Reference for ultralytics/nn/tasks.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/tasks.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.nn.tasks.BaseModel
Bases: Module
The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family.
forward
forward(x, *args, **kwargs)
Perform forward pass of the model for either training or inference.
If x is a dict, calculates and returns the loss for training. Otherwise, returns predictions for inference.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor | dict
|
Input tensor for inference, or dict with image tensor and labels for training. |
required |
*args
|
Any
|
Variable length argument list. |
()
|
**kwargs
|
Any
|
Arbitrary keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
Tensor
|
Loss if x is a dict (training), or network predictions (inference). |
Source code in ultralytics/nn/tasks.py
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
|
fuse
fuse(verbose=True)
Fuse the Conv2d()
and BatchNorm2d()
layers of the model into a single layer for improved computation
efficiency.
Returns:
Type | Description |
---|---|
Module
|
The fused model is returned. |
Source code in ultralytics/nn/tasks.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
|
info
info(detailed=False, verbose=True, imgsz=640)
Print model information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detailed
|
bool
|
If True, prints out detailed information about the model. |
False
|
verbose
|
bool
|
If True, prints out the model information. |
True
|
imgsz
|
int
|
The size of the image that the model will be trained on. |
640
|
Source code in ultralytics/nn/tasks.py
243 244 245 246 247 248 249 250 251 252 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the BaseModel.
Source code in ultralytics/nn/tasks.py
303 304 305 |
|
is_fused
is_fused(thresh=10)
Check if the model has less than a certain threshold of BatchNorm layers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
thresh
|
int
|
The threshold number of BatchNorm layers. |
10
|
Returns:
Type | Description |
---|---|
bool
|
True if the number of BatchNorm layers in the model is less than the threshold, False otherwise. |
Source code in ultralytics/nn/tasks.py
230 231 232 233 234 235 236 237 238 239 240 241 |
|
load
load(weights, verbose=True)
Load weights into the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weights
|
dict | Module
|
The pre-trained weights to be loaded. |
required |
verbose
|
bool
|
Whether to log the transfer progress. |
True
|
Source code in ultralytics/nn/tasks.py
274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
loss
loss(batch, preds=None)
Compute loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Batch to compute loss on. |
required |
preds
|
Tensor | List[Tensor]
|
Predictions. |
None
|
Source code in ultralytics/nn/tasks.py
289 290 291 292 293 294 295 296 297 298 299 300 301 |
|
predict
predict(x, profile=False, visualize=False, augment=False, embed=None)
Perform a forward pass through the network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input tensor to the model. |
required |
profile
|
bool
|
Print the computation time of each layer if True. |
False
|
visualize
|
bool
|
Save the feature maps of the model if True. |
False
|
augment
|
bool
|
Augment image during prediction. |
False
|
embed
|
list
|
A list of feature vectors/embeddings to return. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
The last output of the model. |
Source code in ultralytics/nn/tasks.py
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|
ultralytics.nn.tasks.DetectionModel
DetectionModel(cfg='yolo11n.yaml', ch=3, nc=None, verbose=True)
Bases: BaseModel
YOLO detection model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yolo11n.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the DetectionModel.
Source code in ultralytics/nn/tasks.py
431 432 433 |
|
ultralytics.nn.tasks.OBBModel
OBBModel(cfg='yolo11n-obb.yaml', ch=3, nc=None, verbose=True)
Bases: DetectionModel
YOLO Oriented Bounding Box (OBB) model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yolo11n-obb.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
439 440 441 442 443 444 445 446 447 448 449 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the model.
Source code in ultralytics/nn/tasks.py
451 452 453 |
|
ultralytics.nn.tasks.SegmentationModel
SegmentationModel(cfg='yolo11n-seg.yaml', ch=3, nc=None, verbose=True)
Bases: DetectionModel
YOLO segmentation model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yolo11n-seg.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
459 460 461 462 463 464 465 466 467 468 469 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the SegmentationModel.
Source code in ultralytics/nn/tasks.py
471 472 473 |
|
ultralytics.nn.tasks.PoseModel
PoseModel(
cfg="yolo11n-pose.yaml",
ch=3,
nc=None,
data_kpt_shape=(None, None),
verbose=True,
)
Bases: DetectionModel
YOLO pose model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yolo11n-pose.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
data_kpt_shape
|
tuple
|
Shape of keypoints data. |
(None, None)
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the PoseModel.
Source code in ultralytics/nn/tasks.py
497 498 499 |
|
ultralytics.nn.tasks.ClassificationModel
ClassificationModel(cfg='yolo11n-cls.yaml', ch=3, nc=None, verbose=True)
Bases: BaseModel
YOLO classification model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yolo11n-cls.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
505 506 507 508 509 510 511 512 513 514 515 516 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the ClassificationModel.
