Reference for ultralytics/engine/exporter.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/exporter.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
Exporter.__call__Exporter.get_int8_calibration_dataloaderExporter.export_torchscriptExporter.export_onnxExporter.export_openvinoExporter.export_paddleExporter.export_mnnExporter.export_ncnnExporter.export_coremlExporter.export_engineExporter.export_saved_modelExporter.export_pbExporter.export_tfliteExporter.export_executorchExporter.export_edgetpuExporter.export_tfjsExporter.export_rknnExporter.export_imxExporter._add_tflite_metadataExporter._pipeline_coremlExporter.add_callbackExporter.run_callbacksIOSDetectModel.forwardNMSModel.forward
class ultralytics.engine.exporter.Exporter
Exporter(self, cfg = DEFAULT_CFG, overrides = None, _callbacks = None)
A class for exporting YOLO models to various formats.
This class provides functionality to export YOLO models to different formats including ONNX, TensorRT, CoreML, TensorFlow, and others. It handles format validation, device selection, model preparation, and the actual export process for each supported format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cfg | str, optional | Path to a configuration file. | DEFAULT_CFG |
overrides | dict, optional | Configuration overrides. | None |
_callbacks | dict, optional | Dictionary of callback functions. | None |
Attributes
| Name | Type | Description |
|---|---|---|
args | SimpleNamespace | Configuration arguments for the exporter. |
callbacks | dict | Dictionary of callback functions for different export events. |
im | torch.Tensor | Input tensor for model inference during export. |
model | torch.nn.Module | The YOLO model to be exported. |
file | Path | Path to the model file being exported. |
output_shape | tuple | Shape of the model output tensor(s). |
pretty_name | str | Formatted model name for display purposes. |
metadata | dict | Model metadata including description, author, version, etc. |
device | torch.device | Device on which the model is loaded. |
imgsz | tuple | Input image size for the model. |
Methods
| Name | Description |
|---|---|
__call__ | Return list of exported files/dirs after running callbacks. |
_add_tflite_metadata | Add metadata to *.tflite models per https://ai.google.dev/edge/litert/models/metadata. |
_pipeline_coreml | Create CoreML pipeline with NMS for YOLO detection models. |
add_callback | Append the given callback to the specified event. |
export_coreml | Export YOLO model to CoreML format. |
export_edgetpu | Export YOLO model to Edge TPU format https://coral.ai/docs/edgetpu/models-intro/. |
export_engine | Export YOLO model to TensorRT format https://developer.nvidia.com/tensorrt. |
export_executorch | Exports a model to ExecuTorch (.pte) format into a dedicated directory and saves the required metadata, |
export_imx | Export YOLO model to IMX format. |
export_mnn | Export YOLO model to MNN format using MNN https://github.com/alibaba/MNN. |
export_ncnn | Export YOLO model to NCNN format using PNNX https://github.com/pnnx/pnnx. |
export_onnx | Export YOLO model to ONNX format. |
export_openvino | Export YOLO model to OpenVINO format. |
export_paddle | Export YOLO model to PaddlePaddle format. |
export_pb | Export YOLO model to TensorFlow GraphDef *.pb format https://github.com/leimao/Frozen-Graph-TensorFlow. |
export_rknn | Export YOLO model to RKNN format. |
export_saved_model | Export YOLO model to TensorFlow SavedModel format. |
export_tfjs | Export YOLO model to TensorFlow.js format. |
export_tflite | Export YOLO model to TensorFlow Lite format. |
export_torchscript | Export YOLO model to TorchScript format. |
get_int8_calibration_dataloader | Build and return a dataloader for calibration of INT8 models. |
run_callbacks | Execute all callbacks for a given event. |
Examples
Export a YOLOv8 model to ONNX format
>>> from ultralytics.engine.exporter import Exporter
>>> exporter = Exporter()
>>> exporter(model="yolov8n.pt") # exports to yolov8n.onnx
Export with specific arguments
>>> args = {"format": "onnx", "dynamic": True, "half": True}
>>> exporter = Exporter(overrides=args)
>>> exporter(model="yolov8n.pt")
Source code in ultralytics/engine/exporter.py
View on GitHubclass Exporter:
"""A class for exporting YOLO models to various formats.
This class provides functionality to export YOLO models to different formats including ONNX, TensorRT, CoreML,
TensorFlow, and others. It handles format validation, device selection, model preparation, and the actual export
process for each supported format.
Attributes:
args (SimpleNamespace): Configuration arguments for the exporter.
callbacks (dict): Dictionary of callback functions for different export events.
im (torch.Tensor): Input tensor for model inference during export.
model (torch.nn.Module): The YOLO model to be exported.
file (Path): Path to the model file being exported.
output_shape (tuple): Shape of the model output tensor(s).
pretty_name (str): Formatted model name for display purposes.
metadata (dict): Model metadata including description, author, version, etc.
device (torch.device): Device on which the model is loaded.
imgsz (tuple): Input image size for the model.
Methods:
__call__: Main export method that handles the export process.
get_int8_calibration_dataloader: Build dataloader for INT8 calibration.
export_torchscript: Export model to TorchScript format.
export_onnx: Export model to ONNX format.
export_openvino: Export model to OpenVINO format.
export_paddle: Export model to PaddlePaddle format.
export_mnn: Export model to MNN format.
export_ncnn: Export model to NCNN format.
export_coreml: Export model to CoreML format.
export_engine: Export model to TensorRT format.
export_saved_model: Export model to TensorFlow SavedModel format.
export_pb: Export model to TensorFlow GraphDef format.
export_tflite: Export model to TensorFlow Lite format.
export_edgetpu: Export model to Edge TPU format.
export_tfjs: Export model to TensorFlow.js format.
export_rknn: Export model to RKNN format.
export_imx: Export model to IMX format.
Examples:
Export a YOLOv8 model to ONNX format
>>> from ultralytics.engine.exporter import Exporter
>>> exporter = Exporter()
>>> exporter(model="yolov8n.pt") # exports to yolov8n.onnx
Export with specific arguments
>>> args = {"format": "onnx", "dynamic": True, "half": True}
>>> exporter = Exporter(overrides=args)
>>> exporter(model="yolov8n.pt")
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initialize the Exporter class.
Args:
cfg (str, optional): Path to a configuration file.
overrides (dict, optional): Configuration overrides.
_callbacks (dict, optional): Dictionary of callback functions.
"""
self.args = get_cfg(cfg, overrides)
self.callbacks = _callbacks or callbacks.get_default_callbacks()
callbacks.add_integration_callbacks(self)
method ultralytics.engine.exporter.Exporter.__call__
def __call__(self, model = None) -> str
Return list of exported files/dirs after running callbacks.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | None |
Source code in ultralytics/engine/exporter.py
View on GitHubdef __call__(self, model=None) -> str:
"""Return list of exported files/dirs after running callbacks."""
t = time.time()
fmt = self.args.format.lower() # to lowercase
if fmt in {"tensorrt", "trt"}: # 'engine' aliases
fmt = "engine"
if fmt in {"mlmodel", "mlpackage", "mlprogram", "apple", "ios", "coreml"}: # 'coreml' aliases
fmt = "coreml"
fmts_dict = export_formats()
fmts = tuple(fmts_dict["Argument"][1:]) # available export formats
if fmt not in fmts:
import difflib
# Get the closest match if format is invalid
matches = difflib.get_close_matches(fmt, fmts, n=1, cutoff=0.6) # 60% similarity required to match
if not matches:
msg = "Model is already in PyTorch format." if fmt == "pt" else f"Invalid export format='{fmt}'."
raise ValueError(f"{msg} Valid formats are {fmts}")
LOGGER.warning(f"Invalid export format='{fmt}', updating to format='{matches[0]}'")
fmt = matches[0]
flags = [x == fmt for x in fmts]
if sum(flags) != 1:
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
(
jit,
onnx,
xml,
engine,
coreml,
saved_model,
pb,
tflite,
edgetpu,
tfjs,
paddle,
mnn,
ncnn,
imx,
rknn,
executorch,
) = flags # export booleans
is_tf_format = any((saved_model, pb, tflite, edgetpu, tfjs))
# Device
dla = None
if engine and self.args.device is None:
LOGGER.warning("TensorRT requires GPU export, automatically assigning device=0")
self.args.device = "0"
if engine and "dla" in str(self.args.device): # convert int/list to str first
dla = self.args.device.rsplit(":", 1)[-1]
self.args.device = "0" # update device to "0"
assert dla in {"0", "1"}, f"Expected self.args.device='dla:0' or 'dla:1, but got {self.args.device}."
