Reference for ultralytics/nn/tasks.py
Improvements
This page is sourced from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/tasks.py. Have an improvement or example to add? Open a Pull Request — thank you! 🙏
Summary
BaseModel.forwardBaseModel.predictBaseModel._predict_onceBaseModel._predict_augmentBaseModel._profile_one_layerBaseModel.fuseBaseModel.is_fusedBaseModel.infoBaseModel._applyBaseModel.loadBaseModel.lossBaseModel.init_criterionDetectionModel._predict_augmentDetectionModel._descale_predDetectionModel._clip_augmentedDetectionModel.init_criterionOBBModel.init_criterionSegmentationModel.init_criterionPoseModel.init_criterionClassificationModel._from_yamlClassificationModel.reshape_outputsClassificationModel.init_criterionRTDETRDetectionModel._applyRTDETRDetectionModel.init_criterionRTDETRDetectionModel.lossRTDETRDetectionModel.predictWorldModel.set_classesWorldModel.get_text_peWorldModel.predictWorldModel.lossYOLOEModel.get_text_peYOLOEModel.get_visual_peYOLOEModel.set_vocabYOLOEModel.get_vocabYOLOEModel.set_classesYOLOEModel.get_cls_peYOLOEModel.predictYOLOEModel.lossYOLOESegModel.lossEnsemble.forwardSafeClass.__call__SafeUnpickler.find_class
class ultralytics.nn.tasks.BaseModel
BaseModel()
Bases: torch.nn.Module
Base class for all YOLO models in the Ultralytics family.
This class provides common functionality for YOLO models including forward pass handling, model fusion, information display, and weight loading capabilities.
Attributes
| Name | Type | Description |
|---|---|---|
model | torch.nn.Module | The neural network model. |
save | list | List of layer indices to save outputs from. |
stride | torch.Tensor | Model stride values. |
Methods
| Name | Description |
|---|---|
_apply | Apply a function to all tensors in the model that are not parameters or registered buffers. |
_predict_augment | Perform augmentations on input image x and return augmented inference. |
_predict_once | Perform a forward pass through the network. |
_profile_one_layer | Profile the computation time and FLOPs of a single layer of the model on a given input. |
forward | Perform forward pass of the model for either training or inference. |
fuse | Fuse the Conv2d() and BatchNorm2d() layers of the model into a single layer for improved computation |
info | Print model information. |
init_criterion | Initialize the loss criterion for the BaseModel. |
is_fused | Check if the model has less than a certain threshold of BatchNorm layers. |
load | Load weights into the model. |
loss | Compute loss. |
predict | Perform a forward pass through the network. |
Examples
Create a BaseModel instance
>>> model = BaseModel()
>>> model.info() # Display model information
method ultralytics.nn.tasks.BaseModel._apply
def _apply(self, fn)
Apply a function to all tensors in the model that are not parameters or registered buffers.
Args
| Name | Type | Description | Default |
|---|---|---|---|
fn | function | The function to apply to the model. | required |
Returns
| Type | Description |
|---|---|
BaseModel | An updated BaseModel object. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef _apply(self, fn):
"""Apply a function to all tensors in the model that are not parameters or registered buffers.
Args:
fn (function): The function to apply to the model.
Returns:
(BaseModel): An updated BaseModel object.
"""
self = super()._apply(fn)
m = self.model[-1] # Detect()
if isinstance(
m, Detect
): # includes all Detect subclasses like Segment, Pose, OBB, WorldDetect, YOLOEDetect, YOLOESegment
m.stride = fn(m.stride)
m.anchors = fn(m.anchors)
m.strides = fn(m.strides)
return self
method ultralytics.nn.tasks.BaseModel._predict_augment
def _predict_augment(self, x)
Perform augmentations on input image x and return augmented inference.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | required |
Source code in ultralytics/nn/tasks.py
View on GitHubdef _predict_augment(self, x):
"""Perform augmentations on input image x and return augmented inference."""
LOGGER.warning(
f"{self.__class__.__name__} does not support 'augment=True' prediction. "
f"Reverting to single-scale prediction."
)
return self._predict_once(x)
method ultralytics.nn.tasks.BaseModel._predict_once
def _predict_once(self, x, profile = False, visualize = False, embed = None)
Perform a forward pass through the network.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | The input tensor to the model. | required |
profile | bool | Print the computation time of each layer if True. | False |
visualize | bool | Save the feature maps of the model if True. | False |
embed | list, optional | A list of feature vectors/embeddings to return. | None |
Returns
| Type | Description |
|---|---|
torch.Tensor | The last output of the model. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef _predict_once(self, x, profile=False, visualize=False, embed=None):
"""Perform a forward pass through the network.
Args:
x (torch.Tensor): The input tensor to the model.
profile (bool): Print the computation time of each layer if True.
visualize (bool): Save the feature maps of the model if True.
embed (list, optional): A list of feature vectors/embeddings to return.
Returns:
(torch.Tensor): The last output of the model.
"""
y, dt, embeddings = [], [], [] # outputs
embed = frozenset(embed) if embed is not None else {-1}
max_idx = max(embed)
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
if m.i in embed:
embeddings.append(torch.nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
if m.i == max_idx:
return torch.unbind(torch.cat(embeddings, 1), dim=0)
return x
method ultralytics.nn.tasks.BaseModel._profile_one_layer
def _profile_one_layer(self, m, x, dt)
Profile the computation time and FLOPs of a single layer of the model on a given input.
Args
| Name | Type | Description | Default |
|---|---|---|---|
m | torch.nn.Module | The layer to be profiled. | required |
x | torch.Tensor | The input data to the layer. | required |
dt | list | A list to store the computation time of the layer. | required |
Source code in ultralytics/nn/tasks.py
View on GitHubdef _profile_one_layer(self, m, x, dt):
"""Profile the computation time and FLOPs of a single layer of the model on a given input.
Args:
m (torch.nn.Module): The layer to be profiled.
x (torch.Tensor): The input data to the layer.
dt (list): A list to store the computation time of the layer.
"""
try:
import thop
except ImportError:
thop = None # conda support without 'ultralytics-thop' installed
c = m == self.model[-1] and isinstance(x, list) # is final layer list, copy input as inplace fix
flops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1e9 * 2 if thop else 0 # GFLOPs
t = time_sync()
for _ in range(10):
m(x.copy() if c else x)
dt.append((time_sync() - t) * 100)
if m == self.model[0]:
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
LOGGER.info(f"{dt[-1]:10.2f} {flops:10.2f} {m.np:10.0f} {m.type}")
if c:
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
method ultralytics.nn.tasks.BaseModel.forward
def forward(self, x, *args, **kwargs)
Perform forward pass of the model for either training or inference.
If x is a dict, calculates and returns the loss for training. Otherwise, returns predictions for inference.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | dict | Input tensor for inference, or dict with image tensor and labels for training. | required |
*args | Any | Variable length argument list. | required |
**kwargs | Any | Arbitrary keyword arguments. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Loss if x is a dict (training), or network predictions (inference). |
Source code in ultralytics/nn/tasks.py
View on GitHubdef forward(self, x, *args, **kwargs):
"""Perform forward pass of the model for either training or inference.
If x is a dict, calculates and returns the loss for training. Otherwise, returns predictions for inference.
Args:
x (torch.Tensor | dict): Input tensor for inference, or dict with image tensor and labels for training.
*args (Any): Variable length argument list.
**kwargs (Any): Arbitrary keyword arguments.
Returns:
(torch.Tensor): Loss if x is a dict (training), or network predictions (inference).
"""
if isinstance(x, dict): # for cases of training and validating while training.
return self.loss(x, *args, **kwargs)
return self.predict(x, *args, **kwargs)
method ultralytics.nn.tasks.BaseModel.fuse
def fuse(self, verbose = True)
Fuse the Conv2d() and BatchNorm2d() layers of the model into a single layer for improved computation
efficiency.
Args
| Name | Type | Description | Default |
|---|---|---|---|
verbose | True |
Returns
| Type | Description |
|---|---|
torch.nn.Module | The fused model is returned. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef fuse(self, verbose=True):
"""Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer for improved computation
efficiency.
Returns:
(torch.nn.Module): The fused model is returned.
"""
if not self.is_fused():
for m in self.model.modules():
if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, "bn"):
if isinstance(m, Conv2):
m.fuse_convs()
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
delattr(m, "bn") # remove batchnorm
m.forward = m.forward_fuse # update forward
if isinstance(m, ConvTranspose) and hasattr(m, "bn"):
m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)
delattr(m, "bn") # remove batchnorm
m.forward = m.forward_fuse # update forward
if isinstance(m, RepConv):
m.fuse_convs()
m.forward = m.forward_fuse # update forward
if isinstance(m, RepVGGDW):
m.fuse()
m.forward = m.forward_fuse
if isinstance(m, v10Detect):
m.fuse() # remove one2many head
self.info(verbose=verbose)
return self
method ultralytics.nn.tasks.BaseModel.info
def info(self, detailed = False, verbose = True, imgsz = 640)
Print model information.
Args
| Name | Type | Description | Default |
|---|---|---|---|
detailed | bool | If True, prints out detailed information about the model. | False |
verbose | bool | If True, prints out the model information. | True |
imgsz | int | The size of the image that the model will be trained on. | 640 |
Source code in ultralytics/nn/tasks.py
View on GitHubdef info(self, detailed=False, verbose=True, imgsz=640):
"""Print model information.
Args:
detailed (bool): If True, prints out detailed information about the model.
verbose (bool): If True, prints out the model information.
imgsz (int): The size of the image that the model will be trained on.
"""
return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz)
method ultralytics.nn.tasks.BaseModel.init_criterion
def init_criterion(self)
Initialize the loss criterion for the BaseModel.
Source code in ultralytics/nn/tasks.py
View on GitHubdef init_criterion(self):
"""Initialize the loss criterion for the BaseModel."""
raise NotImplementedError("compute_loss() needs to be implemented by task heads")
method ultralytics.nn.tasks.BaseModel.is_fused
def is_fused(self, thresh = 10)
Check if the model has less than a certain threshold of BatchNorm layers.
Args
| Name | Type | Description | Default |
|---|---|---|---|
thresh | int, optional | The threshold number of BatchNorm layers. | 10 |
Returns
| Type | Description |
|---|---|
bool | True if the number of BatchNorm layers in the model is less than the threshold, False otherwise. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef is_fused(self, thresh=10):
"""Check if the model has less than a certain threshold of BatchNorm layers.
Args:
thresh (int, optional): The threshold number of BatchNorm layers.
Returns:
(bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise.
"""
bn = tuple(v for k, v in torch.nn.__dict__.items() if "Norm" in k) # normalization layers, i.e. BatchNorm2d()
return sum(isinstance(v, bn) for v in self.modules()) < thresh # True if < 'thresh' BatchNorm layers in model
method ultralytics.nn.tasks.BaseModel.load
def load(self, weights, verbose = True)
Load weights into the model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
weights | dict | torch.nn.Module | The pre-trained weights to be loaded. | required |
verbose | bool, optional | Whether to log the transfer progress. | True |
Source code in ultralytics/nn/tasks.py
View on GitHubdef load(self, weights, verbose=True):
"""Load weights into the model.
