auto' is True.

Methods:

Name Description
__call__

Applies the letterbox transformation to an input image.

Examples:

>>> transform = ClassifyLetterBox(size=(640, 640), auto=False, stride=32)
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> result = transform(img)
>>> print(result.shape)
(640, 640, 3)

This class is designed to be part of a transformation pipeline for image classification tasks. It resizes and pads images to a specified size while maintaining the original aspect ratio.

Parameters:

Name Type Description Default
size int | Tuple[int, int]

Target size for the letterboxed image. If an int, a square image of (size, size) is created. If a tuple, it should be (height, width).

(640, 640)
auto bool

If True, automatically calculates the short side based on stride. Default is False.

False
stride int

The stride value, used when 'auto' is True. Default is 32.

32

Attributes:

Name Type Description
h int

Target height of the letterboxed image.

w int

Target width of the letterboxed image.

auto bool

Flag indicating whether to automatically calculate short side.

stride int

Stride value for automatic short side calculation.

Examples:

>>> transform = ClassifyLetterBox(size=224)
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> result = transform(img)
>>> print(result.shape)
(224, 224, 3)
Source code in ultralytics/data/augment.py
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
def __init__(self, size=(640, 640), auto=False, stride=32):
    """
    Initializes the ClassifyLetterBox object for image preprocessing.

    This class is designed to be part of a transformation pipeline for image classification tasks. It resizes and
    pads images to a specified size while maintaining the original aspect ratio.

    Args:
        size (int | Tuple[int, int]): Target size for the letterboxed image. If an int, a square image of
            (size, size) is created. If a tuple, it should be (height, width).
        auto (bool): If True, automatically calculates the short side based on stride. Default is False.
        stride (int): The stride value, used when 'auto' is True. Default is 32.

    Attributes:
        h (int): Target height of the letterboxed image.
        w (int): Target width of the letterboxed image.
        auto (bool): Flag indicating whether to automatically calculate short side.
        stride (int): Stride value for automatic short side calculation.

    Examples:
        >>> transform = ClassifyLetterBox(size=224)
        >>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
        >>> result = transform(img)
        >>> print(result.shape)
        (224, 224, 3)
    """
    super().__init__()
    self.h, self.w = (size, size) if isinstance(size, int) else size
    self.auto = auto  # pass max size integer, automatically solve for short side using stride
    self.stride = stride  # used with auto

__call__

__call__(im)

Resizes and pads an image using the letterbox method.

This method resizes the input image to fit within the specified dimensions while maintaining its aspect ratio, then pads the resized image to match the target size.

Parameters:

Name Type Description Default
im ndarray

Input image as a numpy array with shape (H, W, C).

required

Returns:

Type Description
ndarray

Resized and padded image as a numpy array with shape (hs, ws, 3), where hs and ws are the target height and width respectively.

Examples:

>>> letterbox = ClassifyLetterBox(size=(640, 640))
>>> image = np.random.randint(0, 255, (720, 1280, 3), dtype=np.uint8)
>>> resized_image = letterbox(image)
>>> print(resized_image.shape)
(640, 640, 3)
Source code in ultralytics/data/augment.py
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
def __call__(self, im):
    """
    Resizes and pads an image using the letterbox method.

    This method resizes the input image to fit within the specified dimensions while maintaining its aspect ratio,
    then pads the resized image to match the target size.

    Args:
        im (numpy.ndarray): Input image as a numpy array with shape (H, W, C).

    Returns:
        (numpy.ndarray): Resized and padded image as a numpy array with shape (hs, ws, 3), where hs and ws are
            the target height and width respectively.

    Examples:
        >>> letterbox = ClassifyLetterBox(size=(640, 640))
        >>> image = np.random.randint(0, 255, (720, 1280, 3), dtype=np.uint8)
        >>> resized_image = letterbox(image)
        >>> print(resized_image.shape)
        (640, 640, 3)
    """
    imh, imw = im.shape[:2]
    r = min(self.h / imh, self.w / imw)  # ratio of new/old dimensions
    h, w = round(imh * r), round(imw * r)  # resized image dimensions

    # Calculate padding dimensions
    hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else (self.h, self.w)
    top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)

    # Create padded image
    im_out = np.full((hs, ws, 3), 114, dtype=im.dtype)
    im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
    return im_out





ultralytics.data.augment.CenterCrop

CenterCrop(size=640)

Applies center cropping to images for classification tasks.