if imx and self.args.device is None and torch.cuda.is_available():
LOGGER.warning("Exporting on CPU while CUDA is available, setting device=0 for faster export on GPU.")
self.args.device = "0" # update device to "0"
self.device = select_device("cpu" if self.args.device is None else self.args.device)
# Argument compatibility checks
fmt_keys = fmts_dict["Arguments"][flags.index(True) + 1]
validate_args(fmt, self.args, fmt_keys)
if imx:
if not self.args.int8:
LOGGER.warning("IMX export requires int8=True, setting int8=True.")
self.args.int8 = True
if not self.args.nms and model.task in {"detect", "pose"}:
LOGGER.warning("IMX export requires nms=True, setting nms=True.")
self.args.nms = True
if model.task not in {"detect", "pose", "classify"}:
raise ValueError("IMX export only supported for detection, pose estimation, and classification models.")
if not hasattr(model, "names"):
model.names = default_class_names()
model.names = check_class_names(model.names)
if self.args.half and self.args.int8:
LOGGER.warning("half=True and int8=True are mutually exclusive, setting half=False.")
self.args.half = False
if self.args.half and (onnx or jit) and self.device.type == "cpu":
LOGGER.warning("half=True only compatible with GPU export, i.e. use device=0, setting half=False.")
self.args.half = False
self.imgsz = check_imgsz(self.args.imgsz, stride=model.stride, min_dim=2) # check image size
if self.args.optimize:
assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False"
assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
if rknn:
if not self.args.name:
LOGGER.warning(
"Rockchip RKNN export requires a missing 'name' arg for processor type. "
"Using default name='rk3588'."
)
self.args.name = "rk3588"
self.args.name = self.args.name.lower()
assert self.args.name in RKNN_CHIPS, (
f"Invalid processor name '{self.args.name}' for Rockchip RKNN export. Valid names are {RKNN_CHIPS}."
)
if self.args.nms:
assert not isinstance(model, ClassificationModel), "'nms=True' is not valid for classification models."
assert not tflite or not ARM64 or not LINUX, "TFLite export with NMS unsupported on ARM64 Linux"
assert not is_tf_format or TORCH_1_13, "TensorFlow exports with NMS require torch>=1.13"
assert not onnx or TORCH_1_13, "ONNX export with NMS requires torch>=1.13"
if getattr(model, "end2end", False) or isinstance(model.model[-1], RTDETRDecoder):
LOGGER.warning("'nms=True' is not available for end2end models. Forcing 'nms=False'.")
self.args.nms = False
self.args.conf = self.args.conf or 0.25 # set conf default value for nms export
if (engine or coreml or self.args.nms) and self.args.dynamic and self.args.batch == 1:
LOGGER.warning(
f"'dynamic=True' model with '{'nms=True' if self.args.nms else f'format={self.args.format}'}' requires max batch size, i.e. 'batch=16'"
)
if edgetpu:
if not LINUX or ARM64:
raise SystemError(
"Edge TPU export only supported on non-aarch64 Linux. See https://coral.ai/docs/edgetpu/compiler"
)
elif self.args.batch != 1: # see github.com/ultralytics/ultralytics/pull/13420
LOGGER.warning("Edge TPU export requires batch size 1, setting batch=1.")
self.args.batch = 1
if isinstance(model, WorldModel):
LOGGER.warning(
"YOLOWorld (original version) export is not supported to any format. "
"YOLOWorldv2 models (i.e. 'yolov8s-worldv2.pt') only support export to "
"(torchscript, onnx, openvino, engine, coreml) formats. "
"See https://docs.ultralytics.com/models/yolo-world for details."
)
model.clip_model = None # openvino int8 export error: https://github.com/ultralytics/ultralytics/pull/18445
if self.args.int8 and not self.args.data:
self.args.data = DEFAULT_CFG.data or TASK2DATA[getattr(model, "task", "detect")] # assign default data
LOGGER.warning(
f"INT8 export requires a missing 'data' arg for calibration. Using default 'data={self.args.data}'."
)
if tfjs and (ARM64 and LINUX):
raise SystemError("TF.js exports are not currently supported on ARM64 Linux")
# Recommend OpenVINO if export and Intel CPU
if SETTINGS.get("openvino_msg"):
if is_intel():
LOGGER.info(
"💡 ProTip: Export to OpenVINO format for best performance on Intel hardware."
" Learn more at https://docs.ultralytics.com/integrations/openvino/"
)
SETTINGS["openvino_msg"] = False
# Input
im = torch.zeros(self.args.batch, model.yaml.get("channels", 3), *self.imgsz).to(self.device)
file = Path(
getattr(model, "pt_path", None) or getattr(model, "yaml_file", None) or model.yaml.get("yaml_file", "")
)
if file.suffix in {".yaml", ".yml"}:
file = Path(file.name)
# Update model
model = deepcopy(model).to(self.device)
for p in model.parameters():
p.requires_grad = False
model.eval()
model.float()
model = model.fuse()
if imx:
from ultralytics.utils.export.imx import FXModel
model = FXModel(model, self.imgsz)
if tflite or edgetpu:
from ultralytics.utils.export.tensorflow import tf_wrapper
model = tf_wrapper(model)
for m in model.modules():
if isinstance(m, Classify):
m.export = True
if isinstance(m, (Detect, RTDETRDecoder)): # includes all Detect subclasses like Segment, Pose, OBB
m.dynamic = self.args.dynamic
m.export = True
m.format = self.args.format
m.max_det = self.args.max_det
m.xyxy = self.args.nms and not coreml
if hasattr(model, "pe") and hasattr(m, "fuse"): # for YOLOE models
m.fuse(model.pe.to(self.device))
elif isinstance(m, C2f) and not is_tf_format:
# EdgeTPU does not support FlexSplitV while split provides cleaner ONNX graph
m.forward = m.forward_split
y = None
for _ in range(2): # dry runs
y = NMSModel(model, self.args)(im) if self.args.nms and not coreml and not imx else model(im)
if self.args.half and (onnx or jit) and self.device.type != "cpu":
im, model = im.half(), model.half() # to FP16
# Filter warnings
warnings.filterwarnings("ignore", category=torch.jit.TracerWarning) # suppress TracerWarning
warnings.filterwarnings("ignore", category=UserWarning) # suppress shape prim::Constant missing ONNX warning
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress CoreML np.bool deprecation warning
# Assign
self.im = im
self.model = model
self.file = file
self.output_shape = (
tuple(y.shape)
if isinstance(y, torch.Tensor)
else tuple(tuple(x.shape if isinstance(x, torch.Tensor) else []) for x in y)
)
self.pretty_name = Path(self.model.yaml.get("yaml_file", self.file)).stem.replace("yolo", "YOLO")
data = model.args["data"] if hasattr(model, "args") and isinstance(model.args, dict) else ""
description = f"Ultralytics {self.pretty_name} model {f'trained on {data}' if data else ''}"
self.metadata = {
"description": description,
"author": "Ultralytics",
"date": datetime.now().isoformat(),
"version": __version__,
"license": "AGPL-3.0 License (https://ultralytics.com/license)",
"docs": "https://docs.ultralytics.com",
"stride": int(max(model.stride)),
"task": model.task,
"batch": self.args.batch,
"imgsz": self.imgsz,
"names": model.names,
"args": {k: v for k, v in self.args if k in fmt_keys},
"channels": model.yaml.get("channels", 3),
} # model metadata
if dla is not None:
self.metadata["dla"] = dla # make sure `AutoBackend` uses correct dla device if it has one
if model.task == "pose":
self.metadata["kpt_shape"] = model.model[-1].kpt_shape
if hasattr(model, "kpt_names"):
self.metadata["kpt_names"] = model.kpt_names
LOGGER.info(
f"\n{colorstr('PyTorch:')} starting from '{file}' with input shape {tuple(im.shape)} BCHW and "
f"output shape(s) {self.output_shape} ({file_size(file):.1f} MB)"
)
self.run_callbacks("on_export_start")
# Exports
f = [""] * len(fmts) # exported filenames
if jit: # TorchScript
f[0] = self.export_torchscript()
if engine: # TensorRT required before ONNX
f[1] = self.export_engine(dla=dla)
if onnx: # ONNX
f[2] = self.export_onnx()
if xml: # OpenVINO
f[3] = self.export_openvino()
if coreml: # CoreML
f[4] = self.export_coreml()
if is_tf_format: # TensorFlow formats
self.args.int8 |= edgetpu
f[5], keras_model = self.export_saved_model()
if pb or tfjs: # pb prerequisite to tfjs
f[6] = self.export_pb(keras_model=keras_model)
if tflite:
f[7] = self.export_tflite()
if edgetpu:
f[8] = self.export_edgetpu(tflite_model=Path(f[5]) / f"{self.file.stem}_full_integer_quant.tflite")
if tfjs:
f[9] = self.export_tfjs()
if paddle: # PaddlePaddle
f[10] = self.export_paddle()
if mnn: # MNN
f[11] = self.export_mnn()
if ncnn: # NCNN
f[12] = self.export_ncnn()
if imx:
f[13] = self.export_imx()
if rknn:
f[14] = self.export_rknn()
if executorch:
f[15] = self.export_executorch()
# Finish
f = [str(x) for x in f if x] # filter out '' and None
if any(f):
f = str(Path(f[-1]))
square = self.imgsz[0] == self.imgsz[1]
s = (
""
if square
else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not "
f"work. Use export 'imgsz={max(self.imgsz)}' if val is required."