Args:
weights (dict | torch.nn.Module): The pre-trained weights to be loaded.
verbose (bool, optional): Whether to log the transfer progress.
"""
model = weights["model"] if isinstance(weights, dict) else weights # torchvision models are not dicts
csd = model.float().state_dict() # checkpoint state_dict as FP32
updated_csd = intersect_dicts(csd, self.state_dict()) # intersect
self.load_state_dict(updated_csd, strict=False) # load
len_updated_csd = len(updated_csd)
first_conv = "model.0.conv.weight" # hard-coded to yolo models for now
# mostly used to boost multi-channel training
state_dict = self.state_dict()
if first_conv not in updated_csd and first_conv in state_dict:
c1, c2, h, w = state_dict[first_conv].shape
cc1, cc2, ch, cw = csd[first_conv].shape
if ch == h and cw == w:
c1, c2 = min(c1, cc1), min(c2, cc2)
state_dict[first_conv][:c1, :c2] = csd[first_conv][:c1, :c2]
len_updated_csd += 1
if verbose:
LOGGER.info(f"Transferred {len_updated_csd}/{len(self.model.state_dict())} items from pretrained weights")
method ultralytics.nn.tasks.BaseModel.loss
def loss(self, batch, preds = None)
Compute loss.
Args
| Name | Type | Description | Default |
|---|---|---|---|
batch | dict | Batch to compute loss on. | required |
preds | torch.Tensor | list[torch.Tensor], optional | Predictions. | None |
Source code in ultralytics/nn/tasks.py
View on GitHubdef loss(self, batch, preds=None):
"""Compute loss.
Args:
batch (dict): Batch to compute loss on.
preds (torch.Tensor | list[torch.Tensor], optional): Predictions.
"""
if getattr(self, "criterion", None) is None:
self.criterion = self.init_criterion()
if preds is None:
preds = self.forward(batch["img"])
return self.criterion(preds, batch)
method ultralytics.nn.tasks.BaseModel.predict
def predict(self, x, profile = False, visualize = False, augment = False, embed = None)
Perform a forward pass through the network.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | The input tensor to the model. | required |
profile | bool | Print the computation time of each layer if True. | False |
visualize | bool | Save the feature maps of the model if True. | False |
augment | bool | Augment image during prediction. | False |
embed | list, optional | A list of feature vectors/embeddings to return. | None |
Returns
| Type | Description |
|---|---|
torch.Tensor | The last output of the model. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef predict(self, x, profile=False, visualize=False, augment=False, embed=None):
"""Perform a forward pass through the network.
Args:
x (torch.Tensor): The input tensor to the model.
profile (bool): Print the computation time of each layer if True.
visualize (bool): Save the feature maps of the model if True.
augment (bool): Augment image during prediction.
embed (list, optional): A list of feature vectors/embeddings to return.
Returns:
(torch.Tensor): The last output of the model.
"""
if augment:
return self._predict_augment(x)
return self._predict_once(x, profile, visualize, embed)
class ultralytics.nn.tasks.DetectionModel
DetectionModel(self, cfg = "yolo11n.yaml", ch = 3, nc = None, verbose = True)
Bases: BaseModel
YOLO detection model.
This class implements the YOLO detection architecture, handling model initialization, forward pass, augmented inference, and loss computation for object detection tasks.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cfg | str | dict | Model configuration file path or dictionary. | "yolo11n.yaml" |
ch | int | Number of input channels. | 3 |
nc | int, optional | Number of classes. | None |
verbose | bool | Whether to display model information. | True |
Attributes
| Name | Type | Description |
|---|---|---|
yaml | dict | Model configuration dictionary. |
model | torch.nn.Sequential | The neural network model. |
save | list | List of layer indices to save outputs from. |
names | dict | Class names dictionary. |
inplace | bool | Whether to use inplace operations. |
end2end | bool | Whether the model uses end-to-end detection. |
stride | torch.Tensor | Model stride values. |
Methods
| Name | Description |
|---|---|
_clip_augmented | Clip YOLO augmented inference tails. |
_descale_pred | De-scale predictions following augmented inference (inverse operation). |
_predict_augment | Perform augmentations on input image x and return augmented inference and train outputs. |
init_criterion | Initialize the loss criterion for the DetectionModel. |
Examples
Initialize a detection model
>>> model = DetectionModel("yolo11n.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor)
Source code in ultralytics/nn/tasks.py
View on GitHubclass DetectionModel(BaseModel):
"""YOLO detection model.
This class implements the YOLO detection architecture, handling model initialization, forward pass, augmented
inference, and loss computation for object detection tasks.
Attributes:
yaml (dict): Model configuration dictionary.
model (torch.nn.Sequential): The neural network model.
save (list): List of layer indices to save outputs from.
names (dict): Class names dictionary.
inplace (bool): Whether to use inplace operations.
end2end (bool): Whether the model uses end-to-end detection.
stride (torch.Tensor): Model stride values.
Methods:
__init__: Initialize the YOLO detection model.
_predict_augment: Perform augmented inference.
_descale_pred: De-scale predictions following augmented inference.
_clip_augmented: Clip YOLO augmented inference tails.
init_criterion: Initialize the loss criterion.
Examples:
Initialize a detection model
>>> model = DetectionModel("yolo11n.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor)
"""
def __init__(self, cfg="yolo11n.yaml", ch=3, nc=None, verbose=True):
"""Initialize the YOLO detection model with the given config and parameters.
Args:
cfg (str | dict): Model configuration file path or dictionary.
ch (int): Number of input channels.
nc (int, optional): Number of classes.
verbose (bool): Whether to display model information.
"""
super().__init__()
self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict
if self.yaml["backbone"][0][2] == "Silence":
LOGGER.warning(
"YOLOv9 `Silence` module is deprecated in favor of torch.nn.Identity. "
"Please delete local *.pt file and re-download the latest model checkpoint."
)
self.yaml["backbone"][0][2] = "nn.Identity"
# Define model
self.yaml["channels"] = ch # save channels
if nc and nc != self.yaml["nc"]:
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
self.yaml["nc"] = nc # override YAML value
self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist
self.names = {i: f"{i}" for i in range(self.yaml["nc"])} # default names dict
self.inplace = self.yaml.get("inplace", True)
self.end2end = getattr(self.model[-1], "end2end", False)
# Build strides
m = self.model[-1] # Detect()
if isinstance(m, Detect): # includes all Detect subclasses like Segment, Pose, OBB, YOLOEDetect, YOLOESegment
s = 256 # 2x min stride
m.inplace = self.inplace
def _forward(x):
"""Perform a forward pass through the model, handling different Detect subclass types accordingly."""
if self.end2end:
return self.forward(x)["one2many"]
return self.forward(x)[0] if isinstance(m, (Segment, YOLOESegment, Pose, OBB)) else self.forward(x)
self.model.eval() # Avoid changing batch statistics until training begins
m.training = True # Setting it to True to properly return strides
m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward
self.stride = m.stride
self.model.train() # Set model back to training(default) mode
m.bias_init() # only run once
else:
self.stride = torch.Tensor([32]) # default stride for i.e. RTDETR
# Init weights, biases
initialize_weights(self)
if verbose:
self.info()
LOGGER.info("")
method ultralytics.nn.tasks.DetectionModel._clip_augmented
def _clip_augmented(self, y)
Clip YOLO augmented inference tails.
Args
| Name | Type | Description | Default |
|---|---|---|---|
y | list[torch.Tensor] | List of detection tensors. | required |
Returns
| Type | Description |
|---|---|
list[torch.Tensor] | Clipped detection tensors. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef _clip_augmented(self, y):
"""Clip YOLO augmented inference tails.
Args:
y (list[torch.Tensor]): List of detection tensors.
Returns:
(list[torch.Tensor]): Clipped detection tensors.
"""
nl = self.model[-1].nl # number of detection layers (P3-P5)
g = sum(4**x for x in range(nl)) # grid points
e = 1 # exclude layer count
i = (y[0].shape[-1] // g) * sum(4**x for x in range(e)) # indices
y[0] = y[0][..., :-i] # large
i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
y[-1] = y[-1][..., i:] # small
return y
method ultralytics.nn.tasks.DetectionModel._descale_pred
def _descale_pred(p, flips, scale, img_size, dim = 1)
De-scale predictions following augmented inference (inverse operation).
Args
| Name | Type | Description | Default |
|---|---|---|---|
p | torch.Tensor | Predictions tensor. | required |
flips | int | Flip type (0=none, 2=ud, 3=lr). | required |
scale | float | Scale factor. | required |
img_size | tuple | Original image size (height, width). | required |
dim | int | Dimension to split at. | 1 |
Returns
| Type | Description |
|---|---|
torch.Tensor | De-scaled predictions. |
Source code in ultralytics/nn/tasks.py
View on GitHub@staticmethod
def _descale_pred(p, flips, scale, img_size, dim=1):
"""De-scale predictions following augmented inference (inverse operation).
Args:
p (torch.Tensor): Predictions tensor.
flips (int): Flip type (0=none, 2=ud, 3=lr).
scale (float): Scale factor.
img_size (tuple): Original image size (height, width).
dim (int): Dimension to split at.
Returns:
(torch.Tensor): De-scaled predictions.
"""
p[:, :4] /= scale # de-scale
x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)
if flips == 2:
y = img_size[0] - y # de-flip ud
elif flips == 3:
x = img_size[1] - x # de-flip lr
return torch.cat((x, y, wh, cls), dim)
method ultralytics.nn.tasks.DetectionModel._predict_augment
def _predict_augment(self, x)
Perform augmentations on input image x and return augmented inference and train outputs.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | Input image tensor. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Augmented inference output. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef _predict_augment(self, x):
"""Perform augmentations on input image x and return augmented inference and train outputs.
Args:
x (torch.Tensor): Input image tensor.
Returns:
(torch.Tensor): Augmented inference output.
"""
if getattr(self, "end2end", False) or self.__class__.__name__ != "DetectionModel":
LOGGER.warning("Model does not support 'augment=True', reverting to single-scale prediction.")
return self._predict_once(x)
img_size = x.shape[-2:] # height, width
s = [1, 0.83, 0.67] # scales
f = [None, 3, None] # flips (2-ud, 3-lr)
y = [] # outputs
for si, fi in zip(s, f):
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
yi = super().predict(xi)[0] # forward
yi = self._descale_pred(yi, fi, si, img_size)
y.append(yi)
y = self._clip_augmented(y) # clip augmented tails
return torch.cat(y, -1), None # augmented inference, train
method ultralytics.nn.tasks.DetectionModel.init_criterion
def init_criterion(self)
Initialize the loss criterion for the DetectionModel.