Source code in ultralytics/nn/tasks.py
571 572 573 |
|
reshape_outputs
staticmethod
reshape_outputs(model, nc)
Update a TorchVision classification model to class count 'n' if required.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
Model to update. |
required |
nc
|
int
|
New number of classes. |
required |
Source code in ultralytics/nn/tasks.py
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
|
ultralytics.nn.tasks.RTDETRDetectionModel
RTDETRDetectionModel(cfg='rtdetr-l.yaml', ch=3, nc=None, verbose=True)
Bases: DetectionModel
RTDETR (Real-time DEtection and Tracking using Transformers) Detection Model class.
This class is responsible for constructing the RTDETR architecture, defining loss functions, and facilitating both the training and inference processes. RTDETR is an object detection and tracking model that extends from the DetectionModel base class.
Methods:
Name | Description |
---|---|
init_criterion |
Initializes the criterion used for loss calculation. |
loss |
Computes and returns the loss during training. |
predict |
Performs a forward pass through the network and returns the output. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Configuration file name or path. |
'rtdetr-l.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Print additional information during initialization. |
True
|
Source code in ultralytics/nn/tasks.py
590 591 592 593 594 595 596 597 598 599 600 |
|
init_criterion
init_criterion()
Initialize the loss criterion for the RTDETRDetectionModel.
Source code in ultralytics/nn/tasks.py
602 603 604 605 606 |
|
loss
loss(batch, preds=None)
Compute the loss for the given batch of data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Dictionary containing image and label data. |
required |
preds
|
Tensor
|
Precomputed model predictions. |
None
|
Returns:
Type | Description |
---|---|
tuple
|
A tuple containing the total loss and main three losses in a tensor. |
Source code in ultralytics/nn/tasks.py
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
|
predict
predict(
x, profile=False, visualize=False, batch=None, augment=False, embed=None
)
Perform a forward pass through the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input tensor. |
required |
profile
|
bool
|
If True, profile the computation time for each layer. |
False
|
visualize
|
bool
|
If True, save feature maps for visualization. |
False
|
batch
|
dict
|
Ground truth data for evaluation. |
None
|
augment
|
bool
|
If True, perform data augmentation during inference. |
False
|
embed
|
list
|
A list of feature vectors/embeddings to return. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Model's output tensor. |
Source code in ultralytics/nn/tasks.py
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 |
|
ultralytics.nn.tasks.WorldModel
WorldModel(cfg='yolov8s-world.yaml', ch=3, nc=None, verbose=True)
Bases: DetectionModel
YOLOv8 World Model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yolov8s-world.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
loss
loss(batch, preds=None)
Compute loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Batch to compute loss on. |
required |
preds
|
Tensor | List[Tensor]
|
Predictions. |
None
|
Source code in ultralytics/nn/tasks.py
775 776 777 778 779 780 781 782 783 784 785 786 787 788 |
|
predict
predict(
x, profile=False, visualize=False, txt_feats=None, augment=False, embed=None
)
Perform a forward pass through the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input tensor. |
required |
profile
|
bool
|
If True, profile the computation time for each layer. |
False
|
visualize
|
bool
|
If True, save feature maps for visualization. |
False
|
txt_feats
|
Tensor
|
The text features, use it if it's given. |
None
|
augment
|
bool
|
If True, perform data augmentation during inference. |
False
|
embed
|
list
|
A list of feature vectors/embeddings to return. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Model's output tensor. |
Source code in ultralytics/nn/tasks.py
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
|
set_classes
set_classes(text, batch=80, cache_clip_model=True)
Set classes in advance so that model could do offline-inference without clip model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
List[str]
|
List of class names. |
required |
batch
|
int
|
Batch size for processing text tokens. |
80
|
cache_clip_model
|
bool
|
Whether to cache the CLIP model. |
True
|
Source code in ultralytics/nn/tasks.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
|
ultralytics.nn.tasks.YOLOEModel
YOLOEModel(cfg='yoloe-v8s.yaml', ch=3, nc=None, verbose=True)
Bases: DetectionModel
YOLOE detection model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yoloe-v8s.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
794 795 796 797 798 799 800 801 802 803 804 |
|
get_cls_pe
get_cls_pe(tpe, vpe)
Get class positional embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tpe
|
Tensor
|
Text positional embeddings. |
required |
vpe
|
Tensor
|
Visual positional embeddings. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Class positional embeddings. |
Source code in ultralytics/nn/tasks.py