)
imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(" ", "")
predict_data = f"data={data}" if model.task == "segment" and pb else ""
q = "int8" if self.args.int8 else "half" if self.args.half else "" # quantization
LOGGER.info(
f"\nExport complete ({time.time() - t:.1f}s)"
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
f"\nPredict: yolo predict task={model.task} model={f} imgsz={imgsz} {q} {predict_data}"
f"\nValidate: yolo val task={model.task} model={f} imgsz={imgsz} data={data} {q} {s}"
f"\nVisualize: https://netron.app"
)
self.run_callbacks("on_export_end")
return f # return list of exported files/dirs
method ultralytics.engine.exporter.Exporter._add_tflite_metadata
def _add_tflite_metadata(self, file)
Add metadata to *.tflite models per https://ai.google.dev/edge/litert/models/metadata.
Args
| Name | Type | Description | Default |
|---|---|---|---|
file | required |
Source code in ultralytics/engine/exporter.py
View on GitHubdef _add_tflite_metadata(self, file):
"""Add metadata to *.tflite models per https://ai.google.dev/edge/litert/models/metadata."""
import zipfile
with zipfile.ZipFile(file, "a", zipfile.ZIP_DEFLATED) as zf:
zf.writestr("metadata.json", json.dumps(self.metadata, indent=2))
method ultralytics.engine.exporter.Exporter._pipeline_coreml
def _pipeline_coreml(self, model, weights_dir = None, prefix = colorstr("CoreML Pipeline:"))
Create CoreML pipeline with NMS for YOLO detection models.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | required | ||
weights_dir | None | ||
prefix | colorstr("CoreML Pipeline:") |
Source code in ultralytics/engine/exporter.py
View on GitHubdef _pipeline_coreml(self, model, weights_dir=None, prefix=colorstr("CoreML Pipeline:")):
"""Create CoreML pipeline with NMS for YOLO detection models."""
import coremltools as ct
LOGGER.info(f"{prefix} starting pipeline with coremltools {ct.__version__}...")
# Output shapes
spec = model.get_spec()
outs = list(iter(spec.description.output))
if self.args.format == "mlmodel": # mlmodel doesn't infer shapes automatically
outs[0].type.multiArrayType.shape[:] = self.output_shape[2], self.output_shape[1] - 4
outs[1].type.multiArrayType.shape[:] = self.output_shape[2], 4
# Checks
names = self.metadata["names"]
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
nc = outs[0].type.multiArrayType.shape[-1]
if len(names) != nc: # Hack fix for MLProgram NMS bug https://github.com/ultralytics/ultralytics/issues/22309
names = {**names, **{i: str(i) for i in range(len(names), nc)}}
# Model from spec
model = ct.models.MLModel(spec, weights_dir=weights_dir)
# Create NMS protobuf
nms_spec = ct.proto.Model_pb2.Model()
nms_spec.specificationVersion = spec.specificationVersion
for i in range(len(outs)):
decoder_output = model._spec.description.output[i].SerializeToString()
nms_spec.description.input.add()
nms_spec.description.input[i].ParseFromString(decoder_output)
nms_spec.description.output.add()
nms_spec.description.output[i].ParseFromString(decoder_output)
output_names = ["confidence", "coordinates"]
for i, name in enumerate(output_names):
nms_spec.description.output[i].name = name
for i, out in enumerate(outs):
ma_type = nms_spec.description.output[i].type.multiArrayType
ma_type.shapeRange.sizeRanges.add()
ma_type.shapeRange.sizeRanges[0].lowerBound = 0
ma_type.shapeRange.sizeRanges[0].upperBound = -1
ma_type.shapeRange.sizeRanges.add()
ma_type.shapeRange.sizeRanges[1].lowerBound = out.type.multiArrayType.shape[-1]
ma_type.shapeRange.sizeRanges[1].upperBound = out.type.multiArrayType.shape[-1]
del ma_type.shape[:]
nms = nms_spec.nonMaximumSuppression
nms.confidenceInputFeatureName = outs[0].name # 1x507x80
nms.coordinatesInputFeatureName = outs[1].name # 1x507x4
nms.confidenceOutputFeatureName = output_names[0]
nms.coordinatesOutputFeatureName = output_names[1]
nms.iouThresholdInputFeatureName = "iouThreshold"
nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
nms.iouThreshold = self.args.iou
nms.confidenceThreshold = self.args.conf
nms.pickTop.perClass = True
nms.stringClassLabels.vector.extend(names.values())
nms_model = ct.models.MLModel(nms_spec)
# Pipeline models together
pipeline = ct.models.pipeline.Pipeline(
input_features=[
("image", ct.models.datatypes.Array(3, ny, nx)),
("iouThreshold", ct.models.datatypes.Double()),
("confidenceThreshold", ct.models.datatypes.Double()),
],
output_features=output_names,
)
pipeline.add_model(model)
pipeline.add_model(nms_model)
# Correct datatypes
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
# Update metadata
pipeline.spec.specificationVersion = spec.specificationVersion
pipeline.spec.description.metadata.userDefined.update(
{"IoU threshold": str(nms.iouThreshold), "Confidence threshold": str(nms.confidenceThreshold)}
)
# Save the model
model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir)
model.input_description["image"] = "Input image"
model.input_description["iouThreshold"] = f"(optional) IoU threshold override (default: {nms.iouThreshold})"
model.input_description["confidenceThreshold"] = (
f"(optional) Confidence threshold override (default: {nms.confidenceThreshold})"
)
model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")'
model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)"
LOGGER.info(f"{prefix} pipeline success")
return model
method ultralytics.engine.exporter.Exporter.add_callback
def add_callback(self, event: str, callback)
Append the given callback to the specified event.
Args
| Name | Type | Description | Default |
|---|---|---|---|
event | str | required | |
callback | required |
Source code in ultralytics/engine/exporter.py
View on GitHubdef add_callback(self, event: str, callback):
"""Append the given callback to the specified event."""
self.callbacks[event].append(callback)
method ultralytics.engine.exporter.Exporter.export_coreml
def export_coreml(self, prefix = colorstr("CoreML:"))
Export YOLO model to CoreML format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | colorstr("CoreML:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_coreml(self, prefix=colorstr("CoreML:")):
"""Export YOLO model to CoreML format."""
mlmodel = self.args.format.lower() == "mlmodel" # legacy *.mlmodel export format requested
check_requirements("coremltools>=8.0")
import coremltools as ct
LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
assert not WINDOWS, "CoreML export is not supported on Windows, please run on macOS or Linux."
assert TORCH_1_11, "CoreML export requires torch>=1.11"
if self.args.batch > 1:
assert self.args.dynamic, (
"batch sizes > 1 are not supported without 'dynamic=True' for CoreML export. Please retry at 'dynamic=True'."
)
if self.args.dynamic:
assert not self.args.nms, (
"'nms=True' cannot be used together with 'dynamic=True' for CoreML export. Please disable one of them."
)
assert self.model.task != "classify", "'dynamic=True' is not supported for CoreML classification models."
f = self.file.with_suffix(".mlmodel" if mlmodel else ".mlpackage")
if f.is_dir():
shutil.rmtree(f)
classifier_config = None
if self.model.task == "classify":
classifier_config = ct.ClassifierConfig(list(self.model.names.values()))
model = self.model
elif self.model.task == "detect":
model = IOSDetectModel(self.model, self.im, mlprogram=not mlmodel) if self.args.nms else self.model
else:
if self.args.nms:
LOGGER.warning(f"{prefix} 'nms=True' is only available for Detect models like 'yolo11n.pt'.")