Source code in ultralytics/nn/tasks.py
View on GitHubdef init_criterion(self):
"""Initialize the loss criterion for the DetectionModel."""
return E2EDetectLoss(self) if getattr(self, "end2end", False) else v8DetectionLoss(self)
class ultralytics.nn.tasks.OBBModel
OBBModel(self, cfg = "yolo11n-obb.yaml", ch = 3, nc = None, verbose = True)
Bases: DetectionModel
YOLO Oriented Bounding Box (OBB) model.
This class extends DetectionModel to handle oriented bounding box detection tasks, providing specialized loss computation for rotated object detection.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cfg | str | dict | Model configuration file path or dictionary. | "yolo11n-obb.yaml" |
ch | int | Number of input channels. | 3 |
nc | int, optional | Number of classes. | None |
verbose | bool | Whether to display model information. | True |
Methods
| Name | Description |
|---|---|
init_criterion | Initialize the loss criterion for the model. |
Examples
Initialize an OBB model
>>> model = OBBModel("yolo11n-obb.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor)
Source code in ultralytics/nn/tasks.py
View on GitHubclass OBBModel(DetectionModel):
"""YOLO Oriented Bounding Box (OBB) model.
This class extends DetectionModel to handle oriented bounding box detection tasks, providing specialized loss
computation for rotated object detection.
Methods:
__init__: Initialize YOLO OBB model.
init_criterion: Initialize the loss criterion for OBB detection.
Examples:
Initialize an OBB model
>>> model = OBBModel("yolo11n-obb.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor)
"""
def __init__(self, cfg="yolo11n-obb.yaml", ch=3, nc=None, verbose=True):
"""Initialize YOLO OBB model with given config and parameters.
Args:
cfg (str | dict): Model configuration file path or dictionary.
ch (int): Number of input channels.
nc (int, optional): Number of classes.
verbose (bool): Whether to display model information.
"""
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
method ultralytics.nn.tasks.OBBModel.init_criterion
def init_criterion(self)
Initialize the loss criterion for the model.
Source code in ultralytics/nn/tasks.py
View on GitHubdef init_criterion(self):
"""Initialize the loss criterion for the model."""
return v8OBBLoss(self)
class ultralytics.nn.tasks.SegmentationModel
SegmentationModel(self, cfg = "yolo11n-seg.yaml", ch = 3, nc = None, verbose = True)
Bases: DetectionModel
YOLO segmentation model.
This class extends DetectionModel to handle instance segmentation tasks, providing specialized loss computation for pixel-level object detection and segmentation.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cfg | str | dict | Model configuration file path or dictionary. | "yolo11n-seg.yaml" |
ch | int | Number of input channels. | 3 |
nc | int, optional | Number of classes. | None |
verbose | bool | Whether to display model information. | True |
Methods
| Name | Description |
|---|---|
init_criterion | Initialize the loss criterion for the SegmentationModel. |
Examples
Initialize a segmentation model
>>> model = SegmentationModel("yolo11n-seg.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor)
Source code in ultralytics/nn/tasks.py
View on GitHubclass SegmentationModel(DetectionModel):
"""YOLO segmentation model.
This class extends DetectionModel to handle instance segmentation tasks, providing specialized loss computation for
pixel-level object detection and segmentation.
Methods:
__init__: Initialize YOLO segmentation model.
init_criterion: Initialize the loss criterion for segmentation.
Examples:
Initialize a segmentation model
>>> model = SegmentationModel("yolo11n-seg.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor)
"""
def __init__(self, cfg="yolo11n-seg.yaml", ch=3, nc=None, verbose=True):
"""Initialize Ultralytics YOLO segmentation model with given config and parameters.
Args:
cfg (str | dict): Model configuration file path or dictionary.
ch (int): Number of input channels.
nc (int, optional): Number of classes.
verbose (bool): Whether to display model information.
"""
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
method ultralytics.nn.tasks.SegmentationModel.init_criterion
def init_criterion(self)
Initialize the loss criterion for the SegmentationModel.
Source code in ultralytics/nn/tasks.py
View on GitHubdef init_criterion(self):
"""Initialize the loss criterion for the SegmentationModel."""
return v8SegmentationLoss(self)
class ultralytics.nn.tasks.PoseModel
PoseModel(self, cfg = "yolo11n-pose.yaml", ch = 3, nc = None, data_kpt_shape = (None, None), verbose = True)
Bases: DetectionModel
YOLO pose model.
This class extends DetectionModel to handle human pose estimation tasks, providing specialized loss computation for keypoint detection and pose estimation.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cfg | str | dict | Model configuration file path or dictionary. | "yolo11n-pose.yaml" |
ch | int | Number of input channels. | 3 |
nc | int, optional | Number of classes. | None |
data_kpt_shape | tuple | Shape of keypoints data. | (None, None) |
verbose | bool | Whether to display model information. | True |
Attributes
| Name | Type | Description |
|---|---|---|
kpt_shape | tuple | Shape of keypoints data (num_keypoints, num_dimensions). |
Methods
| Name | Description |
|---|---|
init_criterion | Initialize the loss criterion for the PoseModel. |
Examples
Initialize a pose model
>>> model = PoseModel("yolo11n-pose.yaml", ch=3, nc=1, data_kpt_shape=(17, 3))
>>> results = model.predict(image_tensor)
Source code in ultralytics/nn/tasks.py
View on GitHubclass PoseModel(DetectionModel):
"""YOLO pose model.
This class extends DetectionModel to handle human pose estimation tasks, providing specialized loss computation for
keypoint detection and pose estimation.
Attributes:
kpt_shape (tuple): Shape of keypoints data (num_keypoints, num_dimensions).
Methods:
__init__: Initialize YOLO pose model.
init_criterion: Initialize the loss criterion for pose estimation.
Examples:
Initialize a pose model
>>> model = PoseModel("yolo11n-pose.yaml", ch=3, nc=1, data_kpt_shape=(17, 3))
>>> results = model.predict(image_tensor)
"""
def __init__(self, cfg="yolo11n-pose.yaml", ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):
"""Initialize Ultralytics YOLO Pose model.
Args:
cfg (str | dict): Model configuration file path or dictionary.
ch (int): Number of input channels.
nc (int, optional): Number of classes.
data_kpt_shape (tuple): Shape of keypoints data.
verbose (bool): Whether to display model information.
"""
if not isinstance(cfg, dict):
cfg = yaml_model_load(cfg) # load model YAML
if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg["kpt_shape"]):
LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}")
cfg["kpt_shape"] = data_kpt_shape
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
method ultralytics.nn.tasks.PoseModel.init_criterion
def init_criterion(self)
Initialize the loss criterion for the PoseModel.
Source code in ultralytics/nn/tasks.py
View on GitHubdef init_criterion(self):
"""Initialize the loss criterion for the PoseModel."""
return v8PoseLoss(self)
class ultralytics.nn.tasks.ClassificationModel
ClassificationModel(self, cfg = "yolo11n-cls.yaml", ch = 3, nc = None, verbose = True)
Bases: BaseModel
YOLO classification model.
This class implements the YOLO classification architecture for image classification tasks, providing model initialization, configuration, and output reshaping capabilities.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cfg | str | dict | Model configuration file path or dictionary. | "yolo11n-cls.yaml" |
ch | int | Number of input channels. | 3 |
nc | int, optional | Number of classes. | None |
verbose | bool | Whether to display model information. | True |
Attributes
| Name | Type | Description |
|---|---|---|
yaml | dict | Model configuration dictionary. |
model | torch.nn.Sequential | The neural network model. |
stride | torch.Tensor | Model stride values. |
names | dict | Class names dictionary. |
Methods
| Name | Description |
|---|---|
_from_yaml | Set Ultralytics YOLO model configurations and define the model architecture. |
init_criterion | Initialize the loss criterion for the ClassificationModel. |
reshape_outputs | Update a TorchVision classification model to class count 'n' if required. |
Examples
Initialize a classification model
>>> model = ClassificationModel("yolo11n-cls.yaml", ch=3, nc=1000)
>>> results = model.predict(image_tensor)
Source code in ultralytics/nn/tasks.py
View on GitHubclass ClassificationModel(BaseModel):
"""YOLO classification model.
This class implements the YOLO classification architecture for image classification tasks, providing model
initialization, configuration, and output reshaping capabilities.
Attributes:
yaml (dict): Model configuration dictionary.
model (torch.nn.Sequential): The neural network model.
stride (torch.Tensor): Model stride values.
names (dict): Class names dictionary.
Methods:
__init__: Initialize ClassificationModel.
_from_yaml: Set model configurations and define architecture.
reshape_outputs: Update model to specified class count.
init_criterion: Initialize the loss criterion.
Examples:
Initialize a classification model
>>> model = ClassificationModel("yolo11n-cls.yaml", ch=3, nc=1000)
>>> results = model.predict(image_tensor)
"""
def __init__(self, cfg="yolo11n-cls.yaml", ch=3, nc=None, verbose=True):
"""Initialize ClassificationModel with YAML, channels, number of classes, verbose flag.
Args:
cfg (str | dict): Model configuration file path or dictionary.
ch (int): Number of input channels.
nc (int, optional): Number of classes.
verbose (bool): Whether to display model information.
"""
super().__init__()
self._from_yaml(cfg, ch, nc, verbose)
method ultralytics.nn.tasks.ClassificationModel._from_yaml
def _from_yaml(self, cfg, ch, nc, verbose)
Set Ultralytics YOLO model configurations and define the model architecture.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cfg | str | dict | Model configuration file path or dictionary. | required |
ch | int | Number of input channels. | required |
nc | int, optional | Number of classes. | required |
verbose | bool | Whether to display model information. | required |
Source code in ultralytics/nn/tasks.py
View on GitHubdef _from_yaml(self, cfg, ch, nc, verbose):
"""Set Ultralytics YOLO model configurations and define the model architecture.
Args:
cfg (str | dict): Model configuration file path or dictionary.
ch (int): Number of input channels.
nc (int, optional): Number of classes.
verbose (bool): Whether to display model information.
"""
self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict
# Define model
ch = self.yaml["channels"] = self.yaml.get("channels", ch) # input channels
if nc and nc != self.yaml["nc"]:
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
self.yaml["nc"] = nc # override YAML value
elif not nc and not self.yaml.get("nc", None):
raise ValueError("nc not specified. Must specify nc in model.yaml or function arguments.")
self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist
self.stride = torch.Tensor([1]) # no stride constraints
self.names = {i: f"{i}" for i in range(self.yaml["nc"])} # default names dict
self.info()
method ultralytics.nn.tasks.ClassificationModel.init_criterion
def init_criterion(self)
Initialize the loss criterion for the ClassificationModel.