This class performs center cropping on input images, resizing them to a specified size while maintaining the aspect ratio. It is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]).

Attributes:

Name Type Description
h int

Target height of the cropped image.

w int

Target width of the cropped image.

Methods:

Name Description
__call__

Applies the center crop transformation to an input image.

Examples:

>>> transform = CenterCrop(640)
>>> image = np.random.randint(0, 255, (1080, 1920, 3), dtype=np.uint8)
>>> cropped_image = transform(image)
>>> print(cropped_image.shape)
(640, 640, 3)

This class is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]). It performs a center crop on input images to a specified size.

Parameters:

Name Type Description Default
size int | Tuple[int, int]

The desired output size of the crop. If size is an int, a square crop (size, size) is made. If size is a sequence like (h, w), it is used as the output size.

640

Returns:

Type Description
None

This method initializes the object and does not return anything.

Examples:

>>> transform = CenterCrop(224)
>>> img = np.random.rand(300, 300, 3)
>>> cropped_img = transform(img)
>>> print(cropped_img.shape)
(224, 224, 3)
Source code in ultralytics/data/augment.py
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
def __init__(self, size=640):
    """
    Initializes the CenterCrop object for image preprocessing.

    This class is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]).
    It performs a center crop on input images to a specified size.

    Args:
        size (int | Tuple[int, int]): The desired output size of the crop. If size is an int, a square crop
            (size, size) is made. If size is a sequence like (h, w), it is used as the output size.

    Returns:
        (None): This method initializes the object and does not return anything.

    Examples:
        >>> transform = CenterCrop(224)
        >>> img = np.random.rand(300, 300, 3)
        >>> cropped_img = transform(img)
        >>> print(cropped_img.shape)
        (224, 224, 3)
    """
    super().__init__()
    self.h, self.w = (size, size) if isinstance(size, int) else size

__call__

__call__(im)

Applies center cropping to an input image.

This method resizes and crops the center of the image using a letterbox method. It maintains the aspect ratio of the original image while fitting it into the specified dimensions.

Parameters:

Name Type Description Default
im ndarray | Image

The input image as a numpy array of shape (H, W, C) or a PIL Image object.

required

Returns:

Type Description
ndarray

The center-cropped and resized image as a numpy array of shape (self.h, self.w, C).

Examples:

>>> transform = CenterCrop(size=224)
>>> image = np.random.randint(0, 255, (640, 480, 3), dtype=np.uint8)
>>> cropped_image = transform(image)
>>> assert cropped_image.shape == (224, 224, 3)
Source code in ultralytics/data/augment.py
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
def __call__(self, im):
    """
    Applies center cropping to an input image.

    This method resizes and crops the center of the image using a letterbox method. It maintains the aspect
    ratio of the original image while fitting it into the specified dimensions.

    Args:
        im (numpy.ndarray | PIL.Image.Image): The input image as a numpy array of shape (H, W, C) or a
            PIL Image object.

    Returns:
        (numpy.ndarray): The center-cropped and resized image as a numpy array of shape (self.h, self.w, C).

    Examples:
        >>> transform = CenterCrop(size=224)
        >>> image = np.random.randint(0, 255, (640, 480, 3), dtype=np.uint8)
        >>> cropped_image = transform(image)
        >>> assert cropped_image.shape == (224, 224, 3)
    """
    if isinstance(im, Image.Image):  # convert from PIL to numpy array if required
        im = np.asarray(im)
    imh, imw = im.shape[:2]
    m = min(imh, imw)  # min dimension
    top, left = (imh - m) // 2, (imw - m) // 2
    return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)





ultralytics.data.augment.ToTensor

ToTensor(half=False)

Converts an image from a numpy array to a PyTorch tensor.

This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]).

Attributes:

Name Type Description
half bool

If True, converts the image to half precision (float16).

Methods:

Name Description
__call__

Applies the tensor conversion to an input image.

