Skip to content

Reference for ultralytics/models/yolo/detect/train.py

Note

Full source code for this file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/detect/train.py. Help us fix any issues you see by submitting a Pull Request 🛠️. Thank you 🙏!


ultralytics.models.yolo.detect.train.DetectionTrainer

Bases: BaseTrainer

A class extending the BaseTrainer class for training based on a detection model.

Example
from ultralytics.models.yolo.detect import DetectionTrainer

args = dict(model='yolov8n.pt', data='coco8.yaml', epochs=3)
trainer = DetectionTrainer(overrides=args)
trainer.train()
Source code in ultralytics/models/yolo/detect/train.py
class DetectionTrainer(BaseTrainer):
    """
    A class extending the BaseTrainer class for training based on a detection model.

    Example:
        ```python
        from ultralytics.models.yolo.detect import DetectionTrainer

        args = dict(model='yolov8n.pt', data='coco8.yaml', epochs=3)
        trainer = DetectionTrainer(overrides=args)
        trainer.train()
        ```
    """

    def build_dataset(self, img_path, mode='train', batch=None):
        """
        Build YOLO Dataset.

        Args:
            img_path (str): Path to the folder containing images.
            mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
            batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == 'val', stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
        """Construct and return dataloader."""
        assert mode in ['train', 'val']
        with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
            dataset = self.build_dataset(dataset_path, mode, batch_size)
        shuffle = mode == 'train'
        if getattr(dataset, 'rect', False) and shuffle:
            LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
            shuffle = False
        workers = self.args.workers if mode == 'train' else self.args.workers * 2
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # return dataloader

    def preprocess_batch(self, batch):
        """Preprocesses a batch of images by scaling and converting to float."""
        batch['img'] = batch['img'].to(self.device, non_blocking=True).float() / 255
        return batch

    def set_model_attributes(self):
        """nl = de_parallel(self.model).model[-1].nl  # number of detection layers (to scale hyps)."""
        # self.args.box *= 3 / nl  # scale to layers
        # self.args.cls *= self.data["nc"] / 80 * 3 / nl  # scale to classes and layers
        # self.args.cls *= (self.args.imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
        self.model.nc = self.data['nc']  # attach number of classes to model
        self.model.names = self.data['names']  # attach class names to model
        self.model.args = self.args  # attach hyperparameters to model
        # TODO: self.model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc

    def get_model(self, cfg=None, weights=None, verbose=True):
        """Return a YOLO detection model."""
        model = DetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1)
        if weights:
            model.load(weights)
        return model

    def get_validator(self):
        """Returns a DetectionValidator for YOLO model validation."""
        self.loss_names = 'box_loss', 'cls_loss', 'dfl_loss'
        return yolo.detect.DetectionValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))

    def label_loss_items(self, loss_items=None, prefix='train'):
        """
        Returns a loss dict with labelled training loss items tensor. Not needed for classification but necessary for
        segmentation & detection
        """
        keys = [f'{prefix}/{x}' for x in self.loss_names]
        if loss_items is not None:
            loss_items = [round(float(x), 5) for x in loss_items]  # convert tensors to 5 decimal place floats
            return dict(zip(keys, loss_items))
        else:
            return keys

    def progress_string(self):
        """Returns a formatted string of training progress with epoch, GPU memory, loss, instances and size."""
        return ('\n' + '%11s' *
                (4 + len(self.loss_names))) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')

    def plot_training_samples(self, batch, ni):
        """Plots training samples with their annotations."""
        plot_images(images=batch['img'],
                    batch_idx=batch['batch_idx'],
                    cls=batch['cls'].squeeze(-1),
                    bboxes=batch['bboxes'],
                    paths=batch['im_file'],
                    fname=self.save_dir / f'train_batch{ni}.jpg',
                    on_plot=self.on_plot)

    def plot_metrics(self):
        """Plots metrics from a CSV file."""
        plot_results(file=self.csv, on_plot=self.on_plot)  # save results.png

    def plot_training_labels(self):
        """Create a labeled training plot of the YOLO model."""
        boxes = np.concatenate([lb['bboxes'] for lb in self.train_loader.dataset.labels], 0)
        cls = np.concatenate([lb['cls'] for lb in self.train_loader.dataset.labels], 0)
        plot_labels(boxes, cls.squeeze(), names=self.data['names'], save_dir=self.save_dir, on_plot=self.on_plot)

build_dataset(img_path, mode='train', batch=None)

Build YOLO Dataset.

Parameters:

Name Type Description Default
img_path str

Path to the folder containing images.

required
mode str

train mode or val mode, users are able to customize different augmentations for each mode.

'train'
batch int

Size of batches, this is for rect. Defaults to None.

None
Source code in ultralytics/models/yolo/detect/train.py
def build_dataset(self, img_path, mode='train', batch=None):
    """
    Build YOLO Dataset.