Source code in ultralytics/nn/tasks.py
View on GitHubdef init_criterion(self):
"""Initialize the loss criterion for the ClassificationModel."""
return v8ClassificationLoss()
method ultralytics.nn.tasks.ClassificationModel.reshape_outputs
def reshape_outputs(model, nc)
Update a TorchVision classification model to class count 'n' if required.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | torch.nn.Module | Model to update. | required |
nc | int | New number of classes. | required |
Source code in ultralytics/nn/tasks.py
View on GitHub@staticmethod
def reshape_outputs(model, nc):
"""Update a TorchVision classification model to class count 'n' if required.
Args:
model (torch.nn.Module): Model to update.
nc (int): New number of classes.
"""
name, m = list((model.model if hasattr(model, "model") else model).named_children())[-1] # last module
if isinstance(m, Classify): # YOLO Classify() head
if m.linear.out_features != nc:
m.linear = torch.nn.Linear(m.linear.in_features, nc)
elif isinstance(m, torch.nn.Linear): # ResNet, EfficientNet
if m.out_features != nc:
setattr(model, name, torch.nn.Linear(m.in_features, nc))
elif isinstance(m, torch.nn.Sequential):
types = [type(x) for x in m]
if torch.nn.Linear in types:
i = len(types) - 1 - types[::-1].index(torch.nn.Linear) # last torch.nn.Linear index
if m[i].out_features != nc:
m[i] = torch.nn.Linear(m[i].in_features, nc)
elif torch.nn.Conv2d in types:
i = len(types) - 1 - types[::-1].index(torch.nn.Conv2d) # last torch.nn.Conv2d index
if m[i].out_channels != nc:
m[i] = torch.nn.Conv2d(
m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None
)
class ultralytics.nn.tasks.RTDETRDetectionModel
RTDETRDetectionModel(self, cfg = "rtdetr-l.yaml", ch = 3, nc = None, verbose = True)
Bases: DetectionModel
RTDETR (Real-time DEtection and Tracking using Transformers) Detection Model class.
This class is responsible for constructing the RTDETR architecture, defining loss functions, and facilitating both the training and inference processes. RTDETR is an object detection and tracking model that extends from the DetectionModel base class.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cfg | str | dict | Configuration file name or path. | "rtdetr-l.yaml" |
ch | int | Number of input channels. | 3 |
nc | int, optional | Number of classes. | None |
verbose | bool | Print additional information during initialization. | True |
Attributes
| Name | Type | Description |
|---|---|---|
nc | int | Number of classes for detection. |
criterion | RTDETRDetectionLoss | Loss function for training. |
Methods
| Name | Description |
|---|---|
_apply | Apply a function to all tensors in the model that are not parameters or registered buffers. |
init_criterion | Initialize the loss criterion for the RTDETRDetectionModel. |
loss | Compute the loss for the given batch of data. |
predict | Perform a forward pass through the model. |
Examples
Initialize an RTDETR model
>>> model = RTDETRDetectionModel("rtdetr-l.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor)
Source code in ultralytics/nn/tasks.py
View on GitHubclass RTDETRDetectionModel(DetectionModel):
"""RTDETR (Real-time DEtection and Tracking using Transformers) Detection Model class.
This class is responsible for constructing the RTDETR architecture, defining loss functions, and facilitating both
the training and inference processes. RTDETR is an object detection and tracking model that extends from the
DetectionModel base class.
Attributes:
nc (int): Number of classes for detection.
criterion (RTDETRDetectionLoss): Loss function for training.
Methods:
__init__: Initialize the RTDETRDetectionModel.
init_criterion: Initialize the loss criterion.
loss: Compute loss for training.
predict: Perform forward pass through the model.
Examples:
Initialize an RTDETR model
>>> model = RTDETRDetectionModel("rtdetr-l.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor)
"""
def __init__(self, cfg="rtdetr-l.yaml", ch=3, nc=None, verbose=True):
"""Initialize the RTDETRDetectionModel.
Args:
cfg (str | dict): Configuration file name or path.
ch (int): Number of input channels.
nc (int, optional): Number of classes.
verbose (bool): Print additional information during initialization.
"""
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
method ultralytics.nn.tasks.RTDETRDetectionModel._apply
def _apply(self, fn)
Apply a function to all tensors in the model that are not parameters or registered buffers.
Args
| Name | Type | Description | Default |
|---|---|---|---|
fn | function | The function to apply to the model. | required |
Returns
| Type | Description |
|---|---|
RTDETRDetectionModel | An updated BaseModel object. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef _apply(self, fn):
"""Apply a function to all tensors in the model that are not parameters or registered buffers.
Args:
fn (function): The function to apply to the model.
Returns:
(RTDETRDetectionModel): An updated BaseModel object.
"""
self = super()._apply(fn)
m = self.model[-1]
m.anchors = fn(m.anchors)
m.valid_mask = fn(m.valid_mask)
return self
method ultralytics.nn.tasks.RTDETRDetectionModel.init_criterion
def init_criterion(self)
Initialize the loss criterion for the RTDETRDetectionModel.
Source code in ultralytics/nn/tasks.py
View on GitHubdef init_criterion(self):
"""Initialize the loss criterion for the RTDETRDetectionModel."""
from ultralytics.models.utils.loss import RTDETRDetectionLoss
return RTDETRDetectionLoss(nc=self.nc, use_vfl=True)
method ultralytics.nn.tasks.RTDETRDetectionModel.loss
def loss(self, batch, preds = None)
Compute the loss for the given batch of data.
Args
| Name | Type | Description | Default |
|---|---|---|---|
batch | dict | Dictionary containing image and label data. | required |
preds | torch.Tensor, optional | Precomputed model predictions. | None |
Returns
| Type | Description |
|---|---|
loss_sum (torch.Tensor) | Total loss value. |
loss_items (torch.Tensor) | Main three losses in a tensor. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef loss(self, batch, preds=None):
"""Compute the loss for the given batch of data.
Args:
batch (dict): Dictionary containing image and label data.
preds (torch.Tensor, optional): Precomputed model predictions.
Returns:
loss_sum (torch.Tensor): Total loss value.
loss_items (torch.Tensor): Main three losses in a tensor.
"""
if not hasattr(self, "criterion"):
self.criterion = self.init_criterion()
img = batch["img"]
# NOTE: preprocess gt_bbox and gt_labels to list.
bs = img.shape[0]
batch_idx = batch["batch_idx"]
gt_groups = [(batch_idx == i).sum().item() for i in range(bs)]
targets = {
"cls": batch["cls"].to(img.device, dtype=torch.long).view(-1),
"bboxes": batch["bboxes"].to(device=img.device),
"batch_idx": batch_idx.to(img.device, dtype=torch.long).view(-1),
"gt_groups": gt_groups,
}
if preds is None:
preds = self.predict(img, batch=targets)
dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds if self.training else preds[1]
if dn_meta is None:
dn_bboxes, dn_scores = None, None
else:
dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta["dn_num_split"], dim=2)
dn_scores, dec_scores = torch.split(dec_scores, dn_meta["dn_num_split"], dim=2)
dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes]) # (7, bs, 300, 4)
dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores])
loss = self.criterion(
(dec_bboxes, dec_scores), targets, dn_bboxes=dn_bboxes, dn_scores=dn_scores, dn_meta=dn_meta
)
# NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses.
return sum(loss.values()), torch.as_tensor(
[loss[k].detach() for k in ["loss_giou", "loss_class", "loss_bbox"]], device=img.device
)
method ultralytics.nn.tasks.RTDETRDetectionModel.predict
def predict(self, x, profile = False, visualize = False, batch = None, augment = False, embed = None)
Perform a forward pass through the model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | The input tensor. | required |
profile | bool | If True, profile the computation time for each layer. | False |
visualize | bool | If True, save feature maps for visualization. | False |
batch | dict, optional | Ground truth data for evaluation. | None |
augment | bool | If True, perform data augmentation during inference. | False |
embed | list, optional | A list of feature vectors/embeddings to return. | None |
Returns
| Type | Description |
|---|---|
torch.Tensor | Model's output tensor. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None):
"""Perform a forward pass through the model.
Args:
x (torch.Tensor): The input tensor.
profile (bool): If True, profile the computation time for each layer.
visualize (bool): If True, save feature maps for visualization.
batch (dict, optional): Ground truth data for evaluation.
augment (bool): If True, perform data augmentation during inference.
embed (list, optional): A list of feature vectors/embeddings to return.
Returns:
(torch.Tensor): Model's output tensor.
"""
y, dt, embeddings = [], [], [] # outputs
embed = frozenset(embed) if embed is not None else {-1}
max_idx = max(embed)
for m in self.model[:-1]: # except the head part
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
if m.i in embed:
embeddings.append(torch.nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
if m.i == max_idx:
return torch.unbind(torch.cat(embeddings, 1), dim=0)
head = self.model[-1]
x = head([y[j] for j in head.f], batch) # head inference
return x
class ultralytics.nn.tasks.WorldModel
WorldModel(self, cfg = "yolov8s-world.yaml", ch = 3, nc = None, verbose = True)
Bases: DetectionModel
YOLOv8 World Model.
This class implements the YOLOv8 World model for open-vocabulary object detection, supporting text-based class specification and CLIP model integration for zero-shot detection capabilities.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cfg | str | dict | Model configuration file path or dictionary. | "yolov8s-world.yaml" |
ch | int | Number of input channels. | 3 |
nc | int, optional | Number of classes. | None |
verbose | bool | Whether to display model information. | True |
Attributes
| Name | Type | Description |
|---|---|---|
txt_feats | torch.Tensor | Text feature embeddings for classes. |
clip_model | torch.nn.Module | CLIP model for text encoding. |
Methods
| Name | Description |
|---|---|
get_text_pe | Set classes in advance so that model could do offline-inference without clip model. |
loss | Compute loss. |
predict | Perform a forward pass through the model. |
set_classes | Set classes in advance so that model could do offline-inference without clip model. |
Examples
Initialize a world model
>>> model = WorldModel("yolov8s-world.yaml", ch=3, nc=80)
>>> model.set_classes(["person", "car", "bicycle"])
>>> results = model.predict(image_tensor)
Source code in ultralytics/nn/tasks.py
View on GitHubclass WorldModel(DetectionModel):
"""YOLOv8 World Model.
This class implements the YOLOv8 World model for open-vocabulary object detection, supporting text-based class
specification and CLIP model integration for zero-shot detection capabilities.
Attributes:
txt_feats (torch.Tensor): Text feature embeddings for classes.
clip_model (torch.nn.Module): CLIP model for text encoding.
Methods:
__init__: Initialize YOLOv8 world model.
set_classes: Set classes for offline inference.
get_text_pe: Get text positional embeddings.
predict: Perform forward pass with text features.
loss: Compute loss with text features.
Examples:
Initialize a world model
>>> model = WorldModel("yolov8s-world.yaml", ch=3, nc=80)
>>> model.set_classes(["person", "car", "bicycle"])
>>> results = model.predict(image_tensor)
"""
def __init__(self, cfg="yolov8s-world.yaml", ch=3, nc=None, verbose=True):
"""Initialize YOLOv8 world model with given config and parameters.