# TODO CoreML Segment and Pose model pipelining
model = self.model
ts = torch.jit.trace(model.eval(), self.im, strict=False) # TorchScript model
if self.args.dynamic:
input_shape = ct.Shape(
shape=(
ct.RangeDim(lower_bound=1, upper_bound=self.args.batch, default=1),
self.im.shape[1],
ct.RangeDim(lower_bound=32, upper_bound=self.imgsz[0] * 2, default=self.imgsz[0]),
ct.RangeDim(lower_bound=32, upper_bound=self.imgsz[1] * 2, default=self.imgsz[1]),
)
)
inputs = [ct.TensorType("image", shape=input_shape)]
else:
inputs = [ct.ImageType("image", shape=self.im.shape, scale=1 / 255, bias=[0.0, 0.0, 0.0])]
# Based on apple's documentation it is better to leave out the minimum_deployment target and let that get set
# Internally based on the model conversion and output type.
# Setting minimum_depoloyment_target >= iOS16 will require setting compute_precision=ct.precision.FLOAT32.
# iOS16 adds in better support for FP16, but none of the CoreML NMS specifications handle FP16 as input.
ct_model = ct.convert(
ts,
inputs=inputs,
classifier_config=classifier_config,
convert_to="neuralnetwork" if mlmodel else "mlprogram",
)
bits, mode = (8, "kmeans") if self.args.int8 else (16, "linear") if self.args.half else (32, None)
if bits < 32:
if "kmeans" in mode:
check_requirements("scikit-learn") # scikit-learn package required for k-means quantization
if mlmodel:
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
elif bits == 8: # mlprogram already quantized to FP16
import coremltools.optimize.coreml as cto
op_config = cto.OpPalettizerConfig(mode="kmeans", nbits=bits, weight_threshold=512)
config = cto.OptimizationConfig(global_config=op_config)
ct_model = cto.palettize_weights(ct_model, config=config)
if self.args.nms and self.model.task == "detect":
ct_model = self._pipeline_coreml(ct_model, weights_dir=None if mlmodel else ct_model.weights_dir)
m = self.metadata # metadata dict
ct_model.short_description = m.pop("description")
ct_model.author = m.pop("author")
ct_model.license = m.pop("license")
ct_model.version = m.pop("version")
ct_model.user_defined_metadata.update({k: str(v) for k, v in m.items()})
if self.model.task == "classify":
ct_model.user_defined_metadata.update({"com.apple.coreml.model.preview.type": "imageClassifier"})
try:
ct_model.save(str(f)) # save *.mlpackage
except Exception as e:
LOGGER.warning(
f"{prefix} CoreML export to *.mlpackage failed ({e}), reverting to *.mlmodel export. "
f"Known coremltools Python 3.11 and Windows bugs https://github.com/apple/coremltools/issues/1928."
)
f = f.with_suffix(".mlmodel")
ct_model.save(str(f))
return f
method ultralytics.engine.exporter.Exporter.export_edgetpu
def export_edgetpu(self, tflite_model = "", prefix = colorstr("Edge TPU:"))
Export YOLO model to Edge TPU format https://coral.ai/docs/edgetpu/models-intro/.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tflite_model | "" | ||
prefix | colorstr("Edge TPU:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_edgetpu(self, tflite_model="", prefix=colorstr("Edge TPU:")):
"""Export YOLO model to Edge TPU format https://coral.ai/docs/edgetpu/models-intro/."""
cmd = "edgetpu_compiler --version"
help_url = "https://coral.ai/docs/edgetpu/compiler/"
assert LINUX, f"export only supported on Linux. See {help_url}"
if subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True).returncode != 0:
LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}")
sudo = "sudo " if is_sudo_available() else ""
for c in (
f"{sudo}mkdir -p /etc/apt/keyrings",
f"curl -fsSL https://packages.cloud.google.com/apt/doc/apt-key.gpg | {sudo}gpg --dearmor -o /etc/apt/keyrings/google.gpg",
f'echo "deb [signed-by=/etc/apt/keyrings/google.gpg] https://packages.cloud.google.com/apt coral-edgetpu-stable main" | {sudo}tee /etc/apt/sources.list.d/coral-edgetpu.list',
f"{sudo}apt-get update",
f"{sudo}apt-get install -y edgetpu-compiler",
):
subprocess.run(c, shell=True, check=True)
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().rsplit(maxsplit=1)[-1]
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
tflite2edgetpu(tflite_file=tflite_model, output_dir=tflite_model.parent, prefix=prefix)
f = str(tflite_model).replace(".tflite", "_edgetpu.tflite") # Edge TPU model
self._add_tflite_metadata(f)
return f
method ultralytics.engine.exporter.Exporter.export_engine
def export_engine(self, dla = None, prefix = colorstr("TensorRT:"))
Export YOLO model to TensorRT format https://developer.nvidia.com/tensorrt.
Args
| Name | Type | Description | Default |
|---|---|---|---|
dla | None | ||
prefix | colorstr("TensorRT:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_engine(self, dla=None, prefix=colorstr("TensorRT:")):
"""Export YOLO model to TensorRT format https://developer.nvidia.com/tensorrt."""
assert self.im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. use 'device=0'"
f_onnx = self.export_onnx() # run before TRT import https://github.com/ultralytics/ultralytics/issues/7016
try:
import tensorrt as trt
except ImportError:
if LINUX:
cuda_version = torch.version.cuda.split(".")[0]
check_requirements(f"tensorrt-cu{cuda_version}>7.0.0,!=10.1.0")
import tensorrt as trt
check_version(trt.__version__, ">=7.0.0", hard=True)
check_version(trt.__version__, "!=10.1.0", msg="https://github.com/ultralytics/ultralytics/pull/14239")
# Setup and checks
LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
f = self.file.with_suffix(".engine") # TensorRT engine file
onnx2engine(
f_onnx,
f,
self.args.workspace,
self.args.half,
self.args.int8,
self.args.dynamic,
self.im.shape,
dla=dla,
dataset=self.get_int8_calibration_dataloader(prefix) if self.args.int8 else None,
metadata=self.metadata,
verbose=self.args.verbose,
prefix=prefix,
)
return f
method ultralytics.engine.exporter.Exporter.export_executorch
def export_executorch(self, prefix = colorstr("ExecuTorch:"))
Exports a model to ExecuTorch (.pte) format into a dedicated directory and saves the required metadata,
following Ultralytics conventions.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | colorstr("ExecuTorch:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_executorch(self, prefix=colorstr("ExecuTorch:")):
"""Exports a model to ExecuTorch (.pte) format into a dedicated directory and saves the required metadata,
following Ultralytics conventions.
"""
LOGGER.info(f"\n{prefix} starting export with ExecuTorch...")
assert TORCH_2_9, f"ExecuTorch export requires torch>=2.9.0 but torch=={TORCH_VERSION} is installed"
# TorchAO release compatibility table bug https://github.com/pytorch/ao/issues/2919
# Setuptools bug: https://github.com/pypa/setuptools/issues/4483
check_requirements("setuptools<71.0.0") # Setuptools bug: https://github.com/pypa/setuptools/issues/4483
check_requirements(("executorch==1.0.0", "flatbuffers"))
import torch
from executorch.backends.xnnpack.partition.xnnpack_partitioner import XnnpackPartitioner
from executorch.exir import to_edge_transform_and_lower
file_directory = Path(str(self.file).replace(self.file.suffix, "_executorch_model"))
file_directory.mkdir(parents=True, exist_ok=True)
file_pte = file_directory / self.file.with_suffix(".pte").name
sample_inputs = (self.im,)
et_program = to_edge_transform_and_lower(
torch.export.export(self.model, sample_inputs), partitioner=[XnnpackPartitioner()]
).to_executorch()
with open(file_pte, "wb") as file:
file.write(et_program.buffer)
YAML.save(file_directory / "metadata.yaml", self.metadata)
return str(file_directory)
method ultralytics.engine.exporter.Exporter.export_imx
def export_imx(self, prefix = colorstr("IMX:"))
Export YOLO model to IMX format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | colorstr("IMX:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_imx(self, prefix=colorstr("IMX:")):
"""Export YOLO model to IMX format."""
assert LINUX, (
"export only supported on Linux. "
"See https://developer.aitrios.sony-semicon.com/en/raspberrypi-ai-camera/documentation/imx500-converter"
)
assert not IS_PYTHON_3_12, "IMX export requires Python>=3.8;<3.12"
assert not TORCH_2_9, f"IMX export requires PyTorch<2.9. Current PyTorch version is {TORCH_VERSION}."