Examples:

>>> transform = ToTensor(half=True)
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> tensor_img = transform(img)
>>> print(tensor_img.shape, tensor_img.dtype)
torch.Size([3, 640, 640]) torch.float16
Notes

The input image is expected to be in BGR format with shape (H, W, C). The output tensor will be in RGB format with shape (C, H, W), normalized to [0, 1].

This class is designed to be used as part of a transformation pipeline for image preprocessing in the Ultralytics YOLO framework. It converts numpy arrays or PIL Images to PyTorch tensors, with an option for half-precision (float16) conversion.

Parameters:

Name Type Description Default
half bool

If True, converts the tensor to half precision (float16). Default is False.

False

Examples:

>>> transform = ToTensor(half=True)
>>> img = np.random.rand(640, 640, 3)
>>> tensor_img = transform(img)
>>> print(tensor_img.dtype)
torch.float16
Source code in ultralytics/data/augment.py
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
def __init__(self, half=False):
    """
    Initializes the ToTensor object for converting images to PyTorch tensors.

    This class is designed to be used as part of a transformation pipeline for image preprocessing in the
    Ultralytics YOLO framework. It converts numpy arrays or PIL Images to PyTorch tensors, with an option
    for half-precision (float16) conversion.

    Args:
        half (bool): If True, converts the tensor to half precision (float16). Default is False.

    Examples:
        >>> transform = ToTensor(half=True)
        >>> img = np.random.rand(640, 640, 3)
        >>> tensor_img = transform(img)
        >>> print(tensor_img.dtype)
        torch.float16
    """
    super().__init__()
    self.half = half

__call__

__call__(im)

Transforms an image from a numpy array to a PyTorch tensor.

This method converts the input image from a numpy array to a PyTorch tensor, applying optional half-precision conversion and normalization. The image is transposed from HWC to CHW format and the color channels are reversed from BGR to RGB.

Parameters:

Name Type Description Default
im ndarray

Input image as a numpy array with shape (H, W, C) in BGR order.

required

Returns:

Type Description
Tensor

The transformed image as a PyTorch tensor in float32 or float16, normalized to [0, 1] with shape (C, H, W) in RGB order.

Examples:

>>> transform = ToTensor(half=True)
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> tensor_img = transform(img)
>>> print(tensor_img.shape, tensor_img.dtype)
torch.Size([3, 640, 640]) torch.float16
Source code in ultralytics/data/augment.py
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
def __call__(self, im):
    """
    Transforms an image from a numpy array to a PyTorch tensor.

    This method converts the input image from a numpy array to a PyTorch tensor, applying optional
    half-precision conversion and normalization. The image is transposed from HWC to CHW format and
    the color channels are reversed from BGR to RGB.

    Args:
        im (numpy.ndarray): Input image as a numpy array with shape (H, W, C) in BGR order.

    Returns:
        (torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized
            to [0, 1] with shape (C, H, W) in RGB order.

    Examples:
        >>> transform = ToTensor(half=True)
        >>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
        >>> tensor_img = transform(img)
        >>> print(tensor_img.shape, tensor_img.dtype)
        torch.Size([3, 640, 640]) torch.float16
    """
    im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1])  # HWC to CHW -> BGR to RGB -> contiguous
    im = torch.from_numpy(im)  # to torch
    im = im.half() if self.half else im.float()  # uint8 to fp16/32
    im /= 255.0  # 0-255 to 0.0-1.0
    return im





ultralytics.data.augment.v8_transforms

v8_transforms(dataset, imgsz, hyp, stretch=False)

Applies a series of image transformations for training.

This function creates a composition of image augmentation techniques to prepare images for YOLO training. It includes operations such as mosaic, copy-paste, random perspective, mixup, and various color adjustments.

Parameters:

Name Type Description Default
dataset Dataset

The dataset object containing image data and annotations.

required
imgsz int

The target image size for resizing.

required
hyp Namespace

A dictionary of hyperparameters controlling various aspects of the transformations.

required
stretch bool

If True, applies stretching to the image. If False, uses LetterBox resizing.

False

Returns:

Type Description
Compose

A composition of image transformations to be applied to the dataset.