Args:
cfg (str | dict): Model configuration file path or dictionary.
ch (int): Number of input channels.
nc (int, optional): Number of classes.
verbose (bool): Whether to display model information.
"""
self.txt_feats = torch.randn(1, nc or 80, 512) # features placeholder
self.clip_model = None # CLIP model placeholder
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
method ultralytics.nn.tasks.WorldModel.get_text_pe
def get_text_pe(self, text, batch = 80, cache_clip_model = True)
Set classes in advance so that model could do offline-inference without clip model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
text | list[str] | List of class names. | required |
batch | int | Batch size for processing text tokens. | 80 |
cache_clip_model | bool | Whether to cache the CLIP model. | True |
Returns
| Type | Description |
|---|---|
torch.Tensor | Text positional embeddings. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef get_text_pe(self, text, batch=80, cache_clip_model=True):
"""Set classes in advance so that model could do offline-inference without clip model.
Args:
text (list[str]): List of class names.
batch (int): Batch size for processing text tokens.
cache_clip_model (bool): Whether to cache the CLIP model.
Returns:
(torch.Tensor): Text positional embeddings.
"""
from ultralytics.nn.text_model import build_text_model
device = next(self.model.parameters()).device
if not getattr(self, "clip_model", None) and cache_clip_model:
# For backwards compatibility of models lacking clip_model attribute
self.clip_model = build_text_model("clip:ViT-B/32", device=device)
model = self.clip_model if cache_clip_model else build_text_model("clip:ViT-B/32", device=device)
text_token = model.tokenize(text)
txt_feats = [model.encode_text(token).detach() for token in text_token.split(batch)]
txt_feats = txt_feats[0] if len(txt_feats) == 1 else torch.cat(txt_feats, dim=0)
return txt_feats.reshape(-1, len(text), txt_feats.shape[-1])
method ultralytics.nn.tasks.WorldModel.loss
def loss(self, batch, preds = None)
Compute loss.
Args
| Name | Type | Description | Default |
|---|---|---|---|
batch | dict | Batch to compute loss on. | required |
preds | torch.Tensor | list[torch.Tensor], optional | Predictions. | None |
Source code in ultralytics/nn/tasks.py
View on GitHubdef loss(self, batch, preds=None):
"""Compute loss.
Args:
batch (dict): Batch to compute loss on.
preds (torch.Tensor | list[torch.Tensor], optional): Predictions.
"""
if not hasattr(self, "criterion"):
self.criterion = self.init_criterion()
if preds is None:
preds = self.forward(batch["img"], txt_feats=batch["txt_feats"])
return self.criterion(preds, batch)
method ultralytics.nn.tasks.WorldModel.predict
def predict(self, x, profile = False, visualize = False, txt_feats = None, augment = False, embed = None)
Perform a forward pass through the model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | The input tensor. | required |
profile | bool | If True, profile the computation time for each layer. | False |
visualize | bool | If True, save feature maps for visualization. | False |
txt_feats | torch.Tensor, optional | The text features, use it if it's given. | None |
augment | bool | If True, perform data augmentation during inference. | False |
embed | list, optional | A list of feature vectors/embeddings to return. | None |
Returns
| Type | Description |
|---|---|
torch.Tensor | Model's output tensor. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef predict(self, x, profile=False, visualize=False, txt_feats=None, augment=False, embed=None):
"""Perform a forward pass through the model.
Args:
x (torch.Tensor): The input tensor.
profile (bool): If True, profile the computation time for each layer.
visualize (bool): If True, save feature maps for visualization.
txt_feats (torch.Tensor, optional): The text features, use it if it's given.
augment (bool): If True, perform data augmentation during inference.
embed (list, optional): A list of feature vectors/embeddings to return.
Returns:
(torch.Tensor): Model's output tensor.
"""
txt_feats = (self.txt_feats if txt_feats is None else txt_feats).to(device=x.device, dtype=x.dtype)
if txt_feats.shape[0] != x.shape[0] or self.model[-1].export:
txt_feats = txt_feats.expand(x.shape[0], -1, -1)
ori_txt_feats = txt_feats.clone()
y, dt, embeddings = [], [], [] # outputs
embed = frozenset(embed) if embed is not None else {-1}
max_idx = max(embed)
for m in self.model: # except the head part
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
if isinstance(m, C2fAttn):
x = m(x, txt_feats)
elif isinstance(m, WorldDetect):
x = m(x, ori_txt_feats)
elif isinstance(m, ImagePoolingAttn):
txt_feats = m(x, txt_feats)
else:
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
if m.i in embed:
embeddings.append(torch.nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
if m.i == max_idx:
return torch.unbind(torch.cat(embeddings, 1), dim=0)
return x
method ultralytics.nn.tasks.WorldModel.set_classes
def set_classes(self, text, batch = 80, cache_clip_model = True)
Set classes in advance so that model could do offline-inference without clip model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
text | list[str] | List of class names. | required |
batch | int | Batch size for processing text tokens. | 80 |
cache_clip_model | bool | Whether to cache the CLIP model. | True |
Source code in ultralytics/nn/tasks.py
View on GitHubdef set_classes(self, text, batch=80, cache_clip_model=True):
"""Set classes in advance so that model could do offline-inference without clip model.
Args:
text (list[str]): List of class names.
batch (int): Batch size for processing text tokens.
cache_clip_model (bool): Whether to cache the CLIP model.
"""
self.txt_feats = self.get_text_pe(text, batch=batch, cache_clip_model=cache_clip_model)
self.model[-1].nc = len(text)
class ultralytics.nn.tasks.YOLOEModel
YOLOEModel(self, cfg = "yoloe-v8s.yaml", ch = 3, nc = None, verbose = True)
Bases: DetectionModel
YOLOE detection model.
This class implements the YOLOE architecture for efficient object detection with text and visual prompts, supporting both prompt-based and prompt-free inference modes.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cfg | str | dict | Model configuration file path or dictionary. | "yoloe-v8s.yaml" |
ch | int | Number of input channels. | 3 |
nc | int, optional | Number of classes. | None |
verbose | bool | Whether to display model information. | True |
Attributes
| Name | Type | Description |
|---|---|---|
pe | torch.Tensor | Prompt embeddings for classes. |
clip_model | torch.nn.Module | CLIP model for text encoding. |
Methods
| Name | Description |
|---|---|
get_cls_pe | Get class positional embeddings. |
get_text_pe | Set classes in advance so that model could do offline-inference without clip model. |
get_visual_pe | Get visual embeddings. |
get_vocab | Get fused vocabulary layer from the model. |
loss | Compute loss. |
predict | Perform a forward pass through the model. |
set_classes | Set classes in advance so that model could do offline-inference without clip model. |
set_vocab | Set vocabulary for the prompt-free model. |
Examples
Initialize a YOLOE model
>>> model = YOLOEModel("yoloe-v8s.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor, tpe=text_embeddings)
Source code in ultralytics/nn/tasks.py
View on GitHubclass YOLOEModel(DetectionModel):
"""YOLOE detection model.
This class implements the YOLOE architecture for efficient object detection with text and visual prompts, supporting
both prompt-based and prompt-free inference modes.
Attributes:
pe (torch.Tensor): Prompt embeddings for classes.
clip_model (torch.nn.Module): CLIP model for text encoding.
Methods:
__init__: Initialize YOLOE model.
get_text_pe: Get text positional embeddings.
get_visual_pe: Get visual embeddings.
set_vocab: Set vocabulary for prompt-free model.
get_vocab: Get fused vocabulary layer.
set_classes: Set classes for offline inference.
get_cls_pe: Get class positional embeddings.
predict: Perform forward pass with prompts.
loss: Compute loss with prompts.
Examples:
Initialize a YOLOE model
>>> model = YOLOEModel("yoloe-v8s.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor, tpe=text_embeddings)
"""
def __init__(self, cfg="yoloe-v8s.yaml", ch=3, nc=None, verbose=True):
"""Initialize YOLOE model with given config and parameters.
Args:
cfg (str | dict): Model configuration file path or dictionary.
ch (int): Number of input channels.
nc (int, optional): Number of classes.
verbose (bool): Whether to display model information.
"""
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
method ultralytics.nn.tasks.YOLOEModel.get_cls_pe
def get_cls_pe(self, tpe, vpe)
Get class positional embeddings.
Args
| Name | Type | Description | Default |
|---|---|---|---|
tpe | torch.Tensor, optional | Text positional embeddings. | required |
vpe | torch.Tensor, optional | Visual positional embeddings. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Class positional embeddings. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef get_cls_pe(self, tpe, vpe):
"""Get class positional embeddings.
Args:
tpe (torch.Tensor, optional): Text positional embeddings.
vpe (torch.Tensor, optional): Visual positional embeddings.
Returns:
(torch.Tensor): Class positional embeddings.
"""
all_pe = []
if tpe is not None:
assert tpe.ndim == 3
all_pe.append(tpe)
if vpe is not None:
assert vpe.ndim == 3
all_pe.append(vpe)
if not all_pe:
all_pe.append(getattr(self, "pe", torch.zeros(1, 80, 512)))
return torch.cat(all_pe, dim=1)
method ultralytics.nn.tasks.YOLOEModel.get_text_pe
def get_text_pe(self, text, batch = 80, cache_clip_model = False, without_reprta = False)
Set classes in advance so that model could do offline-inference without clip model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
text | list[str] | List of class names. | required |
batch | int | Batch size for processing text tokens. | 80 |
cache_clip_model | bool | Whether to cache the CLIP model. | False |
without_reprta | bool | Whether to return text embeddings cooperated with reprta module. | False |
Returns
| Type | Description |
|---|---|
torch.Tensor | Text positional embeddings. |
Source code in ultralytics/nn/tasks.py
View on GitHub@smart_inference_mode()
def get_text_pe(self, text, batch=80, cache_clip_model=False, without_reprta=False):
"""Set classes in advance so that model could do offline-inference without clip model.
Args:
text (list[str]): List of class names.
batch (int): Batch size for processing text tokens.
cache_clip_model (bool): Whether to cache the CLIP model.
without_reprta (bool): Whether to return text embeddings cooperated with reprta module.
Returns:
(torch.Tensor): Text positional embeddings.
"""
from ultralytics.nn.text_model import build_text_model
device = next(self.model.parameters()).device
if not getattr(self, "clip_model", None) and cache_clip_model:
# For backwards compatibility of models lacking clip_model attribute
self.clip_model = build_text_model("mobileclip:blt", device=device)
model = self.clip_model if cache_clip_model else build_text_model("mobileclip:blt", device=device)
text_token = model.tokenize(text)
txt_feats = [model.encode_text(token).detach() for token in text_token.split(batch)]
txt_feats = txt_feats[0] if len(txt_feats) == 1 else torch.cat(txt_feats, dim=0)
txt_feats = txt_feats.reshape(-1, len(text), txt_feats.shape[-1])
if without_reprta:
return txt_feats
head = self.model[-1]
assert isinstance(head, YOLOEDetect)
return head.get_tpe(txt_feats) # run auxiliary text head
method ultralytics.nn.tasks.YOLOEModel.get_visual_pe
def get_visual_pe(self, img, visual)
Get visual embeddings.