if getattr(self.model, "end2end", False):
raise ValueError("IMX export is not supported for end2end models.")
check_requirements(
("model-compression-toolkit>=2.4.1", "sony-custom-layers>=0.3.0", "edge-mdt-tpc>=1.1.0", "pydantic<=2.11.7")
)
check_requirements("imx500-converter[pt]>=3.16.1") # Separate requirements for imx500-converter
check_requirements("mct-quantizers>=1.6.0") # Separate for compatibility with model-compression-toolkit
# Install Java>=17
try:
java_output = subprocess.run(["java", "--version"], check=True, capture_output=True).stdout.decode()
version_match = re.search(r"(?:openjdk|java) (\d+)", java_output)
java_version = int(version_match.group(1)) if version_match else 0
assert java_version >= 17, "Java version too old"
except (FileNotFoundError, subprocess.CalledProcessError, AssertionError):
cmd = None
if IS_UBUNTU or IS_DEBIAN_TRIXIE:
LOGGER.info(f"\n{prefix} installing Java 21 for Ubuntu...")
cmd = (["sudo"] if is_sudo_available() else []) + ["apt", "install", "-y", "openjdk-21-jre"]
elif IS_RASPBERRYPI or IS_DEBIAN_BOOKWORM:
LOGGER.info(f"\n{prefix} installing Java 17 for Raspberry Pi or Debian ...")
cmd = (["sudo"] if is_sudo_available() else []) + ["apt", "install", "-y", "openjdk-17-jre"]
if cmd:
subprocess.run(cmd, check=True)
return torch2imx(
self.model,
self.file,
self.args.conf,
self.args.iou,
self.args.max_det,
metadata=self.metadata,
dataset=self.get_int8_calibration_dataloader(prefix),
prefix=prefix,
)
method ultralytics.engine.exporter.Exporter.export_mnn
def export_mnn(self, prefix = colorstr("MNN:"))
Export YOLO model to MNN format using MNN https://github.com/alibaba/MNN.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | colorstr("MNN:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_mnn(self, prefix=colorstr("MNN:")):
"""Export YOLO model to MNN format using MNN https://github.com/alibaba/MNN."""
f_onnx = self.export_onnx() # get onnx model first
check_requirements("MNN>=2.9.6")
import MNN
from MNN.tools import mnnconvert
# Setup and checks
LOGGER.info(f"\n{prefix} starting export with MNN {MNN.version()}...")
assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
f = str(self.file.with_suffix(".mnn")) # MNN model file
args = ["", "-f", "ONNX", "--modelFile", f_onnx, "--MNNModel", f, "--bizCode", json.dumps(self.metadata)]
if self.args.int8:
args.extend(("--weightQuantBits", "8"))
if self.args.half:
args.append("--fp16")
mnnconvert.convert(args)
# remove scratch file for model convert optimize
convert_scratch = Path(self.file.parent / ".__convert_external_data.bin")
if convert_scratch.exists():
convert_scratch.unlink()
return f
method ultralytics.engine.exporter.Exporter.export_ncnn
def export_ncnn(self, prefix = colorstr("NCNN:"))
Export YOLO model to NCNN format using PNNX https://github.com/pnnx/pnnx.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | colorstr("NCNN:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_ncnn(self, prefix=colorstr("NCNN:")):
"""Export YOLO model to NCNN format using PNNX https://github.com/pnnx/pnnx."""
check_requirements("ncnn", cmds="--no-deps") # no deps to avoid installing opencv-python
check_requirements("pnnx")
import ncnn
import pnnx
LOGGER.info(f"\n{prefix} starting export with NCNN {ncnn.__version__} and PNNX {pnnx.__version__}...")
f = Path(str(self.file).replace(self.file.suffix, f"_ncnn_model{os.sep}"))
ncnn_args = dict(
ncnnparam=(f / "model.ncnn.param").as_posix(),
ncnnbin=(f / "model.ncnn.bin").as_posix(),
ncnnpy=(f / "model_ncnn.py").as_posix(),
)
pnnx_args = dict(
ptpath=(f / "model.pt").as_posix(),
pnnxparam=(f / "model.pnnx.param").as_posix(),
pnnxbin=(f / "model.pnnx.bin").as_posix(),
pnnxpy=(f / "model_pnnx.py").as_posix(),
pnnxonnx=(f / "model.pnnx.onnx").as_posix(),
)
f.mkdir(exist_ok=True) # make ncnn_model directory
pnnx.export(self.model, inputs=self.im, **ncnn_args, **pnnx_args, fp16=self.args.half, device=self.device.type)
for f_debug in ("debug.bin", "debug.param", "debug2.bin", "debug2.param", *pnnx_args.values()):
Path(f_debug).unlink(missing_ok=True)
YAML.save(f / "metadata.yaml", self.metadata) # add metadata.yaml
return str(f)
method ultralytics.engine.exporter.Exporter.export_onnx
def export_onnx(self, prefix = colorstr("ONNX:"))
Export YOLO model to ONNX format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | colorstr("ONNX:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_onnx(self, prefix=colorstr("ONNX:")):
"""Export YOLO model to ONNX format."""
requirements = ["onnx>=1.12.0,<=1.19.1"]
if self.args.simplify:
requirements += ["onnxslim>=0.1.71", "onnxruntime" + ("-gpu" if torch.cuda.is_available() else "")]
check_requirements(requirements)
import onnx
opset = self.args.opset or best_onnx_opset(onnx, cuda="cuda" in self.device.type)
LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__} opset {opset}...")
if self.args.nms:
assert TORCH_1_13, f"'nms=True' ONNX export requires torch>=1.13 (found torch=={TORCH_VERSION})"
f = str(self.file.with_suffix(".onnx"))
output_names = ["output0", "output1"] if self.model.task == "segment" else ["output0"]
dynamic = self.args.dynamic
if dynamic:
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400)
dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 84, 8400)
if self.args.nms: # only batch size is dynamic with NMS
dynamic["output0"].pop(2)
if self.args.nms and self.model.task == "obb":
self.args.opset = opset # for NMSModel
with arange_patch(self.args):
torch2onnx(
NMSModel(self.model, self.args) if self.args.nms else self.model,
self.im,
f,
opset=opset,
input_names=["images"],
output_names=output_names,
dynamic=dynamic or None,
)
# Checks
model_onnx = onnx.load(f) # load onnx model
# Simplify
if self.args.simplify:
try:
import onnxslim
LOGGER.info(f"{prefix} slimming with onnxslim {onnxslim.__version__}...")
model_onnx = onnxslim.slim(model_onnx)
except Exception as e:
LOGGER.warning(f"{prefix} simplifier failure: {e}")
# Metadata
for k, v in self.metadata.items():
meta = model_onnx.metadata_props.add()
meta.key, meta.value = k, str(v)
# IR version
if getattr(model_onnx, "ir_version", 0) > 10:
LOGGER.info(f"{prefix} limiting IR version {model_onnx.ir_version} to 10 for ONNXRuntime compatibility...")
model_onnx.ir_version = 10
onnx.save(model_onnx, f)
return f
method ultralytics.engine.exporter.Exporter.export_openvino
def export_openvino(self, prefix = colorstr("OpenVINO:"))
Export YOLO model to OpenVINO format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | colorstr("OpenVINO:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_openvino(self, prefix=colorstr("OpenVINO:")):
"""Export YOLO model to OpenVINO format."""
