Skip to content

Reference for ultralytics/models/yolo/segment/val.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/yolo/segment/val.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.models.yolo.segment.val.SegmentationValidator

SegmentationValidator(
    dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None
)

Bases: DetectionValidator

A class extending the DetectionValidator class for validation based on a segmentation model.

This validator handles the evaluation of segmentation models, processing both bounding box and mask predictions to compute metrics such as mAP for both detection and segmentation tasks.

Attributes:

Name Type Description
plot_masks List

List to store masks for plotting.

process callable

Function to process masks based on save_json and save_txt flags.

args namespace

Arguments for the validator.

metrics SegmentMetrics

Metrics calculator for segmentation tasks.

stats Dict

Dictionary to store statistics during validation.

Examples:

>>> from ultralytics.models.yolo.segment import SegmentationValidator
>>> args = dict(model="yolo11n-seg.pt", data="coco8-seg.yaml")
>>> validator = SegmentationValidator(args=args)
>>> validator()

Parameters:

Name Type Description Default
dataloader DataLoader

Dataloader to use for validation.

None
save_dir Path

Directory to save results.

None
pbar Any

Progress bar for displaying progress.

None
args namespace

Arguments for the validator.

None
_callbacks List

List of callback functions.

None
Source code in ultralytics/models/yolo/segment/val.py
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
    """
    Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics.

    Args:
        dataloader (torch.utils.data.DataLoader, optional): Dataloader to use for validation.
        save_dir (Path, optional): Directory to save results.
        pbar (Any, optional): Progress bar for displaying progress.
        args (namespace, optional): Arguments for the validator.
        _callbacks (List, optional): List of callback functions.
    """
    super().__init__(dataloader, save_dir, pbar, args, _callbacks)
    self.plot_masks = None
    self.process = None
    self.args.task = "segment"
    self.metrics = SegmentMetrics(save_dir=self.save_dir)

_prepare_batch

_prepare_batch(si, batch)

Prepare a batch for training or inference by processing images and targets.

Parameters:

Name Type Description Default
si int

Batch index.

required
batch Dict

Batch data containing images and targets.

required

Returns:

Type Description
Dict

Prepared batch with processed images and targets.

Source code in ultralytics/models/yolo/segment/val.py
def _prepare_batch(self, si, batch):
    """
    Prepare a batch for training or inference by processing images and targets.

    Args:
        si (int): Batch index.
        batch (Dict): Batch data containing images and targets.

    Returns:
        (Dict): Prepared batch with processed images and targets.
    """
    prepared_batch = super()._prepare_batch(si, batch)
    midx = [si] if self.args.overlap_mask else batch["batch_idx"] == si
    prepared_batch["masks"] = batch["masks"][midx]
    return prepared_batch

_prepare_pred

_prepare_pred(pred, pbatch, proto)

Prepare predictions for evaluation by processing bounding boxes and masks.

Parameters:

Name Type Description Default
pred Tensor

Raw predictions from the model.

required
pbatch Dict

Prepared batch data.

required
proto Tensor

Prototype masks for segmentation.

required

Returns:

Name Type Description
predn Tensor

Processed bounding box predictions.

pred_masks Tensor

Processed mask predictions.

Source code in ultralytics/models/yolo/segment/val.py
def _prepare_pred(self, pred, pbatch, proto):
    """
    Prepare predictions for evaluation by processing bounding boxes and masks.

    Args:
        pred (torch.Tensor): Raw predictions from the model.
        pbatch (Dict): Prepared batch data.
        proto (torch.Tensor): Prototype masks for segmentation.

    Returns:
        predn (torch.Tensor): Processed bounding box predictions.
        pred_masks (torch.Tensor): Processed mask predictions.
    """
    predn = super()._prepare_pred(pred, pbatch)
    pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=pbatch["imgsz"])
    return predn, pred_masks

_process_batch

_process_batch(
    detections,
    gt_bboxes,
    gt_cls,
    pred_masks=None,
    gt_masks=None,
    overlap=False,
    masks=False,
)

Compute correct prediction matrix for a batch based on bounding boxes and optional masks.

Parameters:

Name Type Description Default
detections Tensor

Tensor of shape (N, 6) representing detected bounding boxes and associated confidence scores and class indices. Each row is of the format [x1, y1, x2, y2, conf, class].

required
gt_bboxes Tensor

Tensor of shape (M, 4) representing ground truth bounding box coordinates. Each row is of the format [x1, y1, x2, y2].

required
gt_cls Tensor

Tensor of shape (M,) representing ground truth class indices.

required
pred_masks Tensor

Tensor representing predicted masks, if available. The shape should match the ground truth masks.

None
gt_masks Tensor

Tensor of shape (M, H, W) representing ground truth masks, if available.

