Skip to content

Reference for ultralytics/engine/tuner.py

Improvements

This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/tuner.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏


class ultralytics.engine.tuner.Tuner

Tuner(self, args = DEFAULT_CFG, _callbacks: list | None = None)

A class for hyperparameter tuning of YOLO models.

The class evolves YOLO model hyperparameters over a given number of iterations by mutating them according to the search space and retraining the model to evaluate their performance. Supports both local CSV storage and distributed MongoDB Atlas coordination for multi-machine hyperparameter optimization.

Args

NameTypeDescriptionDefault
argsdictConfiguration for hyperparameter evolution.DEFAULT_CFG
_callbackslist | None, optionalCallback functions to be executed during tuning.None

Attributes

NameTypeDescription
spacedict[str, tuple]Hyperparameter search space containing bounds and scaling factors for mutation.
tune_dirPathDirectory where evolution logs and results will be saved.
tune_csvPathPath to the CSV file where evolution logs are saved.
argsdictConfiguration arguments for the tuning process.
callbackslistCallback functions to be executed during tuning.
prefixstrPrefix string for logging messages.
mongodbMongoClientOptional MongoDB client for distributed tuning.
collectionCollectionMongoDB collection for storing tuning results.

Methods

NameDescription
__call__Execute the hyperparameter evolution process when the Tuner instance is called.
_connectCreate MongoDB client with exponential backoff retry on connection failures.
_crossoverBLX-α crossover from up to top-k parents (x[:,0]=fitness, rest=genes).
_get_mongodb_resultsGet top N results from MongoDB sorted by fitness.
_init_mongodbInitialize MongoDB connection for distributed tuning.
_mutateMutate hyperparameters based on bounds and scaling factors specified in self.space.
_save_to_mongodbSave results to MongoDB with proper type conversion.
_sync_mongodb_to_csvSync MongoDB results to CSV for plotting compatibility.

Examples

Tune hyperparameters for YOLO11n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
>>> from ultralytics import YOLO
>>> model = YOLO("yolo11n.pt")
>>> model.tune(
>>>     data="coco8.yaml",
>>>     epochs=10,
>>>     iterations=300,
>>>     plots=False,
>>>     save=False,
>>>     val=False
>>> )

Tune with distributed MongoDB Atlas coordination across multiple machines:
>>> model.tune(
>>>     data="coco8.yaml",
>>>     epochs=10,
>>>     iterations=300,
>>>     mongodb_uri="mongodb+srv://user:pass@cluster.mongodb.net/",
>>>     mongodb_db="ultralytics",
>>>     mongodb_collection="tune_results"
>>> )

Tune with custom search space:
>>> model.tune(space={"lr0": (1e-5, 1e-1), "momentum": (0.6, 0.98)})
Source code in ultralytics/engine/tuner.pyView on GitHub
class Tuner:
    """A class for hyperparameter tuning of YOLO models.

    The class evolves YOLO model hyperparameters over a given number of iterations by mutating them according to the
    search space and retraining the model to evaluate their performance. Supports both local CSV storage and distributed
    MongoDB Atlas coordination for multi-machine hyperparameter optimization.

    Attributes:
        space (dict[str, tuple]): Hyperparameter search space containing bounds and scaling factors for mutation.
        tune_dir (Path): Directory where evolution logs and results will be saved.
        tune_csv (Path): Path to the CSV file where evolution logs are saved.
        args (dict): Configuration arguments for the tuning process.
        callbacks (list): Callback functions to be executed during tuning.
        prefix (str): Prefix string for logging messages.
        mongodb (MongoClient): Optional MongoDB client for distributed tuning.
        collection (Collection): MongoDB collection for storing tuning results.

    Methods:
        _mutate: Mutate hyperparameters based on bounds and scaling factors.
        __call__: Execute the hyperparameter evolution across multiple iterations.

    Examples:
        Tune hyperparameters for YOLO11n on COCO8 at imgsz=640 and epochs=30 for 300 tuning iterations.
        >>> from ultralytics import YOLO
        >>> model = YOLO("yolo11n.pt")
        >>> model.tune(
        >>>     data="coco8.yaml",
        >>>     epochs=10,
        >>>     iterations=300,
        >>>     plots=False,
        >>>     save=False,
        >>>     val=False
        >>> )

        Tune with distributed MongoDB Atlas coordination across multiple machines:
        >>> model.tune(
        >>>     data="coco8.yaml",
        >>>     epochs=10,
        >>>     iterations=300,
        >>>     mongodb_uri="mongodb+srv://user:pass@cluster.mongodb.net/",
        >>>     mongodb_db="ultralytics",
        >>>     mongodb_collection="tune_results"
        >>> )

        Tune with custom search space:
        >>> model.tune(space={"lr0": (1e-5, 1e-1), "momentum": (0.6, 0.98)})
    """

    def __init__(self, args=DEFAULT_CFG, _callbacks: list | None = None):
        """Initialize the Tuner with configurations.