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 |
|
get_text_pe
get_text_pe(text, batch=80, cache_clip_model=False, without_reprta=False)
Set classes in advance so that model could do offline-inference without clip model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
List[str]
|
List of class names. |
required |
batch
|
int
|
Batch size for processing text tokens. |
80
|
cache_clip_model
|
bool
|
Whether to cache the CLIP model. |
False
|
without_reprta
|
bool
|
Whether to return text embeddings cooperated with reprta module. |
False
|
Returns:
Type | Description |
---|---|
Tensor
|
Text positional embeddings. |
Source code in ultralytics/nn/tasks.py
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 |
|
get_visual_pe
get_visual_pe(img, visual)
Get visual embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img
|
Tensor
|
Input image tensor. |
required |
visual
|
Tensor
|
Visual features. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Visual positional embeddings. |
Source code in ultralytics/nn/tasks.py
840 841 842 843 844 845 846 847 848 849 850 851 852 |
|
get_vocab
get_vocab(names)
Get fused vocabulary layer from the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
names
|
list
|
List of class names. |
required |
Returns:
Type | Description |
---|---|
ModuleList
|
List of vocabulary modules. |
Source code in ultralytics/nn/tasks.py
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 |
|
loss
loss(batch, preds=None)
Compute loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Batch to compute loss on. |
required |
preds
|
Tensor | List[Tensor]
|
Predictions. |
None
|
Source code in ultralytics/nn/tasks.py
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 |
|
predict
predict(
x,
profile=False,
visualize=False,
tpe=None,
augment=False,
embed=None,
vpe=None,
return_vpe=False,
)
Perform a forward pass through the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input tensor. |
required |
profile
|
bool
|
If True, profile the computation time for each layer. |
False
|
visualize
|
bool
|
If True, save feature maps for visualization. |
False
|
tpe
|
Tensor
|
Text positional embeddings. |
None
|
augment
|
bool
|
If True, perform data augmentation during inference. |
False
|
embed
|
list
|
A list of feature vectors/embeddings to return. |
None
|
vpe
|
Tensor
|
Visual positional embeddings. |
None
|
return_vpe
|
bool
|
If True, return visual positional embeddings. |
False
|
Returns:
Type | Description |
---|---|
Tensor
|
Model's output tensor. |
Source code in ultralytics/nn/tasks.py
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 |
|
set_classes
set_classes(names, embeddings)
Set classes in advance so that model could do offline-inference without clip model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
names
|
List[str]
|
List of class names. |
required |
embeddings
|
Tensor
|
Embeddings tensor. |
required |
Source code in ultralytics/nn/tasks.py
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 |
|
set_vocab
set_vocab(vocab, names)
Set vocabulary for the prompt-free model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab
|
ModuleList
|
List of vocabulary items. |
required |
names
|
List[str]
|
List of class names. |
required |
Source code in ultralytics/nn/tasks.py
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 |
|
ultralytics.nn.tasks.YOLOESegModel
YOLOESegModel(cfg='yoloe-v8s-seg.yaml', ch=3, nc=None, verbose=True)
Bases: YOLOEModel
, SegmentationModel
YOLOE segmentation model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cfg
|
str | dict
|
Model configuration file path or dictionary. |
'yoloe-v8s-seg.yaml'
|
ch
|
int
|
Number of input channels. |
3
|
nc
|
int
|
Number of classes. |
None
|
verbose
|
bool
|
Whether to display model information. |
True
|
Source code in ultralytics/nn/tasks.py
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 |
|
loss
loss(batch, preds=None)
Compute loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch
|
dict
|
Batch to compute loss on. |
required |
preds
|
Tensor | List[Tensor]
|
Predictions. |
None
|
Source code in ultralytics/nn/tasks.py
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 |
|
ultralytics.nn.tasks.Ensemble
Ensemble()
Bases: ModuleList
Ensemble of models.
Source code in ultralytics/nn/tasks.py
1051 1052 1053 |
|
forward
forward(x, augment=False, profile=False, visualize=False)
Generate the YOLO network's final layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor. |
required |
augment
|
bool
|
Whether to augment the input. |
False
|
profile
|
bool
|
Whether to profile the model. |
False
|
visualize
|
bool
|
Whether to visualize the features. |
False
|
Returns:
Type | Description |
---|---|
tuple
|
Tuple containing the concatenated predictions and None. |
Source code in ultralytics/nn/tasks.py
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 |
|
ultralytics.nn.tasks.SafeClass
SafeClass(*args, **kwargs)
A placeholder class to replace unknown classes during unpickling.
Source code in ultralytics/nn/tasks.py
1130 1131 1132 |
|
__call__
__call__(*args, **kwargs)
Run SafeClass instance, ignoring all arguments.