None
overlap bool

Flag indicating if overlapping masks should be considered.

False
masks bool

Flag indicating if the batch contains mask data.

False

Returns:

Type Description
Tensor

A correct prediction matrix of shape (N, 10), where 10 represents different IoU levels.

Note
  • If masks is True, the function computes IoU between predicted and ground truth masks.
  • If overlap is True and masks is True, overlapping masks are taken into account when computing IoU.

Examples:

>>> detections = torch.tensor([[25, 30, 200, 300, 0.8, 1], [50, 60, 180, 290, 0.75, 0]])
>>> gt_bboxes = torch.tensor([[24, 29, 199, 299], [55, 65, 185, 295]])
>>> gt_cls = torch.tensor([1, 0])
>>> correct_preds = validator._process_batch(detections, gt_bboxes, gt_cls)
Source code in ultralytics/models/yolo/segment/val.py
def _process_batch(self, detections, gt_bboxes, gt_cls, pred_masks=None, gt_masks=None, overlap=False, masks=False):
    """
    Compute correct prediction matrix for a batch based on bounding boxes and optional masks.

    Args:
        detections (torch.Tensor): Tensor of shape (N, 6) representing detected bounding boxes and
            associated confidence scores and class indices. Each row is of the format [x1, y1, x2, y2, conf, class].
        gt_bboxes (torch.Tensor): Tensor of shape (M, 4) representing ground truth bounding box coordinates.
            Each row is of the format [x1, y1, x2, y2].
        gt_cls (torch.Tensor): Tensor of shape (M,) representing ground truth class indices.
        pred_masks (torch.Tensor, optional): Tensor representing predicted masks, if available. The shape should
            match the ground truth masks.
        gt_masks (torch.Tensor, optional): Tensor of shape (M, H, W) representing ground truth masks, if available.
        overlap (bool): Flag indicating if overlapping masks should be considered.
        masks (bool): Flag indicating if the batch contains mask data.

    Returns:
        (torch.Tensor): A correct prediction matrix of shape (N, 10), where 10 represents different IoU levels.

    Note:
        - If `masks` is True, the function computes IoU between predicted and ground truth masks.
        - If `overlap` is True and `masks` is True, overlapping masks are taken into account when computing IoU.

    Examples:
        >>> detections = torch.tensor([[25, 30, 200, 300, 0.8, 1], [50, 60, 180, 290, 0.75, 0]])
        >>> gt_bboxes = torch.tensor([[24, 29, 199, 299], [55, 65, 185, 295]])
        >>> gt_cls = torch.tensor([1, 0])
        >>> correct_preds = validator._process_batch(detections, gt_bboxes, gt_cls)
    """
    if masks:
        if overlap:
            nl = len(gt_cls)
            index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
            gt_masks = gt_masks.repeat(nl, 1, 1)  # shape(1,640,640) -> (n,640,640)
            gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
        if gt_masks.shape[1:] != pred_masks.shape[1:]:
            gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
            gt_masks = gt_masks.gt_(0.5)
        iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
    else:  # boxes
        iou = box_iou(gt_bboxes, detections[:, :4])

    return self.match_predictions(detections[:, 5], gt_cls, iou)

eval_json

eval_json(stats)

Return COCO-style object detection evaluation metrics.

Source code in ultralytics/models/yolo/segment/val.py
def eval_json(self, stats):
    """Return COCO-style object detection evaluation metrics."""
    if self.args.save_json and self.is_coco and len(self.jdict):
        anno_json = self.data["path"] / "annotations/instances_val2017.json"  # annotations
        pred_json = self.save_dir / "predictions.json"  # predictions
        LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...")
        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            check_requirements("pycocotools>=2.0.6")
            from pycocotools.coco import COCO  # noqa
            from pycocotools.cocoeval import COCOeval  # noqa

            for x in anno_json, pred_json:
                assert x.is_file(), f"{x} file not found"
            anno = COCO(str(anno_json))  # init annotations api
            pred = anno.loadRes(str(pred_json))  # init predictions api (must pass string, not Path)
            for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "segm")]):
                if self.is_coco:
                    eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files]  # im to eval
                eval.evaluate()
                eval.accumulate()
                eval.summarize()
                idx = i * 4 + 2
                stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[
                    :2
                ]  # update mAP50-95 and mAP50
        except Exception as e:
            LOGGER.warning(f"pycocotools unable to run: {e}")
    return stats

finalize_metrics

finalize_metrics(*args, **kwargs)

Set speed and confusion matrix for evaluation metrics.

Source code in ultralytics/models/yolo/segment/val.py
def finalize_metrics(self, *args, **kwargs):
    """Set speed and confusion matrix for evaluation metrics."""
    self.metrics.speed = self.speed
    self.metrics.confusion_matrix = self.confusion_matrix

get_desc

get_desc()

Return a formatted description of evaluation metrics.