        Args:
            args (dict): Configuration for hyperparameter evolution.
            _callbacks (list | None, optional): Callback functions to be executed during tuning.
        """
        self.space = args.pop("space", None) or {  # key: (min, max, gain(optional))
            # 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
            "lr0": (1e-5, 1e-1),  # initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
            "lrf": (0.0001, 0.1),  # final OneCycleLR learning rate (lr0 * lrf)
            "momentum": (0.7, 0.98, 0.3),  # SGD momentum/Adam beta1
            "weight_decay": (0.0, 0.001),  # optimizer weight decay 5e-4
            "warmup_epochs": (0.0, 5.0),  # warmup epochs (fractions ok)
            "warmup_momentum": (0.0, 0.95),  # warmup initial momentum
            "box": (1.0, 20.0),  # box loss gain
            "cls": (0.1, 4.0),  # cls loss gain (scale with pixels)
            "dfl": (0.4, 6.0),  # dfl loss gain
            "hsv_h": (0.0, 0.1),  # image HSV-Hue augmentation (fraction)
            "hsv_s": (0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
            "hsv_v": (0.0, 0.9),  # image HSV-Value augmentation (fraction)
            "degrees": (0.0, 45.0),  # image rotation (+/- deg)
            "translate": (0.0, 0.9),  # image translation (+/- fraction)
            "scale": (0.0, 0.95),  # image scale (+/- gain)
            "shear": (0.0, 10.0),  # image shear (+/- deg)
            "perspective": (0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
            "flipud": (0.0, 1.0),  # image flip up-down (probability)
            "fliplr": (0.0, 1.0),  # image flip left-right (probability)
            "bgr": (0.0, 1.0),  # image channel bgr (probability)
            "mosaic": (0.0, 1.0),  # image mosaic (probability)
            "mixup": (0.0, 1.0),  # image mixup (probability)
            "cutmix": (0.0, 1.0),  # image cutmix (probability)
            "copy_paste": (0.0, 1.0),  # segment copy-paste (probability)
            "close_mosaic": (0.0, 10.0),  # close dataloader mosaic (epochs)
        }
        mongodb_uri = args.pop("mongodb_uri", None)
        mongodb_db = args.pop("mongodb_db", "ultralytics")
        mongodb_collection = args.pop("mongodb_collection", "tuner_results")

        self.args = get_cfg(overrides=args)
        self.args.exist_ok = self.args.resume  # resume w/ same tune_dir
        self.tune_dir = get_save_dir(self.args, name=self.args.name or "tune")
        self.args.name, self.args.exist_ok, self.args.resume = (None, False, False)  # reset to not affect training
        self.tune_csv = self.tune_dir / "tune_results.csv"
        self.callbacks = _callbacks or callbacks.get_default_callbacks()
        self.prefix = colorstr("Tuner: ")
        callbacks.add_integration_callbacks(self)

        # MongoDB Atlas support (optional)
        self.mongodb = None
        if mongodb_uri:
            self._init_mongodb(mongodb_uri, mongodb_db, mongodb_collection)

        LOGGER.info(
            f"{self.prefix}Initialized Tuner instance with 'tune_dir={self.tune_dir}'\n"
            f"{self.prefix}💡 Learn about tuning at https://docs.ultralytics.com/guides/hyperparameter-tuning"
        )


method ultralytics.engine.tuner.Tuner.__call__

def __call__(self, model = None, iterations: int = 10, cleanup: bool = True)

Execute the hyperparameter evolution process when the Tuner instance is called.