Args
| Name | Type | Description | Default |
|---|---|---|---|
img | torch.Tensor | Input image tensor. | required |
visual | torch.Tensor | Visual features. | required |
Returns
| Type | Description |
|---|---|
torch.Tensor | Visual positional embeddings. |
Source code in ultralytics/nn/tasks.py
View on GitHub@smart_inference_mode()
def get_visual_pe(self, img, visual):
"""Get visual embeddings.
Args:
img (torch.Tensor): Input image tensor.
visual (torch.Tensor): Visual features.
Returns:
(torch.Tensor): Visual positional embeddings.
"""
return self(img, vpe=visual, return_vpe=True)
method ultralytics.nn.tasks.YOLOEModel.get_vocab
def get_vocab(self, names)
Get fused vocabulary layer from the model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
names | list | List of class names. | required |
Returns
| Type | Description |
|---|---|
nn.ModuleList | List of vocabulary modules. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef get_vocab(self, names):
"""Get fused vocabulary layer from the model.
Args:
names (list): List of class names.
Returns:
(nn.ModuleList): List of vocabulary modules.
"""
assert not self.training
head = self.model[-1]
assert isinstance(head, YOLOEDetect)
assert not head.is_fused
tpe = self.get_text_pe(names)
self.set_classes(names, tpe)
device = next(self.model.parameters()).device
head.fuse(self.pe.to(device)) # fuse prompt embeddings to classify head
vocab = nn.ModuleList()
for cls_head in head.cv3:
assert isinstance(cls_head, nn.Sequential)
vocab.append(cls_head[-1])
return vocab
method ultralytics.nn.tasks.YOLOEModel.loss
def loss(self, batch, preds = None)
Compute loss.
Args
| Name | Type | Description | Default |
|---|---|---|---|
batch | dict | Batch to compute loss on. | required |
preds | torch.Tensor | list[torch.Tensor], optional | Predictions. | None |
Source code in ultralytics/nn/tasks.py
View on GitHubdef loss(self, batch, preds=None):
"""Compute loss.
Args:
batch (dict): Batch to compute loss on.
preds (torch.Tensor | list[torch.Tensor], optional): Predictions.
"""
if not hasattr(self, "criterion"):
from ultralytics.utils.loss import TVPDetectLoss
visual_prompt = batch.get("visuals", None) is not None # TODO
self.criterion = TVPDetectLoss(self) if visual_prompt else self.init_criterion()
if preds is None:
preds = self.forward(batch["img"], tpe=batch.get("txt_feats", None), vpe=batch.get("visuals", None))
return self.criterion(preds, batch)
method ultralytics.nn.tasks.YOLOEModel.predict
def predict(
self, x, profile=False, visualize=False, tpe=None, augment=False, embed=None, vpe=None, return_vpe=False
)
Perform a forward pass through the model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | The input tensor. | required |
profile | bool | If True, profile the computation time for each layer. | False |
visualize | bool | If True, save feature maps for visualization. | False |
tpe | torch.Tensor, optional | Text positional embeddings. | None |
augment | bool | If True, perform data augmentation during inference. | False |
embed | list, optional | A list of feature vectors/embeddings to return. | None |
vpe | torch.Tensor, optional | Visual positional embeddings. | None |
return_vpe | bool | If True, return visual positional embeddings. | False |
Returns
| Type | Description |
|---|---|
torch.Tensor | Model's output tensor. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef predict(
self, x, profile=False, visualize=False, tpe=None, augment=False, embed=None, vpe=None, return_vpe=False
):
"""Perform a forward pass through the model.
Args:
x (torch.Tensor): The input tensor.
profile (bool): If True, profile the computation time for each layer.
visualize (bool): If True, save feature maps for visualization.
tpe (torch.Tensor, optional): Text positional embeddings.
augment (bool): If True, perform data augmentation during inference.
embed (list, optional): A list of feature vectors/embeddings to return.
vpe (torch.Tensor, optional): Visual positional embeddings.
return_vpe (bool): If True, return visual positional embeddings.
Returns:
(torch.Tensor): Model's output tensor.
"""
y, dt, embeddings = [], [], [] # outputs
b = x.shape[0]
embed = frozenset(embed) if embed is not None else {-1}
max_idx = max(embed)
for m in self.model: # except the head part
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
if isinstance(m, YOLOEDetect):
vpe = m.get_vpe(x, vpe) if vpe is not None else None
if return_vpe:
assert vpe is not None
assert not self.training
return vpe
cls_pe = self.get_cls_pe(m.get_tpe(tpe), vpe).to(device=x[0].device, dtype=x[0].dtype)
if cls_pe.shape[0] != b or m.export:
cls_pe = cls_pe.expand(b, -1, -1)
x = m(x, cls_pe)
else:
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
if m.i in embed:
embeddings.append(torch.nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
if m.i == max_idx:
return torch.unbind(torch.cat(embeddings, 1), dim=0)
return x
method ultralytics.nn.tasks.YOLOEModel.set_classes
def set_classes(self, names, embeddings)
Set classes in advance so that model could do offline-inference without clip model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
names | list[str] | List of class names. | required |
embeddings | torch.Tensor | Embeddings tensor. | required |
Source code in ultralytics/nn/tasks.py
View on GitHubdef set_classes(self, names, embeddings):
"""Set classes in advance so that model could do offline-inference without clip model.
Args:
names (list[str]): List of class names.
embeddings (torch.Tensor): Embeddings tensor.
"""
assert not hasattr(self.model[-1], "lrpc"), (
"Prompt-free model does not support setting classes. Please try with Text/Visual prompt models."
)
assert embeddings.ndim == 3
self.pe = embeddings
self.model[-1].nc = len(names)
self.names = check_class_names(names)
method ultralytics.nn.tasks.YOLOEModel.set_vocab
def set_vocab(self, vocab, names)
Set vocabulary for the prompt-free model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
vocab | nn.ModuleList | List of vocabulary items. | required |
names | list[str] | List of class names. | required |
Source code in ultralytics/nn/tasks.py
View on GitHubdef set_vocab(self, vocab, names):
"""Set vocabulary for the prompt-free model.
Args:
vocab (nn.ModuleList): List of vocabulary items.
names (list[str]): List of class names.
"""
assert not self.training
head = self.model[-1]
assert isinstance(head, YOLOEDetect)
# Cache anchors for head
device = next(self.parameters()).device
self(torch.empty(1, 3, self.args["imgsz"], self.args["imgsz"]).to(device)) # warmup
# re-parameterization for prompt-free model
self.model[-1].lrpc = nn.ModuleList(
LRPCHead(cls, pf[-1], loc[-1], enabled=i != 2)
for i, (cls, pf, loc) in enumerate(zip(vocab, head.cv3, head.cv2))
)
for loc_head, cls_head in zip(head.cv2, head.cv3):
assert isinstance(loc_head, nn.Sequential)
assert isinstance(cls_head, nn.Sequential)
del loc_head[-1]
del cls_head[-1]
self.model[-1].nc = len(names)
self.names = check_class_names(names)
class ultralytics.nn.tasks.YOLOESegModel
YOLOESegModel(self, cfg = "yoloe-v8s-seg.yaml", ch = 3, nc = None, verbose = True)
Bases: YOLOEModel, SegmentationModel
YOLOE segmentation model.
This class extends YOLOEModel to handle instance segmentation tasks with text and visual prompts, providing specialized loss computation for pixel-level object detection and segmentation.
Args
| Name | Type | Description | Default |
|---|---|---|---|
cfg | str | dict | Model configuration file path or dictionary. | "yoloe-v8s-seg.yaml" |
ch | int | Number of input channels. | 3 |
nc | int, optional | Number of classes. | None |
verbose | bool | Whether to display model information. | True |
Methods
| Name | Description |
|---|---|
loss | Compute loss. |
Examples
Initialize a YOLOE segmentation model
>>> model = YOLOESegModel("yoloe-v8s-seg.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor, tpe=text_embeddings)
Source code in ultralytics/nn/tasks.py
View on GitHubclass YOLOESegModel(YOLOEModel, SegmentationModel):
"""YOLOE segmentation model.
This class extends YOLOEModel to handle instance segmentation tasks with text and visual prompts, providing
specialized loss computation for pixel-level object detection and segmentation.
Methods:
__init__: Initialize YOLOE segmentation model.
loss: Compute loss with prompts for segmentation.
Examples:
Initialize a YOLOE segmentation model
>>> model = YOLOESegModel("yoloe-v8s-seg.yaml", ch=3, nc=80)
>>> results = model.predict(image_tensor, tpe=text_embeddings)
"""
def __init__(self, cfg="yoloe-v8s-seg.yaml", ch=3, nc=None, verbose=True):
"""Initialize YOLOE segmentation model with given config and parameters.
Args:
cfg (str | dict): Model configuration file path or dictionary.
ch (int): Number of input channels.
nc (int, optional): Number of classes.
verbose (bool): Whether to display model information.
"""
super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)
method ultralytics.nn.tasks.YOLOESegModel.loss
def loss(self, batch, preds = None)
Compute loss.
Args
| Name | Type | Description | Default |
|---|---|---|---|
batch | dict | Batch to compute loss on. | required |
preds | torch.Tensor | list[torch.Tensor], optional | Predictions. | None |
Source code in ultralytics/nn/tasks.py
View on GitHubdef loss(self, batch, preds=None):
"""Compute loss.
Args:
batch (dict): Batch to compute loss on.
preds (torch.Tensor | list[torch.Tensor], optional): Predictions.
"""
if not hasattr(self, "criterion"):
from ultralytics.utils.loss import TVPSegmentLoss
visual_prompt = batch.get("visuals", None) is not None # TODO
self.criterion = TVPSegmentLoss(self) if visual_prompt else self.init_criterion()
if preds is None:
preds = self.forward(batch["img"], tpe=batch.get("txt_feats", None), vpe=batch.get("visuals", None))
return self.criterion(preds, batch)
class ultralytics.nn.tasks.Ensemble
Ensemble(self)
Bases: torch.nn.ModuleList
Ensemble of models.
This class allows combining multiple YOLO models into an ensemble for improved performance through model averaging or other ensemble techniques.
Methods
| Name | Description |
|---|---|
forward | Generate the YOLO network's final layer. |
Examples
Create an ensemble of models
>>> ensemble = Ensemble()
>>> ensemble.append(model1)
>>> ensemble.append(model2)
>>> results = ensemble(image_tensor)
Source code in ultralytics/nn/tasks.py
View on GitHubclass Ensemble(torch.nn.ModuleList):
"""Ensemble of models.