Source code in ultralytics/models/yolo/segment/val.py
def get_desc(self):
    """Return a formatted description of evaluation metrics."""
    return ("%22s" + "%11s" * 10) % (
        "Class",
        "Images",
        "Instances",
        "Box(P",
        "R",
        "mAP50",
        "mAP50-95)",
        "Mask(P",
        "R",
        "mAP50",
        "mAP50-95)",
    )

init_metrics

init_metrics(model)

Initialize metrics and select mask processing function based on save_json flag.

Parameters:

Name Type Description Default
model Module

Model to validate.

required
Source code in ultralytics/models/yolo/segment/val.py
def init_metrics(self, model):
    """
    Initialize metrics and select mask processing function based on save_json flag.

    Args:
        model (torch.nn.Module): Model to validate.
    """
    super().init_metrics(model)
    self.plot_masks = []
    if self.args.save_json:
        check_requirements("pycocotools>=2.0.6")
    # more accurate vs faster
    self.process = ops.process_mask_native if self.args.save_json or self.args.save_txt else ops.process_mask
    self.stats = dict(tp_m=[], tp=[], conf=[], pred_cls=[], target_cls=[], target_img=[])

plot_predictions

plot_predictions(batch, preds, ni)

Plot batch predictions with masks and bounding boxes.

Parameters:

Name Type Description Default
batch Dict

Batch data containing images.

required
preds List

Predictions from the model.

required
ni int

Batch index.

required
Source code in ultralytics/models/yolo/segment/val.py
def plot_predictions(self, batch, preds, ni):
    """
    Plot batch predictions with masks and bounding boxes.

    Args:
        batch (Dict): Batch data containing images.
        preds (List): Predictions from the model.
        ni (int): Batch index.
    """
    plot_images(
        batch["img"],
        *output_to_target(preds[0], max_det=15),  # not set to self.args.max_det due to slow plotting speed
        torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks,
        paths=batch["im_file"],
        fname=self.save_dir / f"val_batch{ni}_pred.jpg",
        names=self.names,
        on_plot=self.on_plot,
    )  # pred
    self.plot_masks.clear()

plot_val_samples

plot_val_samples(batch, ni)

Plot validation samples with bounding box labels and masks.

Parameters:

Name Type Description Default
batch Dict

Batch data containing images and targets.

required
ni int

Batch index.

required
Source code in ultralytics/models/yolo/segment/val.py
def plot_val_samples(self, batch, ni):
    """
    Plot validation samples with bounding box labels and masks.

    Args:
        batch (Dict): Batch data containing images and targets.
        ni (int): Batch index.
    """
    plot_images(
        batch["img"],
        batch["batch_idx"],
        batch["cls"].squeeze(-1),
        batch["bboxes"],
        masks=batch["masks"],
        paths=batch["im_file"],
        fname=self.save_dir / f"val_batch{ni}_labels.jpg",
        names=self.names,
        on_plot=self.on_plot,
    )

postprocess

postprocess(preds)

Post-process YOLO predictions and return output detections with proto.

Parameters:

Name Type Description Default
preds List

Raw predictions from the model.

required

Returns:

Name Type Description
p Tensor

Processed detection predictions.

proto Tensor

Prototype masks for segmentation.

Source code in ultralytics/models/yolo/segment/val.py
def postprocess(self, preds):
    """
    Post-process YOLO predictions and return output detections with proto.

    Args:
        preds (List): Raw predictions from the model.

    Returns:
        p (torch.Tensor): Processed detection predictions.
        proto (torch.Tensor): Prototype masks for segmentation.
    """
    p = super().postprocess(preds[0])
    proto = preds[1][-1] if len(preds[1]) == 3 else preds[1]  # second output is len 3 if pt, but only 1 if exported
    return p, proto

pred_to_json

pred_to_json(predn, filename, pred_masks)

Save one JSON result for COCO evaluation.

Parameters:

Name Type Description Default
predn Tensor

Predictions in the format [x1, y1, x2, y2, conf, cls].

required
filename str

Image filename.

required
pred_masks ndarray

Predicted masks.

required

Examples:

>>> result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
Source code in ultralytics/models/yolo/segment/val.py
def pred_to_json(self, predn, filename, pred_masks):
    """
    Save one JSON result for COCO evaluation.

    Args:
        predn (torch.Tensor): Predictions in the format [x1, y1, x2, y2, conf, cls].
        filename (str): Image filename.
        pred_masks (numpy.ndarray): Predicted masks.