Examples:

>>> from ultralytics.data.dataset import YOLODataset
>>> from ultralytics.utils import IterableSimpleNamespace
>>> dataset = YOLODataset(img_path="path/to/images", imgsz=640)
>>> hyp = IterableSimpleNamespace(mosaic=1.0, copy_paste=0.5, degrees=10.0, translate=0.2, scale=0.9)
>>> transforms = v8_transforms(dataset, imgsz=640, hyp=hyp)
>>> augmented_data = transforms(dataset[0])
Source code in ultralytics/data/augment.py
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
def v8_transforms(dataset, imgsz, hyp, stretch=False):
    """
    Applies a series of image transformations for training.

    This function creates a composition of image augmentation techniques to prepare images for YOLO training.
    It includes operations such as mosaic, copy-paste, random perspective, mixup, and various color adjustments.

    Args:
        dataset (Dataset): The dataset object containing image data and annotations.
        imgsz (int): The target image size for resizing.
        hyp (Namespace): A dictionary of hyperparameters controlling various aspects of the transformations.
        stretch (bool): If True, applies stretching to the image. If False, uses LetterBox resizing.

    Returns:
        (Compose): A composition of image transformations to be applied to the dataset.

    Examples:
        >>> from ultralytics.data.dataset import YOLODataset
        >>> from ultralytics.utils import IterableSimpleNamespace
        >>> dataset = YOLODataset(img_path="path/to/images", imgsz=640)
        >>> hyp = IterableSimpleNamespace(mosaic=1.0, copy_paste=0.5, degrees=10.0, translate=0.2, scale=0.9)
        >>> transforms = v8_transforms(dataset, imgsz=640, hyp=hyp)
        >>> augmented_data = transforms(dataset[0])
    """
    mosaic = Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic)
    affine = RandomPerspective(
        degrees=hyp.degrees,
        translate=hyp.translate,
        scale=hyp.scale,
        shear=hyp.shear,
        perspective=hyp.perspective,
        pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)),
    )

    pre_transform = Compose([mosaic, affine])
    if hyp.copy_paste_mode == "flip":
        pre_transform.insert(1, CopyPaste(p=hyp.copy_paste, mode=hyp.copy_paste_mode))
    else:
        pre_transform.append(
            CopyPaste(
                dataset,
                pre_transform=Compose([Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), affine]),
                p=hyp.copy_paste,
                mode=hyp.copy_paste_mode,
            )
        )
    flip_idx = dataset.data.get("flip_idx", [])  # for keypoints augmentation
    if dataset.use_keypoints:
        kpt_shape = dataset.data.get("kpt_shape", None)
        if len(flip_idx) == 0 and hyp.fliplr > 0.0:
            hyp.fliplr = 0.0
            LOGGER.warning("No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'")
        elif flip_idx and (len(flip_idx) != kpt_shape[0]):
            raise ValueError(f"data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}")

    return Compose(
        [
            pre_transform,
            MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup),
            Albumentations(p=1.0),
            RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v),
            RandomFlip(direction="vertical", p=hyp.flipud),
            RandomFlip(direction="horizontal", p=hyp.fliplr, flip_idx=flip_idx),
        ]
    )  # transforms





ultralytics.data.augment.classify_transforms

classify_transforms(
    size=224,
    mean=DEFAULT_MEAN,
    std=DEFAULT_STD,
    interpolation="BILINEAR",
    crop_fraction=None,
)

Creates a composition of image transforms for classification tasks.

This function generates a sequence of torchvision transforms suitable for preprocessing images for classification models during evaluation or inference. The transforms include resizing, center cropping, conversion to tensor, and normalization.

Parameters:

Name Type Description Default
size int | tuple

The target size for the transformed image. If an int, it defines the shortest edge. If a tuple, it defines (height, width).

224
mean tuple

Mean values for each RGB channel used in normalization.

DEFAULT_MEAN
std tuple

Standard deviation values for each RGB channel used in normalization.

DEFAULT_STD
interpolation str

Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.

'BILINEAR'
crop_fraction float

Deprecated, will be removed in a future version.

None

Returns:

Type Description
Compose

A composition of torchvision transforms.