This method iterates through the specified number of iterations, performing the following steps: 1. Sync MongoDB results to CSV (if using distributed mode) 2. Mutate hyperparameters using the best previous results or defaults 3. Train a YOLO model with the mutated hyperparameters 4. Log fitness scores and hyperparameters to MongoDB and/or CSV 5. Track the best performing configuration across all iterations

Args

NameTypeDescriptionDefault
modelModel | None, optionalA pre-initialized YOLO model to be used for training.None
iterationsintThe number of generations to run the evolution for.10
cleanupboolWhether to delete iteration weights to reduce storage space during tuning.True
Source code in ultralytics/engine/tuner.pyView on GitHub
def __call__(self, model=None, iterations: int = 10, cleanup: bool = True):
    """Execute the hyperparameter evolution process when the Tuner instance is called.

    This method iterates through the specified number of iterations, performing the following steps:
    1. Sync MongoDB results to CSV (if using distributed mode)
    2. Mutate hyperparameters using the best previous results or defaults
    3. Train a YOLO model with the mutated hyperparameters
    4. Log fitness scores and hyperparameters to MongoDB and/or CSV
    5. Track the best performing configuration across all iterations

    Args:
        model (Model | None, optional): A pre-initialized YOLO model to be used for training.
        iterations (int): The number of generations to run the evolution for.
        cleanup (bool): Whether to delete iteration weights to reduce storage space during tuning.
    """
    t0 = time.time()
    best_save_dir, best_metrics = None, None
    (self.tune_dir / "weights").mkdir(parents=True, exist_ok=True)

    # Sync MongoDB to CSV at startup for proper resume logic
    if self.mongodb:
        self._sync_mongodb_to_csv()

    start = 0
    if self.tune_csv.exists():
        x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1)
        start = x.shape[0]
        LOGGER.info(f"{self.prefix}Resuming tuning run {self.tune_dir} from iteration {start + 1}...")
    for i in range(start, iterations):
        # Linearly decay sigma from 0.2 → 0.1 over first 300 iterations
        frac = min(i / 300.0, 1.0)
        sigma_i = 0.2 - 0.1 * frac

        # Mutate hyperparameters
        mutated_hyp = self._mutate(sigma=sigma_i)
        LOGGER.info(f"{self.prefix}Starting iteration {i + 1}/{iterations} with hyperparameters: {mutated_hyp}")

        metrics = {}
        train_args = {**vars(self.args), **mutated_hyp}
        save_dir = get_save_dir(get_cfg(train_args))
        weights_dir = save_dir / "weights"
        try:
            # Train YOLO model with mutated hyperparameters (run in subprocess to avoid dataloader hang)
            launch = [__import__("sys").executable, "-m", "ultralytics.cfg.__init__"]  # workaround yolo not found
            cmd = [*launch, "train", *(f"{k}={v}" for k, v in train_args.items())]
            return_code = subprocess.run(cmd, check=True).returncode
            ckpt_file = weights_dir / ("best.pt" if (weights_dir / "best.pt").exists() else "last.pt")
            metrics = torch_load(ckpt_file)["train_metrics"]
            assert return_code == 0, "training failed"

            # Cleanup
            time.sleep(1)
            gc.collect()
            torch.cuda.empty_cache()

        except Exception as e:
            LOGGER.error(f"training failure for hyperparameter tuning iteration {i + 1}\n{e}")

        # Save results - MongoDB takes precedence
        fitness = metrics.get("fitness", 0.0)
        if self.mongodb:
            self._save_to_mongodb(fitness, mutated_hyp, metrics, i + 1)
            self._sync_mongodb_to_csv()
            total_mongo_iterations = self.collection.count_documents({})
            if total_mongo_iterations >= iterations:
                LOGGER.info(
                    f"{self.prefix}Target iterations ({iterations}) reached in MongoDB ({total_mongo_iterations}). Stopping."
                )
                break
        else:
            # Save to CSV only if no MongoDB
            log_row = [round(fitness, 5)] + [mutated_hyp[k] for k in self.space.keys()]
            headers = "" if self.tune_csv.exists() else (",".join(["fitness", *list(self.space.keys())]) + "\n")
            with open(self.tune_csv, "a", encoding="utf-8") as f:
                f.write(headers + ",".join(map(str, log_row)) + "\n")

        # Get best results
        x = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1)
        fitness = x[:, 0]  # first column
        best_idx = fitness.argmax()
        best_is_current = best_idx == i
        if best_is_current:
            best_save_dir = str(save_dir)
            best_metrics = {k: round(v, 5) for k, v in metrics.items()}
            for ckpt in weights_dir.glob("*.pt"):
                shutil.copy2(ckpt, self.tune_dir / "weights")
        elif cleanup and best_save_dir:
            shutil.rmtree(best_save_dir, ignore_errors=True)  # remove iteration dirs to reduce storage space