Source code in ultralytics/nn/tasks.py
1134 1135 1136 |
|
ultralytics.nn.tasks.SafeUnpickler
Bases: Unpickler
Custom Unpickler that replaces unknown classes with SafeClass.
find_class
find_class(module, name)
Attempt to find a class, returning SafeClass if not among safe modules.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
module
|
str
|
Module name. |
required |
name
|
str
|
Class name. |
required |
Returns:
Type | Description |
---|---|
type
|
Found class or SafeClass. |
Source code in ultralytics/nn/tasks.py
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 |
|
ultralytics.nn.tasks.temporary_modules
temporary_modules(modules=None, attributes=None)
Context manager for temporarily adding or modifying modules in Python's module cache (sys.modules
).
This function can be used to change the module paths during runtime. It's useful when refactoring code, where you've moved a module from one location to another, but you still want to support the old import paths for backwards compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
modules
|
dict
|
A dictionary mapping old module paths to new module paths. |
None
|
attributes
|
dict
|
A dictionary mapping old module attributes to new module attributes. |
None
|
Examples:
>>> with temporary_modules({"old.module": "new.module"}, {"old.module.attribute": "new.module.attribute"}):
>>> import old.module # this will now import new.module
>>> from old.module import attribute # this will now import new.module.attribute
Note
The changes are only in effect inside the context manager and are undone once the context manager exits.
Be aware that directly manipulating sys.modules
can lead to unpredictable results, especially in larger
applications or libraries. Use this function with caution.
Source code in ultralytics/nn/tasks.py
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 |
|
ultralytics.nn.tasks.torch_safe_load
torch_safe_load(weight, safe_only=False)
Attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised, it catches the error, logs a warning message, and attempts to install the missing module via the check_requirements() function. After installation, the function again attempts to load the model using torch.load().
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weight
|
str
|
The file path of the PyTorch model. |
required |
safe_only
|
bool
|
If True, replace unknown classes with SafeClass during loading. |
False
|
Returns:
Name | Type | Description |
---|---|---|
ckpt |
dict
|
The loaded model checkpoint. |
file |
str
|
The loaded filename. |
Examples:
>>> from ultralytics.nn.tasks import torch_safe_load
>>> ckpt, file = torch_safe_load("path/to/best.pt", safe_only=True)
Source code in ultralytics/nn/tasks.py
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 |
|
ultralytics.nn.tasks.attempt_load_weights
attempt_load_weights(weights, device=None, inplace=True, fuse=False)
Load an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weights
|
str | List[str]
|
Model weights path(s). |
required |
device
|
device
|
Device to load model to. |
None
|
inplace
|
bool
|
Whether to do inplace operations. |
True
|
fuse
|
bool
|
Whether to fuse model. |
False
|
Returns:
Type | Description |
---|---|
Module
|
Loaded model. |
Source code in ultralytics/nn/tasks.py
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 |
|
ultralytics.nn.tasks.attempt_load_one_weight
attempt_load_one_weight(weight, device=None, inplace=True, fuse=False)
Load a single model weights.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weight
|
str
|
Model weight path. |
required |
device
|
device
|
Device to load model to. |
None
|
inplace
|
bool
|
Whether to do inplace operations. |
True
|
fuse
|
bool
|
Whether to fuse model. |
False
|
Returns:
Type | Description |
---|---|
tuple
|
Tuple containing the model and checkpoint. |
Source code in ultralytics/nn/tasks.py
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 |
|
ultralytics.nn.tasks.parse_model
parse_model(d, ch, verbose=True)
Parse a YOLO model.yaml dictionary into a PyTorch model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d
|
dict
|
Model dictionary. |
required |
ch
|
int
|
Input channels. |
required |
verbose
|
bool
|
Whether to print model details. |
True
|
Returns:
Type | Description |
---|---|
tuple
|
Tuple containing the PyTorch model and sorted list of output layers. |
Source code in ultralytics/nn/tasks.py
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 |
|
ultralytics.nn.tasks.yaml_model_load
yaml_model_load(path)
Load a YOLOv8 model from a YAML file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str | Path
|
Path to the YAML file. |
required |
Returns:
Type | Description |
---|---|
dict
|
Model dictionary. |
Source code in ultralytics/nn/tasks.py
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 |
|
ultralytics.nn.tasks.guess_model_scale
guess_model_scale(model_path)
Extract the size character n, s, m, l, or x of the model's scale from the model path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_path
|
str | Path
|
The path to the YOLO model's YAML file. |
required |
Returns:
Type | Description |
---|---|
str
|
The size character of the model's scale (n, s, m, l, or x). |
Source code in ultralytics/nn/tasks.py
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 |
|
ultralytics.nn.tasks.guess_model_task
guess_model_task(model)
Guess the task of a PyTorch model from its architecture or configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module | dict
|
PyTorch model or model configuration in YAML format. |
required |
Returns:
Type | Description |
---|---|
str
|
Task of the model ('detect', 'segment', 'classify', 'pose', 'obb'). |
Source code in ultralytics/nn/tasks.py
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 |
|