Examples:

>>> transforms = classify_transforms(size=224)
>>> img = Image.open("path/to/image.jpg")
>>> transformed_img = transforms(img)
Source code in ultralytics/data/augment.py
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
def classify_transforms(
    size=224,
    mean=DEFAULT_MEAN,
    std=DEFAULT_STD,
    interpolation="BILINEAR",
    crop_fraction=None,
):
    """
    Creates a composition of image transforms for classification tasks.

    This function generates a sequence of torchvision transforms suitable for preprocessing images
    for classification models during evaluation or inference. The transforms include resizing,
    center cropping, conversion to tensor, and normalization.

    Args:
        size (int | tuple): The target size for the transformed image. If an int, it defines the shortest edge. If a
            tuple, it defines (height, width).
        mean (tuple): Mean values for each RGB channel used in normalization.
        std (tuple): Standard deviation values for each RGB channel used in normalization.
        interpolation (str): Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.
        crop_fraction (float): Deprecated, will be removed in a future version.

    Returns:
        (torchvision.transforms.Compose): A composition of torchvision transforms.

    Examples:
        >>> transforms = classify_transforms(size=224)
        >>> img = Image.open("path/to/image.jpg")
        >>> transformed_img = transforms(img)
    """
    import torchvision.transforms as T  # scope for faster 'import ultralytics'

    scale_size = size if isinstance(size, (tuple, list)) and len(size) == 2 else (size, size)

    if crop_fraction:
        raise DeprecationWarning(
            "'crop_fraction' arg of classify_transforms is deprecated, will be removed in a future version."
        )

    # Aspect ratio is preserved, crops center within image, no borders are added, image is lost
    if scale_size[0] == scale_size[1]:
        # Simple case, use torchvision built-in Resize with the shortest edge mode (scalar size arg)
        tfl = [T.Resize(scale_size[0], interpolation=getattr(T.InterpolationMode, interpolation))]
    else:
        # Resize the shortest edge to matching target dim for non-square target
        tfl = [T.Resize(scale_size)]
    tfl += [T.CenterCrop(size), T.ToTensor(), T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std))]
    return T.Compose(tfl)





ultralytics.data.augment.classify_augmentations

classify_augmentations(
    size=224,
    mean=DEFAULT_MEAN,
    std=DEFAULT_STD,
    scale=None,
    ratio=None,
    hflip=0.5,
    vflip=0.0,
    auto_augment=None,
    hsv_h=0.015,
    hsv_s=0.4,
    hsv_v=0.4,
    force_color_jitter=False,
    erasing=0.0,
    interpolation="BILINEAR",
)

Creates a composition of image augmentation transforms for classification tasks.

This function generates a set of image transformations suitable for training classification models. It includes options for resizing, flipping, color jittering, auto augmentation, and random erasing.

Parameters:

Name Type Description Default
size int

Target size for the image after transformations.

224
mean tuple

Mean values for normalization, one per channel.

DEFAULT_MEAN
std tuple

Standard deviation values for normalization, one per channel.

DEFAULT_STD
scale tuple | None

Range of size of the origin size cropped.

None
ratio tuple | None

Range of aspect ratio of the origin aspect ratio cropped.

None
hflip float

Probability of horizontal flip.

0.5
vflip float

Probability of vertical flip.

0.0
auto_augment str | None

Auto augmentation policy. Can be 'randaugment', 'augmix', 'autoaugment' or None.

None
hsv_h float

Image HSV-Hue augmentation factor.

0.015
hsv_s float

Image HSV-Saturation augmentation factor.

0.4
hsv_v float

Image HSV-Value augmentation factor.

0.4
force_color_jitter bool

Whether to apply color jitter even if auto augment is enabled.

False
erasing float

Probability of random erasing.

0.0
interpolation str

Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.

'BILINEAR'

Returns:

Type Description
Compose

A composition of image augmentation transforms.

Examples:

>>> transforms = classify_augmentations(size=224, auto_augment="randaugment")
>>> augmented_image = transforms(original_image)
Source code in ultralytics/data/augment.py
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
def classify_augmentations(
    size=224,
    mean=DEFAULT_MEAN,
    std=DEFAULT_STD,
    scale=None,
    ratio=None,
    hflip=0.5,
    vflip=0.0,
    auto_augment=None,
    hsv_h=0.015,  # image HSV-Hue augmentation (fraction)
    hsv_s=0.4,  # image HSV-Saturation augmentation (fraction)
    hsv_v=0.4,  # image HSV-Value augmentation (fraction)
    force_color_jitter=False,
    erasing=0.0,
    interpolation="BILINEAR",
):
    """
    Creates a composition of image augmentation transforms for classification tasks.