# OpenVINO <= 2025.1.0 error on macOS 15.4+: https://github.com/openvinotoolkit/openvino/issues/30023"
check_requirements("openvino>=2025.2.0" if MACOS and MACOS_VERSION >= "15.4" else "openvino>=2024.0.0")
import openvino as ov
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
assert TORCH_2_1, f"OpenVINO export requires torch>=2.1 but torch=={TORCH_VERSION} is installed"
ov_model = ov.convert_model(
NMSModel(self.model, self.args) if self.args.nms else self.model,
input=None if self.args.dynamic else [self.im.shape],
example_input=self.im,
)
def serialize(ov_model, file):
"""Set RT info, serialize, and save metadata YAML."""
ov_model.set_rt_info("YOLO", ["model_info", "model_type"])
ov_model.set_rt_info(True, ["model_info", "reverse_input_channels"])
ov_model.set_rt_info(114, ["model_info", "pad_value"])
ov_model.set_rt_info([255.0], ["model_info", "scale_values"])
ov_model.set_rt_info(self.args.iou, ["model_info", "iou_threshold"])
ov_model.set_rt_info([v.replace(" ", "_") for v in self.model.names.values()], ["model_info", "labels"])
if self.model.task != "classify":
ov_model.set_rt_info("fit_to_window_letterbox", ["model_info", "resize_type"])
ov.save_model(ov_model, file, compress_to_fp16=self.args.half)
YAML.save(Path(file).parent / "metadata.yaml", self.metadata) # add metadata.yaml
if self.args.int8:
fq = str(self.file).replace(self.file.suffix, f"_int8_openvino_model{os.sep}")
fq_ov = str(Path(fq) / self.file.with_suffix(".xml").name)
# INT8 requires nncf, nncf requires packaging>=23.2 https://github.com/openvinotoolkit/nncf/issues/3463
check_requirements("packaging>=23.2") # must be installed first to build nncf wheel
check_requirements("nncf>=2.14.0")
import nncf
def transform_fn(data_item) -> np.ndarray:
"""Quantization transform function."""
data_item: torch.Tensor = data_item["img"] if isinstance(data_item, dict) else data_item
assert data_item.dtype == torch.uint8, "Input image must be uint8 for the quantization preprocessing"
im = data_item.numpy().astype(np.float32) / 255.0 # uint8 to fp16/32 and 0-255 to 0.0-1.0
return np.expand_dims(im, 0) if im.ndim == 3 else im
# Generate calibration data for integer quantization
ignored_scope = None
if isinstance(self.model.model[-1], Detect):
# Includes all Detect subclasses like Segment, Pose, OBB, WorldDetect, YOLOEDetect
head_module_name = ".".join(list(self.model.named_modules())[-1][0].split(".")[:2])
ignored_scope = nncf.IgnoredScope( # ignore operations
patterns=[
f".*{head_module_name}/.*/Add",
f".*{head_module_name}/.*/Sub*",
f".*{head_module_name}/.*/Mul*",
f".*{head_module_name}/.*/Div*",
f".*{head_module_name}\\.dfl.*",
],
types=["Sigmoid"],
)
quantized_ov_model = nncf.quantize(
model=ov_model,
calibration_dataset=nncf.Dataset(self.get_int8_calibration_dataloader(prefix), transform_fn),
preset=nncf.QuantizationPreset.MIXED,
ignored_scope=ignored_scope,
)
serialize(quantized_ov_model, fq_ov)
return fq
f = str(self.file).replace(self.file.suffix, f"_openvino_model{os.sep}")
f_ov = str(Path(f) / self.file.with_suffix(".xml").name)
serialize(ov_model, f_ov)
return f
method ultralytics.engine.exporter.Exporter.export_paddle
def export_paddle(self, prefix = colorstr("PaddlePaddle:"))
Export YOLO model to PaddlePaddle format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | colorstr("PaddlePaddle:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_paddle(self, prefix=colorstr("PaddlePaddle:")):
"""Export YOLO model to PaddlePaddle format."""
assert not IS_JETSON, "Jetson Paddle exports not supported yet"
check_requirements(
(
"paddlepaddle-gpu"
if torch.cuda.is_available()
else "paddlepaddle==3.0.0" # pin 3.0.0 for ARM64
if ARM64
else "paddlepaddle>=3.0.0",
"x2paddle",
)
)
import x2paddle
from x2paddle.convert import pytorch2paddle
LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...")
f = str(self.file).replace(self.file.suffix, f"_paddle_model{os.sep}")
pytorch2paddle(module=self.model, save_dir=f, jit_type="trace", input_examples=[self.im]) # export
YAML.save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
return f
method ultralytics.engine.exporter.Exporter.export_pb
def export_pb(self, keras_model, prefix = colorstr("TensorFlow GraphDef:"))
Export YOLO model to TensorFlow GraphDef *.pb format https://github.com/leimao/Frozen-Graph-TensorFlow.
Args
| Name | Type | Description | Default |
|---|---|---|---|
keras_model | required | ||
prefix | colorstr("TensorFlow GraphDef:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_pb(self, keras_model, prefix=colorstr("TensorFlow GraphDef:")):
"""Export YOLO model to TensorFlow GraphDef *.pb format https://github.com/leimao/Frozen-Graph-TensorFlow."""
f = self.file.with_suffix(".pb")
keras2pb(keras_model, f, prefix)
return f
method ultralytics.engine.exporter.Exporter.export_rknn
def export_rknn(self, prefix = colorstr("RKNN:"))
Export YOLO model to RKNN format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | colorstr("RKNN:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_rknn(self, prefix=colorstr("RKNN:")):
"""Export YOLO model to RKNN format."""
LOGGER.info(f"\n{prefix} starting export with rknn-toolkit2...")
check_requirements("rknn-toolkit2")
if IS_COLAB:
# Prevent 'exit' from closing the notebook https://github.com/airockchip/rknn-toolkit2/issues/259
import builtins
builtins.exit = lambda: None
from rknn.api import RKNN
f = self.export_onnx()
export_path = Path(f"{Path(f).stem}_rknn_model")
export_path.mkdir(exist_ok=True)
rknn = RKNN(verbose=False)
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform=self.args.name)
rknn.load_onnx(model=f)
rknn.build(do_quantization=False) # TODO: Add quantization support
f = f.replace(".onnx", f"-{self.args.name}.rknn")
rknn.export_rknn(f"{export_path / f}")
YAML.save(export_path / "metadata.yaml", self.metadata)
return export_path
method ultralytics.engine.exporter.Exporter.export_saved_model
def export_saved_model(self, prefix = colorstr("TensorFlow SavedModel:"))
Export YOLO model to TensorFlow SavedModel format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | colorstr("TensorFlow SavedModel:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_saved_model(self, prefix=colorstr("TensorFlow SavedModel:")):
"""Export YOLO model to TensorFlow SavedModel format."""
cuda = torch.cuda.is_available()
try:
import tensorflow as tf
except ImportError:
check_requirements("tensorflow>=2.0.0,<=2.19.0")
import tensorflow as tf
check_requirements(
(
"tf_keras<=2.19.0", # required by 'onnx2tf' package
"sng4onnx>=1.0.1", # required by 'onnx2tf' package
"onnx_graphsurgeon>=0.3.26", # required by 'onnx2tf' package
"ai-edge-litert>=1.2.0" + (",<1.4.0" if MACOS else ""), # required by 'onnx2tf' package
"onnx>=1.12.0,<=1.19.1",
"onnx2tf>=1.26.3",
"onnxslim>=0.1.71",
"onnxruntime-gpu" if cuda else "onnxruntime",
"protobuf>=5",
),
cmds="--extra-index-url https://pypi.ngc.nvidia.com", # onnx_graphsurgeon only on NVIDIA
)
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
check_version(
tf.__version__,
">=2.0.0",
name="tensorflow",
verbose=True,
msg="https://github.com/ultralytics/ultralytics/issues/5161",
)
f = Path(str(self.file).replace(self.file.suffix, "_saved_model"))
if f.is_dir():
shutil.rmtree(f) # delete output folder
# Export to TF
images = None
if self.args.int8 and self.args.data:
images = [batch["img"] for batch in self.get_int8_calibration_dataloader(prefix)]
images = (
torch.nn.functional.interpolate(torch.cat(images, 0).float(), size=self.imgsz)
.permute(0, 2, 3, 1)
.numpy()
.astype(np.float32)
)
# Export to ONNX
if isinstance(self.model.model[-1], RTDETRDecoder):
self.args.opset = self.args.opset or 19
assert 16 <= self.args.opset <= 19, "RTDETR export requires opset>=16;<=19"
self.args.simplify = True
f_onnx = self.export_onnx() # ensure ONNX is available
keras_model = onnx2saved_model(
f_onnx,
f,
int8=self.args.int8,
images=images,
disable_group_convolution=self.args.format in {"tfjs", "edgetpu"},
prefix=prefix,
)
YAML.save(f / "metadata.yaml", self.metadata) # add metadata.yaml
# Add TFLite metadata
for file in f.rglob("*.tflite"):
file.unlink() if "quant_with_int16_act.tflite" in str(file) else self._add_tflite_metadata(file)
return str(f), keras_model # or keras_model = tf.saved_model.load(f, tags=None, options=None)
method ultralytics.engine.exporter.Exporter.export_tfjs
def export_tfjs(self, prefix = colorstr("TensorFlow.js:"))
Export YOLO model to TensorFlow.js format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | colorstr("TensorFlow.js:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_tfjs(self, prefix=colorstr("TensorFlow.js:")):
"""Export YOLO model to TensorFlow.js format."""
check_requirements("tensorflowjs")
f = str(self.file).replace(self.file.suffix, "_web_model") # js dir
f_pb = str(self.file.with_suffix(".pb")) # *.pb path
pb2tfjs(pb_file=f_pb, output_dir=f, half=self.args.half, int8=self.args.int8, prefix=prefix)
# Add metadata
YAML.save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
return f
method ultralytics.engine.exporter.Exporter.export_tflite
def export_tflite(self, prefix = colorstr("TensorFlow Lite:"))
Export YOLO model to TensorFlow Lite format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | colorstr("TensorFlow Lite:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_tflite(self, prefix=colorstr("TensorFlow Lite:")):
"""Export YOLO model to TensorFlow Lite format."""