This class allows combining multiple YOLO models into an ensemble for improved performance through model averaging
or other ensemble techniques.
Methods:
__init__: Initialize an ensemble of models.
forward: Generate predictions from all models in the ensemble.
Examples:
Create an ensemble of models
>>> ensemble = Ensemble()
>>> ensemble.append(model1)
>>> ensemble.append(model2)
>>> results = ensemble(image_tensor)
"""
def __init__(self):
"""Initialize an ensemble of models."""
super().__init__()
method ultralytics.nn.tasks.Ensemble.forward
def forward(self, x, augment = False, profile = False, visualize = False)
Generate the YOLO network's final layer.
Args
| Name | Type | Description | Default |
|---|---|---|---|
x | torch.Tensor | Input tensor. | required |
augment | bool | Whether to augment the input. | False |
profile | bool | Whether to profile the model. | False |
visualize | bool | Whether to visualize the features. | False |
Returns
| Type | Description |
|---|---|
y (torch.Tensor) | Concatenated predictions from all models. |
train_out (None) | Always None for ensemble inference. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef forward(self, x, augment=False, profile=False, visualize=False):
"""Generate the YOLO network's final layer.
Args:
x (torch.Tensor): Input tensor.
augment (bool): Whether to augment the input.
profile (bool): Whether to profile the model.
visualize (bool): Whether to visualize the features.
Returns:
y (torch.Tensor): Concatenated predictions from all models.
train_out (None): Always None for ensemble inference.
"""
y = [module(x, augment, profile, visualize)[0] for module in self]
# y = torch.stack(y).max(0)[0] # max ensemble
# y = torch.stack(y).mean(0) # mean ensemble
y = torch.cat(y, 2) # nms ensemble, y shape(B, HW, C)
return y, None # inference, train output
class ultralytics.nn.tasks.SafeClass
SafeClass(self, *args, **kwargs)
A placeholder class to replace unknown classes during unpickling.
Args
| Name | Type | Description | Default |
|---|---|---|---|
*args | required | ||
**kwargs | required |
Methods
| Name | Description |
|---|---|
__call__ | Run SafeClass instance, ignoring all arguments. |
Source code in ultralytics/nn/tasks.py
View on GitHubclass SafeClass:
"""A placeholder class to replace unknown classes during unpickling."""
def __init__(self, *args, **kwargs):
"""Initialize SafeClass instance, ignoring all arguments."""
pass
method ultralytics.nn.tasks.SafeClass.__call__
def __call__(self, *args, **kwargs)
Run SafeClass instance, ignoring all arguments.
Args
| Name | Type | Description | Default |
|---|---|---|---|
*args | required | ||
**kwargs | required |
Source code in ultralytics/nn/tasks.py
View on GitHubdef __call__(self, *args, **kwargs):
"""Run SafeClass instance, ignoring all arguments."""
pass
class ultralytics.nn.tasks.SafeUnpickler
SafeUnpickler()
Bases: pickle.Unpickler
Custom Unpickler that replaces unknown classes with SafeClass.
Methods
| Name | Description |
|---|---|
find_class | Attempt to find a class, returning SafeClass if not among safe modules. |
method ultralytics.nn.tasks.SafeUnpickler.find_class
def find_class(self, module, name)
Attempt to find a class, returning SafeClass if not among safe modules.
Args
| Name | Type | Description | Default |
|---|---|---|---|
module | str | Module name. | required |
name | str | Class name. | required |
Returns
| Type | Description |
|---|---|
type | Found class or SafeClass. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef find_class(self, module, name):
"""Attempt to find a class, returning SafeClass if not among safe modules.
Args:
module (str): Module name.
name (str): Class name.
Returns:
(type): Found class or SafeClass.
"""
safe_modules = (
"torch",
"collections",
"collections.abc",
"builtins",
"math",
"numpy",
# Add other modules considered safe
)
if module in safe_modules:
return super().find_class(module, name)
else:
return SafeClass
function ultralytics.nn.tasks.temporary_modules
def temporary_modules(modules = None, attributes = None)
Context manager for temporarily adding or modifying modules in Python's module cache (sys.modules).
This function can be used to change the module paths during runtime. It's useful when refactoring code, where you've moved a module from one location to another, but you still want to support the old import paths for backwards compatibility.
Args
| Name | Type | Description | Default |
|---|---|---|---|
modules | dict, optional | A dictionary mapping old module paths to new module paths. | None |
attributes | dict, optional | A dictionary mapping old module attributes to new module attributes. | None |
Examples
>>> with temporary_modules({"old.module": "new.module"}, {"old.module.attribute": "new.module.attribute"}):
>>> import old.module # this will now import new.module
>>> from old.module import attribute # this will now import new.module.attribute
Notes
The changes are only in effect inside the context manager and are undone once the context manager exits.
Be aware that directly manipulating sys.modules can lead to unpredictable results, especially in larger
applications or libraries. Use this function with caution.
Source code in ultralytics/nn/tasks.py
View on GitHub@contextlib.contextmanager
def temporary_modules(modules=None, attributes=None):
"""Context manager for temporarily adding or modifying modules in Python's module cache (`sys.modules`).
This function can be used to change the module paths during runtime. It's useful when refactoring code, where you've
moved a module from one location to another, but you still want to support the old import paths for backwards
compatibility.
Args:
modules (dict, optional): A dictionary mapping old module paths to new module paths.
attributes (dict, optional): A dictionary mapping old module attributes to new module attributes.
Examples:
>>> with temporary_modules({"old.module": "new.module"}, {"old.module.attribute": "new.module.attribute"}):
>>> import old.module # this will now import new.module
>>> from old.module import attribute # this will now import new.module.attribute
Notes:
The changes are only in effect inside the context manager and are undone once the context manager exits.
Be aware that directly manipulating `sys.modules` can lead to unpredictable results, especially in larger
applications or libraries. Use this function with caution.
"""
if modules is None:
modules = {}
if attributes is None:
attributes = {}
import sys
from importlib import import_module
try:
# Set attributes in sys.modules under their old name
for old, new in attributes.items():
old_module, old_attr = old.rsplit(".", 1)
new_module, new_attr = new.rsplit(".", 1)
setattr(import_module(old_module), old_attr, getattr(import_module(new_module), new_attr))
# Set modules in sys.modules under their old name
for old, new in modules.items():
sys.modules[old] = import_module(new)
yield
finally:
# Remove the temporary module paths
for old in modules:
if old in sys.modules:
del sys.modules[old]
function ultralytics.nn.tasks.torch_safe_load
def torch_safe_load(weight, safe_only = False)
Attempt to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised, it catches
the error, logs a warning message, and attempts to install the missing module via the check_requirements() function. After installation, the function again attempts to load the model using torch.load().
Args
| Name | Type | Description | Default |
|---|---|---|---|
weight | str | The file path of the PyTorch model. | required |
safe_only | bool | If True, replace unknown classes with SafeClass during loading. | False |
Returns
| Type | Description |
|---|---|
ckpt (dict) | The loaded model checkpoint. |
file (str) | The loaded filename. |
Examples
>>> from ultralytics.nn.tasks import torch_safe_load
>>> ckpt, file = torch_safe_load("path/to/best.pt", safe_only=True)
Source code in ultralytics/nn/tasks.py
View on GitHubdef torch_safe_load(weight, safe_only=False):
"""Attempt to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised, it catches
the error, logs a warning message, and attempts to install the missing module via the check_requirements()
function. After installation, the function again attempts to load the model using torch.load().
Args:
weight (str): The file path of the PyTorch model.
safe_only (bool): If True, replace unknown classes with SafeClass during loading.
Returns:
ckpt (dict): The loaded model checkpoint.
file (str): The loaded filename.
Examples:
>>> from ultralytics.nn.tasks import torch_safe_load
>>> ckpt, file = torch_safe_load("path/to/best.pt", safe_only=True)
"""
from ultralytics.utils.downloads import attempt_download_asset
check_suffix(file=weight, suffix=".pt")
file = attempt_download_asset(weight) # search online if missing locally
try:
with temporary_modules(
modules={
"ultralytics.yolo.utils": "ultralytics.utils",
"ultralytics.yolo.v8": "ultralytics.models.yolo",
"ultralytics.yolo.data": "ultralytics.data",
},
attributes={
"ultralytics.nn.modules.block.Silence": "torch.nn.Identity", # YOLOv9e
"ultralytics.nn.tasks.YOLOv10DetectionModel": "ultralytics.nn.tasks.DetectionModel", # YOLOv10
"ultralytics.utils.loss.v10DetectLoss": "ultralytics.utils.loss.E2EDetectLoss", # YOLOv10
},
):
if safe_only:
# Load via custom pickle module
safe_pickle = types.ModuleType("safe_pickle")
safe_pickle.Unpickler = SafeUnpickler
safe_pickle.load = lambda file_obj: SafeUnpickler(file_obj).load()
with open(file, "rb") as f:
ckpt = torch_load(f, pickle_module=safe_pickle)
else:
ckpt = torch_load(file, map_location="cpu")
except ModuleNotFoundError as e: # e.name is missing module name
if e.name == "models":
raise TypeError(
emojis(
f"ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained "
f"with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with "
f"YOLOv8 at https://github.com/ultralytics/ultralytics."
f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
f"run a command with an official Ultralytics model, i.e. 'yolo predict model=yolo11n.pt'"
)
) from e
elif e.name == "numpy._core":
raise ModuleNotFoundError(
emojis(
f"ERROR ❌️ {weight} requires numpy>=1.26.1, however numpy=={__import__('numpy').__version__} is installed."
)
) from e
LOGGER.warning(
f"{weight} appears to require '{e.name}', which is not in Ultralytics requirements."
f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future."
f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
f"run a command with an official Ultralytics model, i.e. 'yolo predict model=yolo11n.pt'"
)
check_requirements(e.name) # install missing module
ckpt = torch_load(file, map_location="cpu")
if not isinstance(ckpt, dict):
# File is likely a YOLO instance saved with i.e. torch.save(model, "saved_model.pt")
LOGGER.warning(
f"The file '{weight}' appears to be improperly saved or formatted. "
f"For optimal results, use model.save('filename.pt') to correctly save YOLO models."
)
ckpt = {"model": ckpt.model}
return ckpt, file
function ultralytics.nn.tasks.load_checkpoint
def load_checkpoint(weight, device = None, inplace = True, fuse = False)
Load a single model weights.
Args
| Name | Type | Description | Default |
|---|---|---|---|
weight | str | Path | Model weight path. | required |
device | torch.device, optional | Device to load model to. | None |
inplace | bool | Whether to do inplace operations. | True |
fuse | bool | Whether to fuse model. | False |
Returns
| Type | Description |
|---|---|
model (torch.nn.Module) | Loaded model. |
ckpt (dict) | Model checkpoint dictionary. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef load_checkpoint(weight, device=None, inplace=True, fuse=False):
"""Load a single model weights.