        # Plot tune results
        plot_tune_results(str(self.tune_csv))

        # Save and print tune results
        header = (
            f"{self.prefix}{i + 1}/{iterations} iterations complete ✅ ({time.time() - t0:.2f}s)\n"
            f"{self.prefix}Results saved to {colorstr('bold', self.tune_dir)}\n"
            f"{self.prefix}Best fitness={fitness[best_idx]} observed at iteration {best_idx + 1}\n"
            f"{self.prefix}Best fitness metrics are {best_metrics}\n"
            f"{self.prefix}Best fitness model is {best_save_dir}"
        )
        LOGGER.info("\n" + header)
        data = {k: float(x[best_idx, i + 1]) for i, k in enumerate(self.space.keys())}
        YAML.save(
            self.tune_dir / "best_hyperparameters.yaml",
            data=data,
            header=remove_colorstr(header.replace(self.prefix, "# ")) + "\n",
        )
        YAML.print(self.tune_dir / "best_hyperparameters.yaml")


method ultralytics.engine.tuner.Tuner._connect

def _connect(self, uri: str = "mongodb+srv://username:password@cluster.mongodb.net/", max_retries: int = 3)

Create MongoDB client with exponential backoff retry on connection failures.

Args

NameTypeDescriptionDefault
uristrMongoDB connection string with credentials and cluster information."mongodb+srv://username:password@cluster.mongodb.net/"
max_retriesintMaximum number of connection attempts before giving up.3

Returns

TypeDescription
MongoClientConnected MongoDB client instance.
Source code in ultralytics/engine/tuner.pyView on GitHub
def _connect(self, uri: str = "mongodb+srv://username:password@cluster.mongodb.net/", max_retries: int = 3):
    """Create MongoDB client with exponential backoff retry on connection failures.

    Args:
        uri (str): MongoDB connection string with credentials and cluster information.
        max_retries (int): Maximum number of connection attempts before giving up.

    Returns:
        (MongoClient): Connected MongoDB client instance.
    """
    check_requirements("pymongo")

    from pymongo import MongoClient
    from pymongo.errors import ConnectionFailure, ServerSelectionTimeoutError

    for attempt in range(max_retries):
        try:
            client = MongoClient(
                uri,
                serverSelectionTimeoutMS=30000,
                connectTimeoutMS=20000,
                socketTimeoutMS=40000,
                retryWrites=True,
                retryReads=True,
                maxPoolSize=30,
                minPoolSize=3,
                maxIdleTimeMS=60000,
            )
            client.admin.command("ping")  # Test connection
            LOGGER.info(f"{self.prefix}Connected to MongoDB Atlas (attempt {attempt + 1})")
            return client
        except (ConnectionFailure, ServerSelectionTimeoutError):
            if attempt == max_retries - 1:
                raise
            wait_time = 2**attempt
            LOGGER.warning(
                f"{self.prefix}MongoDB connection failed (attempt {attempt + 1}), retrying in {wait_time}s..."
            )
            time.sleep(wait_time)


method ultralytics.engine.tuner.Tuner._crossover

def _crossover(self, x: np.ndarray, alpha: float = 0.2, k: int = 9) -> np.ndarray

BLX-α crossover from up to top-k parents (x[:,0]=fitness, rest=genes).

Args

NameTypeDescriptionDefault
xnp.ndarrayrequired
alphafloat0.2
kint9
Source code in ultralytics/engine/tuner.pyView on GitHub
def _crossover(self, x: np.ndarray, alpha: float = 0.2, k: int = 9) -> np.ndarray:
    """BLX-α crossover from up to top-k parents (x[:,0]=fitness, rest=genes)."""
    k = min(k, len(x))
    # fitness weights (shifted to >0); fallback to uniform if degenerate
    weights = x[:, 0] - x[:, 0].min() + 1e-6
    if not np.isfinite(weights).all() or weights.sum() == 0:
        weights = np.ones_like(weights)
    idxs = random.choices(range(len(x)), weights=weights, k=k)
    parents_mat = np.stack([x[i][1:] for i in idxs], 0)  # (k, ng) strip fitness
    lo, hi = parents_mat.min(0), parents_mat.max(0)
    span = hi - lo
    return np.random.uniform(lo - alpha * span, hi + alpha * span)


method ultralytics.engine.tuner.Tuner._get_mongodb_results

def _get_mongodb_results(self, n: int = 5) -> list

Get top N results from MongoDB sorted by fitness.