# BUG https://github.com/ultralytics/ultralytics/issues/13436
import tensorflow as tf
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
saved_model = Path(str(self.file).replace(self.file.suffix, "_saved_model"))
if self.args.int8:
f = saved_model / f"{self.file.stem}_int8.tflite" # fp32 in/out
elif self.args.half:
f = saved_model / f"{self.file.stem}_float16.tflite" # fp32 in/out
else:
f = saved_model / f"{self.file.stem}_float32.tflite"
return str(f)
method ultralytics.engine.exporter.Exporter.export_torchscript
def export_torchscript(self, prefix = colorstr("TorchScript:"))
Export YOLO model to TorchScript format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | colorstr("TorchScript:") |
Source code in ultralytics/engine/exporter.py
View on GitHub@try_export
def export_torchscript(self, prefix=colorstr("TorchScript:")):
"""Export YOLO model to TorchScript format."""
LOGGER.info(f"\n{prefix} starting export with torch {TORCH_VERSION}...")
f = self.file.with_suffix(".torchscript")
ts = torch.jit.trace(NMSModel(self.model, self.args) if self.args.nms else self.model, self.im, strict=False)
extra_files = {"config.txt": json.dumps(self.metadata)} # torch._C.ExtraFilesMap()
if self.args.optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
LOGGER.info(f"{prefix} optimizing for mobile...")
from torch.utils.mobile_optimizer import optimize_for_mobile
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
else:
ts.save(str(f), _extra_files=extra_files)
return f
method ultralytics.engine.exporter.Exporter.get_int8_calibration_dataloader
def get_int8_calibration_dataloader(self, prefix = "")
Build and return a dataloader for calibration of INT8 models.
Args
| Name | Type | Description | Default |
|---|---|---|---|
prefix | "" |
Source code in ultralytics/engine/exporter.py
View on GitHubdef get_int8_calibration_dataloader(self, prefix=""):
"""Build and return a dataloader for calibration of INT8 models."""
LOGGER.info(f"{prefix} collecting INT8 calibration images from 'data={self.args.data}'")
data = (check_cls_dataset if self.model.task == "classify" else check_det_dataset)(self.args.data)
dataset = YOLODataset(
data[self.args.split or "val"],
data=data,
fraction=self.args.fraction,
task=self.model.task,
imgsz=self.imgsz[0],
augment=False,
batch_size=self.args.batch,
)
n = len(dataset)
if n < self.args.batch:
raise ValueError(
f"The calibration dataset ({n} images) must have at least as many images as the batch size "
f"('batch={self.args.batch}')."
)
elif n < 300:
LOGGER.warning(f"{prefix} >300 images recommended for INT8 calibration, found {n} images.")
return build_dataloader(dataset, batch=self.args.batch, workers=0, drop_last=True) # required for batch loading
method ultralytics.engine.exporter.Exporter.run_callbacks
def run_callbacks(self, event: str)
Execute all callbacks for a given event.
Args
| Name | Type | Description | Default |
|---|---|---|---|
event | str | required |
Source code in ultralytics/engine/exporter.py
View on GitHubdef run_callbacks(self, event: str):
"""Execute all callbacks for a given event."""
for callback in self.callbacks.get(event, []):
callback(self)
class ultralytics.engine.exporter.IOSDetectModel
IOSDetectModel(self, model, im, mlprogram = True)
Bases: torch.nn.Module
Wrap an Ultralytics YOLO model for Apple iOS CoreML export.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | torch.nn.Module | The YOLO model to wrap. | required |
im | torch.Tensor | Example input tensor with shape (B, C, H, W). | required |
mlprogram | bool | Whether exporting to MLProgram format to fix NMS bug. | True |
Methods
| Name | Description |
|---|---|
forward | Normalize predictions of object detection model with input size-dependent factors. |
Source code in ultralytics/engine/exporter.py
View on GitHubclass IOSDetectModel(torch.nn.Module):
"""Wrap an Ultralytics YOLO model for Apple iOS CoreML export."""
def __init__(self, model, im, mlprogram=True):
"""Initialize the IOSDetectModel class with a YOLO model and example image.
Args:
model (torch.nn.Module): The YOLO model to wrap.
im (torch.Tensor): Example input tensor with shape (B, C, H, W).
mlprogram (bool): Whether exporting to MLProgram format to fix NMS bug.
"""
super().__init__()
_, _, h, w = im.shape # batch, channel, height, width
self.model = model
self.nc = len(model.names) # number of classes
self.mlprogram = mlprogram
if w == h:
self.normalize = 1.0 / w # scalar
else:
self.normalize = torch.tensor(
[1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h], # broadcast (slower, smaller)
device=next(model.parameters()).device,
)
method ultralytics.engine.exporter.IOSDetectModel.forward
def forward(self, x)
Normalize predictions of object detection model with input size-dependent factors.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | required |
Source code in ultralytics/engine/exporter.py
View on GitHubdef forward(self, x):
"""Normalize predictions of object detection model with input size-dependent factors."""
xywh, cls = self.model(x)[0].transpose(0, 1).split((4, self.nc), 1)
if self.mlprogram and self.nc % 80 != 0: # NMS bug https://github.com/ultralytics/ultralytics/issues/22309
pad_length = int(((self.nc + 79) // 80) * 80) - self.nc # pad class length to multiple of 80
cls = torch.nn.functional.pad(cls, (0, pad_length, 0, 0), "constant", 0)
return cls, xywh * self.normalize
class ultralytics.engine.exporter.NMSModel
NMSModel(self, model, args)
Bases: torch.nn.Module
Model wrapper with embedded NMS for Detect, Segment, Pose and OBB.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | torch.nn.Module | The model to wrap with NMS postprocessing. | required |
args | Namespace | The export arguments. | required |
Methods
| Name | Description |
|---|---|
forward | Perform inference with NMS post-processing. Supports Detect, Segment, OBB and Pose. |
Source code in ultralytics/engine/exporter.py
View on GitHubclass NMSModel(torch.nn.Module):
"""Model wrapper with embedded NMS for Detect, Segment, Pose and OBB."""
def __init__(self, model, args):
"""Initialize the NMSModel.
Args:
model (torch.nn.Module): The model to wrap with NMS postprocessing.
args (Namespace): The export arguments.
"""
super().__init__()
self.model = model
self.args = args
self.obb = model.task == "obb"
self.is_tf = self.args.format in frozenset({"saved_model", "tflite", "tfjs"})
method ultralytics.engine.exporter.NMSModel.forward
def forward(self, x)
Perform inference with NMS post-processing. Supports Detect, Segment, OBB and Pose.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | The preprocessed tensor with shape (N, 3, H, W). | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | List of detections, each an (N, max_det, 4 + 2 + extra_shape) Tensor where N is the number |
Source code in ultralytics/engine/exporter.py
View on GitHubdef forward(self, x):
"""Perform inference with NMS post-processing. Supports Detect, Segment, OBB and Pose.
Args:
x (torch.Tensor): The preprocessed tensor with shape (N, 3, H, W).
Returns:
(torch.Tensor): List of detections, each an (N, max_det, 4 + 2 + extra_shape) Tensor where N is the number
of detections after NMS.