    Examples:
         >>> result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
    """
    from pycocotools.mask import encode  # noqa

    def single_encode(x):
        """Encode predicted masks as RLE and append results to jdict."""
        rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
        rle["counts"] = rle["counts"].decode("utf-8")
        return rle

    stem = Path(filename).stem
    image_id = int(stem) if stem.isnumeric() else stem
    box = ops.xyxy2xywh(predn[:, :4])  # xywh
    box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
    pred_masks = np.transpose(pred_masks, (2, 0, 1))
    with ThreadPool(NUM_THREADS) as pool:
        rles = pool.map(single_encode, pred_masks)
    for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
        self.jdict.append(
            {
                "image_id": image_id,
                "category_id": self.class_map[int(p[5])],
                "bbox": [round(x, 3) for x in b],
                "score": round(p[4], 5),
                "segmentation": rles[i],
            }
        )

preprocess

preprocess(batch)

Preprocess batch by converting masks to float and sending to device.

Source code in ultralytics/models/yolo/segment/val.py
def preprocess(self, batch):
    """Preprocess batch by converting masks to float and sending to device."""
    batch = super().preprocess(batch)
    batch["masks"] = batch["masks"].to(self.device).float()
    return batch

save_one_txt

save_one_txt(predn, pred_masks, save_conf, shape, file)

Save YOLO detections to a txt file in normalized coordinates in a specific format.

Parameters:

Name Type Description Default
predn Tensor

Predictions in the format [x1, y1, x2, y2, conf, cls].

required
pred_masks Tensor

Predicted masks.

required
save_conf bool

Whether to save confidence scores.

required
shape Tuple

Original image shape.

required
file Path

File path to save the detections.

required
Source code in ultralytics/models/yolo/segment/val.py
def save_one_txt(self, predn, pred_masks, save_conf, shape, file):
    """
    Save YOLO detections to a txt file in normalized coordinates in a specific format.

    Args:
        predn (torch.Tensor): Predictions in the format [x1, y1, x2, y2, conf, cls].
        pred_masks (torch.Tensor): Predicted masks.
        save_conf (bool): Whether to save confidence scores.
        shape (Tuple): Original image shape.
        file (Path): File path to save the detections.
    """
    from ultralytics.engine.results import Results

    Results(
        np.zeros((shape[0], shape[1]), dtype=np.uint8),
        path=None,
        names=self.names,
        boxes=predn[:, :6],
        masks=pred_masks,
    ).save_txt(file, save_conf=save_conf)

update_metrics

update_metrics(preds, batch)

Update metrics with the current batch predictions and targets.

Parameters:

Name Type Description Default
preds List

Predictions from the model.

required
batch Dict

Batch data containing images and targets.

required
Source code in ultralytics/models/yolo/segment/val.py
def update_metrics(self, preds, batch):
    """
    Update metrics with the current batch predictions and targets.

    Args:
        preds (List): Predictions from the model.
        batch (Dict): Batch data containing images and targets.
    """
    for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
        self.seen += 1
        npr = len(pred)
        stat = dict(
            conf=torch.zeros(0, device=self.device),
            pred_cls=torch.zeros(0, device=self.device),
            tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
            tp_m=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
        )
        pbatch = self._prepare_batch(si, batch)
        cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
        nl = len(cls)
        stat["target_cls"] = cls
        stat["target_img"] = cls.unique()
        if npr == 0:
            if nl:
                for k in self.stats.keys():
                    self.stats[k].append(stat[k])
                if self.args.plots:
                    self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls)
            continue

        # Masks
        gt_masks = pbatch.pop("masks")
        # Predictions
        if self.args.single_cls:
            pred[:, 5] = 0
        predn, pred_masks = self._prepare_pred(pred, pbatch, proto)
        stat["conf"] = predn[:, 4]
        stat["pred_cls"] = predn[:, 5]

        # Evaluate
        if nl:
            stat["tp"] = self._process_batch(predn, bbox, cls)
            stat["tp_m"] = self._process_batch(
                predn, bbox, cls, pred_masks, gt_masks, self.args.overlap_mask, masks=True
            )
        if self.args.plots:
            self.confusion_matrix.process_batch(predn, bbox, cls)

        for k in self.stats.keys():
            self.stats[k].append(stat[k])

        pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
        if self.args.plots and self.batch_i < 3:
            self.plot_masks.append(pred_masks[:15].cpu())  # filter top 15 to plot

        # Save
        if self.args.save_json:
            self.pred_to_json(
                predn,
                batch["im_file"][si],
                ops.scale_image(
                    pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(),
                    pbatch["ori_shape"],
                    ratio_pad=batch["ratio_pad"][si],
                ),
            )
        if self.args.save_txt:
            self.save_one_txt(
                predn,
                pred_masks,
                self.args.save_conf,
                pbatch["ori_shape"],
                self.save_dir / "labels" / f"{Path(batch['im_file'][si]).stem}.txt",
            )



📅 Created 1 year ago ✏️ Updated 6 months ago