Args

NameTypeDescriptionDefault
nintNumber of top results to retrieve.5

Returns

TypeDescription
list[dict]List of result documents with fitness scores and hyperparameters.
Source code in ultralytics/engine/tuner.pyView on GitHub
def _get_mongodb_results(self, n: int = 5) -> list:
    """Get top N results from MongoDB sorted by fitness.

    Args:
        n (int): Number of top results to retrieve.

    Returns:
        (list[dict]): List of result documents with fitness scores and hyperparameters.
    """
    try:
        return list(self.collection.find().sort("fitness", -1).limit(n))
    except Exception:
        return []


method ultralytics.engine.tuner.Tuner._init_mongodb

def _init_mongodb(self, mongodb_uri = "", mongodb_db = "", mongodb_collection = "")

Initialize MongoDB connection for distributed tuning.

Connects to MongoDB Atlas for distributed hyperparameter optimization across multiple machines. Each worker saves results to a shared collection and reads the latest best hyperparameters from all workers for evolution.

Args

NameTypeDescriptionDefault
mongodb_uristrMongoDB connection string, e.g. 'mongodb+srv://username:password@cluster.mongodb.net/'.""
mongodb_dbstr, optionalDatabase name.""
mongodb_collectionstr, optionalCollection name.""

Notes

  • Creates a fitness index for fast queries of top results
  • Falls back to CSV-only mode if connection fails
  • Uses connection pooling and retry logic for production reliability
Source code in ultralytics/engine/tuner.pyView on GitHub
def _init_mongodb(self, mongodb_uri="", mongodb_db="", mongodb_collection=""):
    """Initialize MongoDB connection for distributed tuning.

    Connects to MongoDB Atlas for distributed hyperparameter optimization across multiple machines. Each worker
    saves results to a shared collection and reads the latest best hyperparameters from all workers for evolution.

    Args:
        mongodb_uri (str): MongoDB connection string, e.g. 'mongodb+srv://username:password@cluster.mongodb.net/'.
        mongodb_db (str, optional): Database name.
        mongodb_collection (str, optional): Collection name.

    Notes:
        - Creates a fitness index for fast queries of top results
        - Falls back to CSV-only mode if connection fails
        - Uses connection pooling and retry logic for production reliability
    """
    self.mongodb = self._connect(mongodb_uri)
    self.collection = self.mongodb[mongodb_db][mongodb_collection]
    self.collection.create_index([("fitness", -1)], background=True)
    LOGGER.info(f"{self.prefix}Using MongoDB Atlas for distributed tuning")


method ultralytics.engine.tuner.Tuner._mutate

def _mutate(self, n: int = 9, mutation: float = 0.5, sigma: float = 0.2) -> dict[str, float]

Mutate hyperparameters based on bounds and scaling factors specified in self.space.

Args

NameTypeDescriptionDefault
parentstrParent selection method (kept for API compatibility, unused in BLX mode).required
nintNumber of top parents to consider.9
mutationfloatProbability of a parameter mutation in any given iteration.0.5
sigmafloatStandard deviation for Gaussian random number generator.0.2

Returns

TypeDescription
dict[str, float]A dictionary containing mutated hyperparameters.
Source code in ultralytics/engine/tuner.pyView on GitHub
def _mutate(
    self,
    n: int = 9,
    mutation: float = 0.5,
    sigma: float = 0.2,
) -> dict[str, float]:
    """Mutate hyperparameters based on bounds and scaling factors specified in `self.space`.

    Args:
        parent (str): Parent selection method (kept for API compatibility, unused in BLX mode).
        n (int): Number of top parents to consider.
        mutation (float): Probability of a parameter mutation in any given iteration.
        sigma (float): Standard deviation for Gaussian random number generator.