Args:
weight (str | Path): Model weight path.
device (torch.device, optional): Device to load model to.
inplace (bool): Whether to do inplace operations.
fuse (bool): Whether to fuse model.
Returns:
model (torch.nn.Module): Loaded model.
ckpt (dict): Model checkpoint dictionary.
"""
ckpt, weight = torch_safe_load(weight) # load ckpt
args = {**DEFAULT_CFG_DICT, **(ckpt.get("train_args", {}))} # combine model and default args, preferring model args
model = (ckpt.get("ema") or ckpt["model"]).float() # FP32 model
# Model compatibility updates
model.args = args # attach args to model
model.pt_path = weight # attach *.pt file path to model
model.task = getattr(model, "task", guess_model_task(model))
if not hasattr(model, "stride"):
model.stride = torch.tensor([32.0])
model = (model.fuse() if fuse and hasattr(model, "fuse") else model).eval().to(device) # model in eval mode
# Module updates
for m in model.modules():
if hasattr(m, "inplace"):
m.inplace = inplace
elif isinstance(m, torch.nn.Upsample) and not hasattr(m, "recompute_scale_factor"):
m.recompute_scale_factor = None # torch 1.11.0 compatibility
# Return model and ckpt
return model, ckpt
function ultralytics.nn.tasks.parse_model
def parse_model(d, ch, verbose = True)
Parse a YOLO model.yaml dictionary into a PyTorch model.
Args
| Name | Type | Description | Default |
|---|---|---|---|
d | dict | Model dictionary. | required |
ch | int | Input channels. | required |
verbose | bool | Whether to print model details. | True |
Returns
| Type | Description |
|---|---|
model (torch.nn.Sequential) | PyTorch model. |
save (list) | Sorted list of output layers. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef parse_model(d, ch, verbose=True):
"""Parse a YOLO model.yaml dictionary into a PyTorch model.
Args:
d (dict): Model dictionary.
ch (int): Input channels.
verbose (bool): Whether to print model details.
Returns:
model (torch.nn.Sequential): PyTorch model.
save (list): Sorted list of output layers.
"""
import ast
# Args
legacy = True # backward compatibility for v3/v5/v8/v9 models
max_channels = float("inf")
nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))
depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))
scale = d.get("scale")
if scales:
if not scale:
scale = next(iter(scales.keys()))
LOGGER.warning(f"no model scale passed. Assuming scale='{scale}'.")
depth, width, max_channels = scales[scale]
if act:
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = torch.nn.SiLU()
if verbose:
LOGGER.info(f"{colorstr('activation:')} {act}") # print
if verbose:
LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}")
ch = [ch]
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
base_modules = frozenset(
{
Classify,
Conv,
ConvTranspose,
GhostConv,
Bottleneck,
GhostBottleneck,
SPP,
SPPF,
C2fPSA,
C2PSA,
DWConv,
Focus,
BottleneckCSP,
C1,
C2,
C2f,
C3k2,
RepNCSPELAN4,
ELAN1,
ADown,
AConv,
SPPELAN,
C2fAttn,
C3,
C3TR,
C3Ghost,
torch.nn.ConvTranspose2d,
DWConvTranspose2d,
C3x,
RepC3,
PSA,
SCDown,
C2fCIB,
A2C2f,
}
)
repeat_modules = frozenset( # modules with 'repeat' arguments
{
BottleneckCSP,
C1,
C2,
C2f,
C3k2,
C2fAttn,
C3,
C3TR,
C3Ghost,
C3x,
RepC3,
C2fPSA,
C2fCIB,
C2PSA,
A2C2f,
}
)
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
m = (
getattr(torch.nn, m[3:])
if "nn." in m
else getattr(__import__("torchvision").ops, m[16:])
if "torchvision.ops." in m
else globals()[m]
) # get module
for j, a in enumerate(args):
if isinstance(a, str):
with contextlib.suppress(ValueError):
args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
n = n_ = max(round(n * depth), 1) if n > 1 else n # depth gain
if m in base_modules:
c1, c2 = ch[f], args[0]
if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)
c2 = make_divisible(min(c2, max_channels) * width, 8)
if m is C2fAttn: # set 1) embed channels and 2) num heads
args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)
args[2] = int(max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2])
args = [c1, c2, *args[1:]]
if m in repeat_modules:
args.insert(2, n) # number of repeats
n = 1
if m is C3k2: # for M/L/X sizes
legacy = False
if scale in "mlx":
args[3] = True
if m is A2C2f:
legacy = False
if scale in "lx": # for L/X sizes
args.extend((True, 1.2))
if m is C2fCIB:
legacy = False
elif m is AIFI:
args = [ch[f], *args]
elif m in frozenset({HGStem, HGBlock}):
c1, cm, c2 = ch[f], args[0], args[1]
args = [c1, cm, c2, *args[2:]]
if m is HGBlock:
args.insert(4, n) # number of repeats
n = 1
elif m is ResNetLayer:
c2 = args[1] if args[3] else args[1] * 4
elif m is torch.nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum(ch[x] for x in f)
elif m in frozenset(
{Detect, WorldDetect, YOLOEDetect, Segment, YOLOESegment, Pose, OBB, ImagePoolingAttn, v10Detect}
):
args.append([ch[x] for x in f])
if m is Segment or m is YOLOESegment:
args[2] = make_divisible(min(args[2], max_channels) * width, 8)
if m in {Detect, YOLOEDetect, Segment, YOLOESegment, Pose, OBB}:
m.legacy = legacy
elif m is RTDETRDecoder: # special case, channels arg must be passed in index 1
args.insert(1, [ch[x] for x in f])
elif m is CBLinear:
c2 = args[0]
c1 = ch[f]
args = [c1, c2, *args[1:]]
elif m is CBFuse:
c2 = ch[f[-1]]
elif m in frozenset({TorchVision, Index}):
c2 = args[0]
c1 = ch[f]
args = [*args[1:]]
else:
c2 = ch[f]
m_ = torch.nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace("__main__.", "") # module type
m_.np = sum(x.numel() for x in m_.parameters()) # number params
m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type
if verbose:
LOGGER.info(f"{i:>3}{f!s:>20}{n_:>3}{m_.np:10.0f} {t:<45}{args!s:<30}") # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
if i == 0:
ch = []
ch.append(c2)
return torch.nn.Sequential(*layers), sorted(save)
function ultralytics.nn.tasks.yaml_model_load
def yaml_model_load(path)
Load a YOLOv8 model from a YAML file.
Args
| Name | Type | Description | Default |
|---|---|---|---|
path | str | Path | Path to the YAML file. | required |
Returns
| Type | Description |
|---|---|
dict | Model dictionary. |
Source code in ultralytics/nn/tasks.py
View on GitHubdef yaml_model_load(path):
"""Load a YOLOv8 model from a YAML file.
Args:
path (str | Path): Path to the YAML file.
Returns:
(dict): Model dictionary.
"""
path = Path(path)
if path.stem in (f"yolov{d}{x}6" for x in "nsmlx" for d in (5, 8)):
new_stem = re.sub(r"(\d+)([nslmx])6(.+)?$", r"\1\2-p6\3", path.stem)
LOGGER.warning(f"Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.")
path = path.with_name(new_stem + path.suffix)
unified_path = re.sub(r"(\d+)([nslmx])(.+)?$", r"\1\3", str(path)) # i.e. yolov8x.yaml -> yolov8.yaml
yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path)
d = YAML.load(yaml_file) # model dict
d["scale"] = guess_model_scale(path)
d["yaml_file"] = str(path)
return d
function ultralytics.nn.tasks.guess_model_scale
def guess_model_scale(model_path)
Extract the size character n, s, m, l, or x of the model's scale from the model path.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model_path | str | Path | The path to the YOLO model's YAML file. | required |
Returns
| Type | Description |
|---|---|
str | The size character of the model's scale (n, s, m, l, or x). |
Source code in ultralytics/nn/tasks.py
View on GitHubdef guess_model_scale(model_path):
"""Extract the size character n, s, m, l, or x of the model's scale from the model path.
Args:
model_path (str | Path): The path to the YOLO model's YAML file.
Returns:
(str): The size character of the model's scale (n, s, m, l, or x).
"""
try:
return re.search(r"yolo(e-)?[v]?\d+([nslmx])", Path(model_path).stem).group(2)
except AttributeError:
return ""
function ultralytics.nn.tasks.guess_model_task
def guess_model_task(model)
Guess the task of a PyTorch model from its architecture or configuration.
Args
| Name | Type | Description | Default |
|---|---|---|---|
model | torch.nn.Module | dict | PyTorch model or model configuration in YAML format. | required |
Returns
| Type | Description |
|---|---|
str | Task of the model ('detect', 'segment', 'classify', 'pose', 'obb'). |
Source code in ultralytics/nn/tasks.py
View on GitHubdef guess_model_task(model):
"""Guess the task of a PyTorch model from its architecture or configuration.
Args:
model (torch.nn.Module | dict): PyTorch model or model configuration in YAML format.
Returns:
(str): Task of the model ('detect', 'segment', 'classify', 'pose', 'obb').
"""
def cfg2task(cfg):
"""Guess from YAML dictionary."""
m = cfg["head"][-1][-2].lower() # output module name
if m in {"classify", "classifier", "cls", "fc"}:
return "classify"
if "detect" in m:
return "detect"
if "segment" in m:
return "segment"
if m == "pose":
return "pose"
if m == "obb":
return "obb"
# Guess from model cfg
if isinstance(model, dict):
with contextlib.suppress(Exception):
return cfg2task(model)
# Guess from PyTorch model
if isinstance(model, torch.nn.Module): # PyTorch model
for x in "model.args", "model.model.args", "model.model.model.args":
with contextlib.suppress(Exception):
return eval(x)["task"]
for x in "model.yaml", "model.model.yaml", "model.model.model.yaml":
with contextlib.suppress(Exception):
return cfg2task(eval(x))
for m in model.modules():
if isinstance(m, (Segment, YOLOESegment)):
return "segment"
elif isinstance(m, Classify):
return "classify"
elif isinstance(m, Pose):
return "pose"
elif isinstance(m, OBB):
return "obb"
elif isinstance(m, (Detect, WorldDetect, YOLOEDetect, v10Detect)):
return "detect"
# Guess from model filename
if isinstance(model, (str, Path)):
model = Path(model)
if "-seg" in model.stem or "segment" in model.parts:
return "segment"
elif "-cls" in model.stem or "classify" in model.parts:
return "classify"
elif "-pose" in model.stem or "pose" in model.parts:
return "pose"
elif "-obb" in model.stem or "obb" in model.parts:
return "obb"
elif "detect" in model.parts:
return "detect"
# Unable to determine task from model
LOGGER.warning(
"Unable to automatically guess model task, assuming 'task=detect'. "
"Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify','pose' or 'obb'."
)
return "detect" # assume detect