    Args:
        img_path (str): Path to the folder containing images.
        mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
        batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
    """
    gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
    return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == 'val', stride=gs)

get_dataloader(dataset_path, batch_size=16, rank=0, mode='train')

Construct and return dataloader.

Source code in ultralytics/models/yolo/detect/train.py
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'):
    """Construct and return dataloader."""
    assert mode in ['train', 'val']
    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
        dataset = self.build_dataset(dataset_path, mode, batch_size)
    shuffle = mode == 'train'
    if getattr(dataset, 'rect', False) and shuffle:
        LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with DataLoader shuffle, setting shuffle=False")
        shuffle = False
    workers = self.args.workers if mode == 'train' else self.args.workers * 2
    return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # return dataloader

get_model(cfg=None, weights=None, verbose=True)

Return a YOLO detection model.

Source code in ultralytics/models/yolo/detect/train.py
def get_model(self, cfg=None, weights=None, verbose=True):
    """Return a YOLO detection model."""
    model = DetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1)
    if weights:
        model.load(weights)
    return model

get_validator()

Returns a DetectionValidator for YOLO model validation.

Source code in ultralytics/models/yolo/detect/train.py
def get_validator(self):
    """Returns a DetectionValidator for YOLO model validation."""
    self.loss_names = 'box_loss', 'cls_loss', 'dfl_loss'
    return yolo.detect.DetectionValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))

label_loss_items(loss_items=None, prefix='train')

Returns a loss dict with labelled training loss items tensor. Not needed for classification but necessary for segmentation & detection

Source code in ultralytics/models/yolo/detect/train.py
def label_loss_items(self, loss_items=None, prefix='train'):
    """
    Returns a loss dict with labelled training loss items tensor. Not needed for classification but necessary for
    segmentation & detection
    """
    keys = [f'{prefix}/{x}' for x in self.loss_names]
    if loss_items is not None:
        loss_items = [round(float(x), 5) for x in loss_items]  # convert tensors to 5 decimal place floats
        return dict(zip(keys, loss_items))
    else:
        return keys

plot_metrics()

Plots metrics from a CSV file.

Source code in ultralytics/models/yolo/detect/train.py
def plot_metrics(self):
    """Plots metrics from a CSV file."""
    plot_results(file=self.csv, on_plot=self.on_plot)  # save results.png

plot_training_labels()

Create a labeled training plot of the YOLO model.

Source code in ultralytics/models/yolo/detect/train.py
def plot_training_labels(self):
    """Create a labeled training plot of the YOLO model."""
    boxes = np.concatenate([lb['bboxes'] for lb in self.train_loader.dataset.labels], 0)
    cls = np.concatenate([lb['cls'] for lb in self.train_loader.dataset.labels], 0)
    plot_labels(boxes, cls.squeeze(), names=self.data['names'], save_dir=self.save_dir, on_plot=self.on_plot)

plot_training_samples(batch, ni)

Plots training samples with their annotations.

Source code in ultralytics/models/yolo/detect/train.py
def plot_training_samples(self, batch, ni):
    """Plots training samples with their annotations."""
    plot_images(images=batch['img'],
                batch_idx=batch['batch_idx'],
                cls=batch['cls'].squeeze(-1),
                bboxes=batch['bboxes'],
                paths=batch['im_file'],
                fname=self.save_dir / f'train_batch{ni}.jpg',
                on_plot=self.on_plot)

preprocess_batch(batch)

Preprocesses a batch of images by scaling and converting to float.

Source code in ultralytics/models/yolo/detect/train.py
def preprocess_batch(self, batch):
    """Preprocesses a batch of images by scaling and converting to float."""
    batch['img'] = batch['img'].to(self.device, non_blocking=True).float() / 255
    return batch

progress_string()

Returns a formatted string of training progress with epoch, GPU memory, loss, instances and size.

Source code in ultralytics/models/yolo/detect/train.py
def progress_string(self):
    """Returns a formatted string of training progress with epoch, GPU memory, loss, instances and size."""
    return ('\n' + '%11s' *
            (4 + len(self.loss_names))) % ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')

set_model_attributes()

nl = de_parallel(self.model).model[-1].nl # number of detection layers (to scale hyps).

Source code in ultralytics/models/yolo/detect/train.py
def set_model_attributes(self):
    """nl = de_parallel(self.model).model[-1].nl  # number of detection layers (to scale hyps)."""
    # self.args.box *= 3 / nl  # scale to layers
    # self.args.cls *= self.data["nc"] / 80 * 3 / nl  # scale to classes and layers
    # self.args.cls *= (self.args.imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
    self.model.nc = self.data['nc']  # attach number of classes to model
    self.model.names = self.data['names']  # attach class names to model
    self.model.args = self.args  # attach hyperparameters to model




Created 2023-07-16, Updated 2023-08-20
Authors: glenn-jocher (6), Laughing-q (1)