    Returns:
        (dict[str, float]): A dictionary containing mutated hyperparameters.
    """
    x = None

    # Try MongoDB first if available
    if self.mongodb:
        if results := self._get_mongodb_results(n):
            # MongoDB already sorted by fitness DESC, so results[0] is best
            x = np.array([[r["fitness"]] + [r["hyperparameters"][k] for k in self.space.keys()] for r in results])
        elif self.collection.name in self.collection.database.list_collection_names():  # Tuner started elsewhere
            x = np.array([[0.0] + [getattr(self.args, k) for k in self.space.keys()]])

    # Fall back to CSV if MongoDB unavailable or empty
    if x is None and self.tune_csv.exists():
        csv_data = np.loadtxt(self.tune_csv, ndmin=2, delimiter=",", skiprows=1)
        if len(csv_data) > 0:
            fitness = csv_data[:, 0]  # first column
            order = np.argsort(-fitness)
            x = csv_data[order][:n]  # top-n sorted by fitness DESC

    # Mutate if we have data, otherwise use defaults
    if x is not None:
        np.random.seed(int(time.time()))
        ng = len(self.space)

        # Crossover
        genes = self._crossover(x)

        # Mutation
        gains = np.array([v[2] if len(v) == 3 else 1.0 for v in self.space.values()])  # gains 0-1
        factors = np.ones(ng)
        while np.all(factors == 1):  # mutate until a change occurs (prevent duplicates)
            mask = np.random.random(ng) < mutation
            step = np.random.randn(ng) * (sigma * gains)
            factors = np.where(mask, np.exp(step), 1.0).clip(0.25, 4.0)
        hyp = {k: float(genes[i] * factors[i]) for i, k in enumerate(self.space.keys())}
    else:
        hyp = {k: getattr(self.args, k) for k in self.space.keys()}

    # Constrain to limits
    for k, bounds in self.space.items():
        hyp[k] = round(min(max(hyp[k], bounds[0]), bounds[1]), 5)

    # Update types
    if "close_mosaic" in hyp:
        hyp["close_mosaic"] = round(hyp["close_mosaic"])

    return hyp


method ultralytics.engine.tuner.Tuner._save_to_mongodb

def _save_to_mongodb(self, fitness: float, hyperparameters: dict[str, float], metrics: dict, iteration: int)

Save results to MongoDB with proper type conversion.

Args

NameTypeDescriptionDefault
fitnessfloatFitness score achieved with these hyperparameters.required
hyperparametersdict[str, float]Dictionary of hyperparameter values.required
metricsdictComplete training metrics dictionary (mAP, precision, recall, losses, etc.).required
iterationintCurrent iteration number.required
Source code in ultralytics/engine/tuner.pyView on GitHub
def _save_to_mongodb(self, fitness: float, hyperparameters: dict[str, float], metrics: dict, iteration: int):
    """Save results to MongoDB with proper type conversion.

    Args:
        fitness (float): Fitness score achieved with these hyperparameters.
        hyperparameters (dict[str, float]): Dictionary of hyperparameter values.
        metrics (dict): Complete training metrics dictionary (mAP, precision, recall, losses, etc.).
        iteration (int): Current iteration number.
    """
    try:
        self.collection.insert_one(
            {
                "fitness": fitness,
                "hyperparameters": {k: (v.item() if hasattr(v, "item") else v) for k, v in hyperparameters.items()},
                "metrics": metrics,
                "timestamp": datetime.now(),
                "iteration": iteration,
            }
        )
    except Exception as e:
        LOGGER.warning(f"{self.prefix}MongoDB save failed: {e}")


method ultralytics.engine.tuner.Tuner._sync_mongodb_to_csv

def _sync_mongodb_to_csv(self)

Sync MongoDB results to CSV for plotting compatibility.

Downloads all results from MongoDB and writes them to the local CSV file in chronological order. This enables the existing plotting functions to work seamlessly with distributed MongoDB data.

Source code in ultralytics/engine/tuner.pyView on GitHub
def _sync_mongodb_to_csv(self):
    """Sync MongoDB results to CSV for plotting compatibility.

    Downloads all results from MongoDB and writes them to the local CSV file in chronological order. This enables
    the existing plotting functions to work seamlessly with distributed MongoDB data.
    """
    try:
        # Get all results from MongoDB
        all_results = list(self.collection.find().sort("iteration", 1))
        if not all_results:
            return

        # Write to CSV
        headers = ",".join(["fitness", *list(self.space.keys())]) + "\n"
        with open(self.tune_csv, "w", encoding="utf-8") as f:
            f.write(headers)
            for result in all_results:
                fitness = result["fitness"]
                hyp_values = [result["hyperparameters"][k] for k in self.space.keys()]
                log_row = [round(fitness, 5), *hyp_values]
                f.write(",".join(map(str, log_row)) + "\n")

    except Exception as e:
        LOGGER.warning(f"{self.prefix}MongoDB to CSV sync failed: {e}")





📅 Created 2 years ago ✏️ Updated 3 days ago
glenn-jocherjk4eBurhan-Q