    This function generates a set of image transformations suitable for training classification models. It includes
    options for resizing, flipping, color jittering, auto augmentation, and random erasing.

    Args:
        size (int): Target size for the image after transformations.
        mean (tuple): Mean values for normalization, one per channel.
        std (tuple): Standard deviation values for normalization, one per channel.
        scale (tuple | None): Range of size of the origin size cropped.
        ratio (tuple | None): Range of aspect ratio of the origin aspect ratio cropped.
        hflip (float): Probability of horizontal flip.
        vflip (float): Probability of vertical flip.
        auto_augment (str | None): Auto augmentation policy. Can be 'randaugment', 'augmix', 'autoaugment' or None.
        hsv_h (float): Image HSV-Hue augmentation factor.
        hsv_s (float): Image HSV-Saturation augmentation factor.
        hsv_v (float): Image HSV-Value augmentation factor.
        force_color_jitter (bool): Whether to apply color jitter even if auto augment is enabled.
        erasing (float): Probability of random erasing.
        interpolation (str): Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.

    Returns:
        (torchvision.transforms.Compose): A composition of image augmentation transforms.

    Examples:
        >>> transforms = classify_augmentations(size=224, auto_augment="randaugment")
        >>> augmented_image = transforms(original_image)
    """
    # Transforms to apply if Albumentations not installed
    import torchvision.transforms as T  # scope for faster 'import ultralytics'

    if not isinstance(size, int):
        raise TypeError(f"classify_transforms() size {size} must be integer, not (list, tuple)")
    scale = tuple(scale or (0.08, 1.0))  # default imagenet scale range
    ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0))  # default imagenet ratio range
    interpolation = getattr(T.InterpolationMode, interpolation)
    primary_tfl = [T.RandomResizedCrop(size, scale=scale, ratio=ratio, interpolation=interpolation)]
    if hflip > 0.0:
        primary_tfl.append(T.RandomHorizontalFlip(p=hflip))
    if vflip > 0.0:
        primary_tfl.append(T.RandomVerticalFlip(p=vflip))

    secondary_tfl = []
    disable_color_jitter = False
    if auto_augment:
        assert isinstance(auto_augment, str), f"Provided argument should be string, but got type {type(auto_augment)}"
        # color jitter is typically disabled if AA/RA on,
        # this allows override without breaking old hparm cfgs
        disable_color_jitter = not force_color_jitter

        if auto_augment == "randaugment":
            if TORCHVISION_0_11:
                secondary_tfl.append(T.RandAugment(interpolation=interpolation))
            else:
                LOGGER.warning('"auto_augment=randaugment" requires torchvision >= 0.11.0. Disabling it.')

        elif auto_augment == "augmix":
            if TORCHVISION_0_13:
                secondary_tfl.append(T.AugMix(interpolation=interpolation))
            else:
                LOGGER.warning('"auto_augment=augmix" requires torchvision >= 0.13.0. Disabling it.')

        elif auto_augment == "autoaugment":
            if TORCHVISION_0_10:
                secondary_tfl.append(T.AutoAugment(interpolation=interpolation))
            else:
                LOGGER.warning('"auto_augment=autoaugment" requires torchvision >= 0.10.0. Disabling it.')

        else:
            raise ValueError(
                f'Invalid auto_augment policy: {auto_augment}. Should be one of "randaugment", '
                f'"augmix", "autoaugment" or None'
            )

    if not disable_color_jitter:
        secondary_tfl.append(T.ColorJitter(brightness=hsv_v, contrast=hsv_v, saturation=hsv_s, hue=hsv_h))

    final_tfl = [
        T.ToTensor(),
        T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)),
        T.RandomErasing(p=erasing, inplace=True),
    ]

    return T.Compose(primary_tfl + secondary_tfl + final_tfl)



📅 Created 1 year ago ✏️ Updated 23 days ago