"""
from functools import partial
from torchvision.ops import nms
preds = self.model(x)
pred = preds[0] if isinstance(preds, tuple) else preds
kwargs = dict(device=pred.device, dtype=pred.dtype)
bs = pred.shape[0]
pred = pred.transpose(-1, -2) # shape(1,84,6300) to shape(1,6300,84)
extra_shape = pred.shape[-1] - (4 + len(self.model.names)) # extras from Segment, OBB, Pose
if self.args.dynamic and self.args.batch > 1: # batch size needs to always be same due to loop unroll
pad = torch.zeros(torch.max(torch.tensor(self.args.batch - bs), torch.tensor(0)), *pred.shape[1:], **kwargs)
pred = torch.cat((pred, pad))
boxes, scores, extras = pred.split([4, len(self.model.names), extra_shape], dim=2)
scores, classes = scores.max(dim=-1)
self.args.max_det = min(pred.shape[1], self.args.max_det) # in case num_anchors < max_det
# (N, max_det, 4 coords + 1 class score + 1 class label + extra_shape).
out = torch.zeros(pred.shape[0], self.args.max_det, boxes.shape[-1] + 2 + extra_shape, **kwargs)
for i in range(bs):
box, cls, score, extra = boxes[i], classes[i], scores[i], extras[i]
mask = score > self.args.conf
if self.is_tf or (self.args.format == "onnx" and self.obb):
# TFLite GatherND error if mask is empty
score *= mask
# Explicit length otherwise reshape error, hardcoded to `self.args.max_det * 5`
mask = score.topk(min(self.args.max_det * 5, score.shape[0])).indices
box, score, cls, extra = box[mask], score[mask], cls[mask], extra[mask]
nmsbox = box.clone()
# `8` is the minimum value experimented to get correct NMS results for obb
multiplier = 8 if self.obb else 1 / max(len(self.model.names), 1)
# Normalize boxes for NMS since large values for class offset causes issue with int8 quantization
if self.args.format == "tflite": # TFLite is already normalized
nmsbox *= multiplier
else:
nmsbox = multiplier * (nmsbox / torch.tensor(x.shape[2:], **kwargs).max())
if not self.args.agnostic_nms: # class-wise NMS
end = 2 if self.obb else 4
# fully explicit expansion otherwise reshape error
cls_offset = cls.view(cls.shape[0], 1).expand(cls.shape[0], end)
offbox = nmsbox[:, :end] + cls_offset * multiplier
nmsbox = torch.cat((offbox, nmsbox[:, end:]), dim=-1)
nms_fn = (
partial(
TorchNMS.fast_nms,
use_triu=not (
self.is_tf
or (self.args.opset or 14) < 14
or (self.args.format == "openvino" and self.args.int8) # OpenVINO int8 error with triu
),
iou_func=batch_probiou,
exit_early=False,
)
if self.obb
else nms
)
keep = nms_fn(
torch.cat([nmsbox, extra], dim=-1) if self.obb else nmsbox,
score,
self.args.iou,
)[: self.args.max_det]
dets = torch.cat(
[box[keep], score[keep].view(-1, 1), cls[keep].view(-1, 1).to(out.dtype), extra[keep]], dim=-1
)
# Zero-pad to max_det size to avoid reshape error
pad = (0, 0, 0, self.args.max_det - dets.shape[0])
out[i] = torch.nn.functional.pad(dets, pad)
return (out[:bs], preds[1]) if self.model.task == "segment" else out[:bs]
function ultralytics.engine.exporter.export_formats
def export_formats()
Return a dictionary of Ultralytics YOLO export formats.
Source code in ultralytics/engine/exporter.py
View on GitHubdef export_formats():
"""Return a dictionary of Ultralytics YOLO export formats."""
x = [
["PyTorch", "-", ".pt", True, True, []],
["TorchScript", "torchscript", ".torchscript", True, True, ["batch", "optimize", "half", "nms", "dynamic"]],
["ONNX", "onnx", ".onnx", True, True, ["batch", "dynamic", "half", "opset", "simplify", "nms"]],
[
"OpenVINO",
"openvino",
"_openvino_model",
True,
False,
["batch", "dynamic", "half", "int8", "nms", "fraction"],
],
[
"TensorRT",
"engine",
".engine",
False,
True,
["batch", "dynamic", "half", "int8", "simplify", "nms", "fraction"],
],
["CoreML", "coreml", ".mlpackage", True, False, ["batch", "dynamic", "half", "int8", "nms"]],
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True, ["batch", "int8", "keras", "nms"]],
["TensorFlow GraphDef", "pb", ".pb", True, True, ["batch"]],
["TensorFlow Lite", "tflite", ".tflite", True, False, ["batch", "half", "int8", "nms", "fraction"]],
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False, []],
["TensorFlow.js", "tfjs", "_web_model", True, False, ["batch", "half", "int8", "nms"]],
["PaddlePaddle", "paddle", "_paddle_model", True, True, ["batch"]],
["MNN", "mnn", ".mnn", True, True, ["batch", "half", "int8"]],
["NCNN", "ncnn", "_ncnn_model", True, True, ["batch", "half"]],
["IMX", "imx", "_imx_model", True, True, ["int8", "fraction", "nms"]],
["RKNN", "rknn", "_rknn_model", False, False, ["batch", "name"]],
["ExecuTorch", "executorch", "_executorch_model", True, False, ["batch"]],
]
return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU", "Arguments"], zip(*x)))
function ultralytics.engine.exporter.best_onnx_opset
def best_onnx_opset(onnx, cuda = False) -> int
Return max ONNX opset for this torch version with ONNX fallback.
Args
| Name | Type | Description | Default |
|---|---|---|---|
onnx | required | ||
cuda | False |
Source code in ultralytics/engine/exporter.py
View on GitHubdef best_onnx_opset(onnx, cuda=False) -> int:
"""Return max ONNX opset for this torch version with ONNX fallback."""
if TORCH_2_4: # _constants.ONNX_MAX_OPSET first defined in torch 1.13
opset = torch.onnx.utils._constants.ONNX_MAX_OPSET - 1 # use second-latest version for safety
if cuda:
opset -= 2 # fix CUDA ONNXRuntime NMS squeeze op errors
else:
version = ".".join(TORCH_VERSION.split(".")[:2])
opset = {
"1.8": 12,
"1.9": 12,
"1.10": 13,
"1.11": 14,
"1.12": 15,
"1.13": 17,
"2.0": 17, # reduced from 18 to fix ONNX errors
"2.1": 17, # reduced from 19
"2.2": 17, # reduced from 19
"2.3": 17, # reduced from 19
"2.4": 20,
"2.5": 20,
"2.6": 20,
"2.7": 20,
"2.8": 23,
}.get(version, 12)
return min(opset, onnx.defs.onnx_opset_version())
function ultralytics.engine.exporter.validate_args
def validate_args(format, passed_args, valid_args)
Validate arguments based on the export format.
Args
| Name | Type | Description | Default |
|---|---|---|---|
format | str | The export format. | required |
passed_args | Namespace | The arguments used during export. | required |
valid_args | list | List of valid arguments for the format. | required |
Raises
| Type | Description |
|---|---|
AssertionError | If an unsupported argument is used, or if the format lacks supported argument listings. |
Source code in ultralytics/engine/exporter.py
View on GitHubdef validate_args(format, passed_args, valid_args):
"""Validate arguments based on the export format.
Args:
format (str): The export format.
passed_args (Namespace): The arguments used during export.
valid_args (list): List of valid arguments for the format.
Raises:
AssertionError: If an unsupported argument is used, or if the format lacks supported argument listings.
"""
export_args = ["half", "int8", "dynamic", "keras", "nms", "batch", "fraction"]
assert valid_args is not None, f"ERROR ❌️ valid arguments for '{format}' not listed."
custom = {"batch": 1, "data": None, "device": None} # exporter defaults
default_args = get_cfg(DEFAULT_CFG, custom)
for arg in export_args:
not_default = getattr(passed_args, arg, None) != getattr(default_args, arg, None)
if not_default:
assert arg in valid_args, f"ERROR ❌️ argument '{arg}' is not supported for format='{format}'"
function ultralytics.engine.exporter.try_export
def try_export(inner_func)
YOLO export decorator, i.e. @try_export.
Args
| Name | Type | Description | Default |
|---|---|---|---|
inner_func | required |
Source code in ultralytics/engine/exporter.py
View on GitHubdef try_export(inner_func):
"""YOLO export decorator, i.e. @try_export."""
inner_args = get_default_args(inner_func)
def outer_func(*args, **kwargs):
"""Export a model."""
prefix = inner_args["prefix"]
dt = 0.0
try:
with Profile() as dt:
f = inner_func(*args, **kwargs) # exported file/dir or tuple of (file/dir, *)
path = f if isinstance(f, (str, Path)) else f[0]
mb = file_size(path)
assert mb > 0.0, "0.0 MB output model size"
LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as '{path}' ({mb:.1f} MB)")
return f
except Exception as e:
LOGGER.error(f"{prefix} export failure {dt.t:.1f}s: {e}")
raise e
return outer_func